Lecture 1: Three Dimensional graphics: Projections and Transformations

Device Independence

We will start with a brief discussion of
two dimensional drawing primitives. At World Coordinate Window
the lowest level of an operating sys- \

tem we have device dependent graphics

Viewport (Pixel Coordinates)

methods such as: R Screen
SetPixel(XCoord,YCoord,Colour); [XW,Y“‘,‘]- ------
DrawLine(xs,ys,xf,yf); =
which draw objects using pixel coordi-
nates. However it is clearly desirable
Wxmin

that we create any graphics application
in a device independent way. If we can
do this then we can re-size a picture, or
transport it to a different operating sys-
tem and it will fit exactly in the window Dxmin Dxmax
where we place it. Many graphics APIs
provide this facility, and it is a straight-
forward matter to implement it using a world coordinate system. This defines the coordinate values to be
applied to the window on the screen where the graphics image will be drawn. Typically it will use a method of
the kind:

SetWindowCoords(Wxmin, Wymin, Wxmax, Wymax);

WXMin etc are real numbers whose units are application dependent. If the application is to produce a visuali-
sation of a house then the units could be meters, and if it is to draw accurate molecular models the units will be
pm. The application program uses drawing primitives that work in these units, and converts the numeric values
to pixels just before the image is rendered on the screen. This makes it easy to transport it to other systems or
to upgrade it when new graphics hardware becomes available. There may be other device characteristics that
need to be accounted for to achieve complete device independence, for example aspect ratios.

In order to implement a world coordinate system we need to be able to translate between world coordinates
and the device or pixel coordinates. However, we do not necessarily know what the pixel coordinates of a
window are, since the user can move and resize it without the program knowing. The first stage is therefore to
find out what the pixel coordinates of a window are, which is done using an enquiry procedure of the kind:

GetWindowPixelCoords(Dxmin, Dymin, Dxmax, Dymax)

In the Windows API this procedure is called GetClientRect. Having established both the world and device
coordinate systems, it is possible to define a normalisation process to compute the pixel coordinates from the
world coordinates. This is done by simple ratios as shown in Figure 1 . For the X direction:

Figure 1: Normalisation transformation

(Xw - W:pm'm) . (Xd - Dxmm)

(W:cmaa: - Wmmin) (Dxmaz - Dmmzn)

Rearranging, and applying the same idea to the Y direction yields a pair of simple linear equations equations:

X, =AX, + B
Yy =CY,y+ D

where the four constants A,B,C and D define the normalisation between the world coordinate system and the
window pixel coordinates. Whenever a window is re-sized it is necessary to re-calculate the constants A,B,C
and D.

Graphical Input

The most important input device is the mouse, which records the distance moved in the X and Y directions. In
the simplest form it provides at least three pieces of information: the x distance moved, the y distance moved
and the button status. The mouse causes an interrupt every time it is moved, and it is up to the system software to

Interactive Computer Graphics Lecture 1 1

keep track of the changes. Note that the mouse is not connected with the screen in any way. Either the operating
system or the application program must achieve the connection by drawing the visible marker. The operating
system must share control of the mouse with the application, since it needs to act on mouse actions that take
place outside the graphics window. For instance, processing a menu bar or launching a different application. It
therefore traps all mouse events (ie changes in position or buttons) and informs the program whenever an event
has taken place using a “callback procedure”. The application program must, after every action carried out,
return to the callback procedure (or event loop) to determine whether any mouse action (or other event such as
a keystroke) has occurred. The callback is the main program part of any application, and, in simplified pseudo
code, looks like this:

while (executing) do
{ if (menu event) ProcessMenuRequest();
if (mouse event)
{ GetMouseCoordinates();
GetMouseButtons();
PerformMouseProcess();

}

if (window resize event) RedrawGraphics();

}

The procedure ProcessMenuRequest will be used to launch all the normal actions, such as save and open and
quit, together with all the application specific requests. The procedures GetMouseCoordinates and Perform-
MouseProcess will be used by the application writer to create whatever effect is wanted, for example, moving
an object with the mouse. This may well involve re-drawing the graphics. If the window is re-sized then the
whole picture will be re-drawn.

3-Dimensional Objects Bounded by Planar Polygons (Facets)

Most graphical scenes are made up of planar facets. Each facet is an ordered set of 3D vertices, lying on one
plane, which form a closed polygon. The data describing a facet are of two types. First, there is the numerical
data which is a list of 3D points, (3 X N numbers for N points), and secondly, there is the topological data
which describes how points are connected to form edges and facets.

