Interactive Computer Graphics

- The Graphics Pipeline: Clipping

Some slides adopted from F. Durand and B. Cutler, MIT

The Graphics Pipeline

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)
Viewing Transformation (Perspective / Orthographic)
Clipping
Projection (to Screen Space)
Scan Conversion (Rasterization)
Visibility / Display
Graphics Lecture 3

- Maps world space to eye (camera) space
- Viewing position is transformed to origin and viewing direction is oriented along some axis (typically z)

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)
Viewing Transformation (Perspective / Orthographic)
Clipping
Projection (to Screen Space)
Scan Conversion (Rasterization)
Visibility / Display
Graphics Lecture 3

- Transforms to Normalized Device Coordinates
- Portions of the scene outside the viewing volume (view frustum) are removed (clipped)

Eye space
NDC

The Graphics Pipeline

Modelling Transformations
Illumination
(Shading)

- The objects are projected to the 2 D imaging plane (screen space)
Viewing Transformation (Perspective / Orthographic)

$$
\sqrt{2=-y^{4}}
$$

NDC

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)
Viewing Transformation (Perspective / Orthographic)
Clipping
Projection (to Screen Space)
Scan Conversion (Rasterization)
Visibility / Display
Graphics Lecture 3

- Rasterizes objects into pixels
- Interpolate values inside objects (color, depth, etc.)

The Graphics Pipeline

Modelling Transformations
Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display Graphics Lecture 3

- Handles occlusions

- Determines which objects are closest and therefore visible

Clipping

- Eliminate portions of objects outside the viewing frustum
- View frustum
- boundaries of the image plane projected in 3D
- a near \& far clipping plane
- User may define additional clipping planes

Why clipping ?

- Avoid degeneracy
- e.g. don't draw objects behind the camera
- Improve efficiency
e.g. do not process objects which are not visisble

near
bottom

[^0]
When to clip?

- Before perspective transform in 3D space
- use the equation of 6 planes
- natural, not too degenerate
- In homogeneous coordinates after perspective transform (clip space)
- before perspective divide
(4D space, weird w values)
- canonical, independent of camera

- simplest to implement
- In the transformed 3D screen space after perspective division
- problem: objects in the plane of the camera

Graphics Lecture 3

The concept of a halfspace

Graphics Lecture 3

The concept of a halfspace

Graphics Lecture 3

$$
\begin{aligned}
& \text { The concept of a halfspace in } 3 \mathrm{D} \\
& \qquad \begin{array}{l}
\text { Plane equation } \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0 \\
\text { or } \mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0
\end{array} \\
& \text { For all points in this halfspace } \\
& \mathrm{F}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)<0
\end{aligned}
$$

Point-to-Plane Distance

- If $(\mathrm{A}, \mathrm{B}, \mathrm{C})$ is normalized:
$\mathrm{d}=\mathrm{H} \cdot \mathrm{p}=\mathrm{H}^{\mathrm{T}} \mathrm{p}$
(the dot product in homogeneous coordinates)
- d is a signed distance. positive = "inside" negative $=$ "outside"

Graphisis Lecture 3

Reminder: Homogeneous Coordinates

- Recall:
- For each point ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$) there are an infinite number of equivalent homogenous coordinates: (sx, sy, sz, sw)

- Infinite number of equivalent plane expressions:

$$
\mathrm{sAx}+\mathrm{sBy}+\mathrm{sCz}+\mathrm{sD}=0 \rightarrow \mathrm{H}=(\mathrm{sA}, \mathrm{sB}, \mathrm{sC}, \mathrm{sD})
$$

Graphics Lecture 3

Clipping a Point with respect to a Plane

- If $\mathrm{d}=\mathrm{H} \bullet \mathrm{p} \geq 0$ Pass through
- If $d=H \bullet p<0$:

Clip (or cull or reject)

Clipping with respect to View Frustum

- Test against each of the 6 planes
- Normals oriented towards the interior
- Clip (or cull or reject) point p if any $\mathrm{H} \bullet p<0$

Graphics Lecture 3

What are the View Frustum Planes?