Projections of Wire-Frame Models 3D Object

Since the display device is only 2D, we have Projection Surface
to define a transformation from the 3D space
to the 2D surface of the display device. This
transformation is called a projection. In gen-
eral, projections transform an n-dimensional
space into an m-dimensional space where m < . .
Viewpoint

n. Projection of an object onto a surface is /

Vi

done by selecting a viewpoint and then defin-
ing projectors or lines which join each vertex
of the object to the viewpoint. The projected
vertices are placed where the projectors inter- Projector

sect the projection surface as shown in Figure . L
) Figure 2: Planar Projection

Projection of Vi

The most common (and simplest) projections used for viewing 3D scenes use planes for the projection
surface and straight lines for projectors. These are called planar geometric projections. A rectangular window
can be defined defined on the plane of projection which can be mapped into the device window as described
above. Once all the vertices of an object have been projected it can be rendered. An easy way to do this is
drawing all the projected edges. This is called a wire-frame representation. Note that for such rendering the

Interactive Computer Graphics Lecture 1 2

topological information only specifies which points are joined by edges. For other forms of rendering we also
need to define the object faces.

There are two common classes of planar geometric projections. Parallel projections use parallel projectors,
perspective projections use projectors which pass through one single point called the viewpoint. In order to
minimise confusion in dealing with a general projection problem, we can standardise the plane of projection by
making it always parallel to the z = 0 plane, (the plane which contains the z and y axis). This does not limit the
generality of our discussion because if the required projection plane is not parallel to the 2 = 0 plane then we
can use a coordinate transformations in 3D and make so. We will see shortly how to do this. We shall restrict
the viewed objects to be in the positive half space (z > 0), therefore the projectors starting at the vertices will
always run in the negative z direction.

Parallel Projections

In a parallel projection all the projectors have the same direction d, Looking at a Face
and the viewpoint can be considered to be at infinity. For a vertex
V = [V,,V,, V;] the projector is defined by the parametric line equa-
tion:

P=V+ud Looking at a vertex
In orthographic projection the projectors are perpendicular to the projec-
tion plane, which we usually define as z = 0. In this case the projectors
are in the direction of the z axis and:

General View
d =[0,0,—1]
andso P, =V,
and P, =V,

Figure 3: Orthographic Projections
which means that the x and y co-ordinates of the projected vertex are

equal to the x and y co-ordinates of the vertex itself and no calculations are necessary. Some examples of a
wireframe cube drawn in orthographic projection are shown in Figure 3.

If the projectors are not perpendicular to the plane of projection then the projection is called oblique. The
projected vertex intersects the z = 0 plane where the z component of the P vector is equal to zero, therefore:

Pz =0= sz + Mdz
o p=-V./d
and we can use this value of y to compute:
and P, =V, +pudy, =V, —d,V./d,

These projections are similar to the orthographic projection with one or other of the dimensions scaled. They
are not often used in practice.

Perspective Projections

In perspective projection, all the rays pass through one point in space, the centre of projection as shown in
figure 2. If the centre of projection is behind the plane of projection then the orientation of the image is the
same as the 3D object. By contrast, in a pin hole camera it is inverted. To calculate perspective projections we
adopt a canonical form in which the centre of projection is at the origin, and the projection plane is placed at a
constant z value, z = f. This canonical form is illustrated in Figure 4. The projection of a 3D point onto the
z = f plane is calculated as follows. If we are projecting the point V then the projector has equation:

P=uv
Since the projection plane has equation z = f, it follows that, at the point of intersection:
f=uV,

If we write 1, = f/V. for the intersection point on the plane of projection then:
and Py =ppVy, = fV,/V.

Interactive Computer Graphics Lecture 1 3

The factor (1, is called the foreshortening factor, because the further away an object is, the larger V. and the
smaller is its image. Some examples of the perspective projection of a cube are shown in figure 5.

Y & i i
Projected point Scene

Looking at a Face

Z
Plane of
. Projection (z=f) Looking at a vertex
N \(/-
X General View
Viewpoint
Figure 4: Canonical form for perspective projection Figure 5: Perspective projection of a cube

Space Transformations

The introduction of canonical forms for perspective and orthographic projection simplifies their computation.
However, in cases where we wish to move around a graphical scene and view if from any particular point, we
must be able to transform the coordinates of the scene, such that the view direction is along the z axis and
(for perspective projection) the viewpoint is at the origin. In general we would like to change the coordinates
of every point in the scene, such that some chosen viewpoint C = [C,, Cy, C;] is the origin and some view
direction d = [d,,d,,d.] is the Z axis. This new coordinate system in which the scene is to be defined is
sometimes called the “view centered” coordinate system and is shown in Figure 6.

X Y

Y, d

C
Z
i

r /;X
Coordinate System Coordinate System
for definition for viewing

Figure 6: View centered coordinate transformation

Frequently, we may also want to transform the points of a graphical scene for other purposes such as
generation of special effects like rotating or shrinking objects. Transformations of this kind are achieved by
multiplying every point of the scene by a transformation matrix. Unfortunately however, we cannot perform a
general translation using normal Cartesian coordinates, and for that reason we now introduce a system called
homogeneous coordinates. Three dimensional points expressed in homogeneous form have a fourth ordinate:

P = [pz,py, Pz, 5]
The fourth ordinate is a scale factor, and conversion to Cartesian form is achieved by dividing it into the other
ordinates, so:

(D5 Dy, P25 8] has Cartesian coordinate equivalent D2/, Dy/S, D2/ 5]
In most cases s will be 1. The point of introducing homogenous coordinates is to allow us to translate the points

Interactive Computer Graphics Lecture 1 4

of a scene by using matrix multiplication.

1 0 0 O
0 1 0 0

[‘/'U?y’Z?]':I 0 0 1 0 :[$+t337y+ty)$+t271]
te ty, t. 1

s, 0 0 0
0 s, 0 O

[-ﬁU,y,Z, 1] 0 Oy s, 0 = [Sxmasyyvszz7 1]
0O 0 0 1

Notice that these two transformations are not commutative, and it is essential that they are carried out in the
correct order. Figure 7 illustrates the problem for a simple picture.

Graphics Scene

.. Y Y
(Square at origin) Translate }
, x=xtl
Y v x — X
Scale
s x=2x
X
Y Scale Y,
Translate =%
x:=x+l] > > .
X X

Figure 7: The importance of the order in which transfrmations are done

Rotation has to be treated differently since we need to specify an axis. The matrices for rotation about the
three Cartesian axes are:

1 0 0 0 Cosf 0 —Sinf 0 Cosf Sinf 0 0

oo 0 Cosf Sinf 0 R 0 1 0 0 R.— —Sinf Cos# 0 0
v 0 —Sind Cosf 0 Y Sinf 0 Cosfd 0 z 0 0 10
0 0 0 1 0 0 0 1 0 0 01

Some care is required with the signs. The above formulation obeys the conventions of a left hand axis system.

That is, if the positive y-axis is taken as vertical, and the positive z-axis horizontal to the right, the positive

z-axis is into the page. In these cases, rotation is in a clockwise direction when viewed from the positive side

of the axis, or vice versa, anti-clockwise when viewed from the negative side of the axis. The derivation of the
‘R, matrix is as follows:

Y [xs il
[x,y] =[rCos¢p, rSing]
[xt,yt] = [rCos(¢p+6), rSin(¢+0)] .

[Rotate by 6
[rCospCosl — rSingSind , rCospSind + rSingCoso |

[

[

xCost — ySinf , xSinf + yCosb | L
. 0 [xy]
] [Cosf Sin#] 0

YL _sing Coso

The others may be derived similarly.

Inversions of the transformation matrices can be computed easily, without recourse to Gaussean elimination,
by considering the meaning of each transformation. For scaling, we substitute 1/s, for s,, 1/s, for s, and 1/s,
for s, to invert the matrix.

X

Interactive Computer Graphics Lecture 1 5

s 0 0 0 /s 0 0 O
0 s, 0 0 . . /sy 0 0
0 0 s 0 has inversion 0 0 1/s, 0
0O 0 0 1 0 0 0 1
For translation we substitute —t,, for t,, —t, for ¢, and —t_ for t..
1 0 0 0 1 0 0 O
0100 has inversion 0 1 0 0
0O 0 1 0O 0 0 1 0
te ty, t. 1 ty —t, —t, 1

For the rotation matrices we note that:

Cos(—0) = Cos(0) and Sin(—0) = —Sin(0)

Hence to invert the matrix we simply change the sign of the Sin terms, for example:

Cosf Sinf 0 0 Cosf —Sinf 0
—Sinf Cosf 0 0 has inversion Sinf Cosf 0
0 0 10 0 0 1

0 0 0 1 0 0 0

= o o O

Interactive Computer Graphics Lecture 1