Graphics Lecture 3

Line - Plane Intersection

- Compute the intersection between the line and plane for any vector \mathbf{p} lying on the plane $\mathbf{n} \bullet \mathbf{p}=0$
- Let the intersection point be $\mu \mathbf{p}_{\mathbf{1}}+(1-\mu) \mathbf{p}_{\mathbf{0}}$ and assume that \mathbf{v} is a point on the plane, a vector in the plane is given by $\mu \mathbf{p}_{\mathbf{1}}+(1-\mu) \mathbf{p}_{\mathbf{0}}-\mathbf{v}$
- Thus $\mathbf{n} \bullet\left(\mu \mathbf{p}_{\mathbf{1}}+(1-\mu) \mathbf{p}_{\mathbf{0}}-\mathbf{v}\right)=0$ and we can solve this for μ_{i} and hence find the point of intersection
- We then replace $\mathbf{p}_{\mathbf{0}}$ with the intersection point

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}<0$

Graphics Lecture 3

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$ - clip q to plane
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}<0$

Graphics Lecture 3

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$ - clip q to plane
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \cdot \mathrm{q}>0$
- clip p to plane
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}<0$

Girphics Lecture 3

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$
- clip q to plane
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}>0$ - clip p to plane
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$ - pass through
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}<0$

Graphics Lecture 3

Segment Clipping

- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}<0$
- clip q to plane
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}>0$ - clip p to plane
- If $\mathrm{H} \bullet \mathrm{p}>0$ and $\mathrm{H} \bullet \mathrm{q}>0$ - pass through
- If $\mathrm{H} \bullet \mathrm{p}<0$ and $\mathrm{H} \bullet \mathrm{q}<0$ - clipped out

Graphics Lecture 3

Two Definitions of Convex

1. A line joining any two points on the boundary lies inside the object.
2. The object is the intersection of planar halfspaces.

Graphics Lecture 3

Clipping against the frustum

- For each frustum plane H

Graphics Lecture 3

Algorithm for determining if an object is convex

$$
\text { convex }=\text { true }
$$

for each face of the object
\{ find the plane equation of the face $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ choose one object point $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$ not on the face and find $\operatorname{sign}\left(\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)\right)$
for all other points of the object
$\left.\left\{\quad \operatorname{if}\left(\operatorname{sign}\left(\mathrm{F}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}, \mathrm{z}_{\mathrm{j}}\right)\right)!=\operatorname{sign}\left(\mathrm{F}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)\right)\right)$
then convex = false
\}
\}
Craphis Lecture 3

Testing for Containment

- A frequently encountered problem is to determine whether a point is inside an object or not.
- We need this for clipping against polyhedra

Graphics Lecture 3

Algorithm for Containment

Vector formulation

- The same test can be expressed in vector form.
- This avoids the need to calculate the Cartesian equation of the plane, if, in our model we store the normal \mathbf{n} vector to each face of our object.
\{ find the plane equation of the face $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ choose one object point $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$ not on the face and find $\operatorname{sign}\left(\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)\right)$
if $\left(\operatorname{sign}\left(\mathrm{F}^{\left.\left.\left(\mathrm{x}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}}, \mathrm{z}_{\mathrm{t}}\right)\right)!=\operatorname{sign}\left(\mathrm{F}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)\right)\right), ~\left(\mathrm{x}^{2}\right.}\right.\right.$
then contained $=$ false
\}
Graphics Lecture 3

Vector test for containment

Graphics Lecture 3

Finding a normal vector

- The normal vector can be found from the cross product of two vectors on the plane, say two edge vectors

Graphics Lecture 3

Normal vector to a face

- The vector formulation does not require us to find the plane equation of a face, but it does require us to find a normal vector to the plane; same thing really since for plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}+\mathrm{D}=0$ a normal vector is $\mathrm{n}=(\mathrm{A}, \mathrm{B}, \mathrm{C})$

But which normal vector points inwards?

Graphics Lecture 3

Checking the normal direction

Graphics Lecture 3

The Ray test in two dimensions

Find all intersections between the ray and the polygon edges. If the number of intersections is odd the point is contained

Graphics Lecture 3

Graphics Lecture 3

Concave Objects

- Containment and clipping can also be carried out with concave objects.
- Most algorithms are based on the ray containment test.

Calculating intersections with rays

- Rays have equivalent equations to lines, but go in only one direction. For test point T a ray is defined as

$$
\mathbf{R}=\mathbf{T}+\mu \mathbf{d} \quad \mu>0
$$

- We choose a simple to compute direction eg

$$
\mathbf{d}=[1,0,0]
$$

Graphics Lecture 3

Valid Intersections

Graphics Lecture 3

Extending the ray test to $3 D$

A ray is projected in any direction
If the number of intersections with the object is odd, then the test point is inside

Graphics Lecture 3

3D Ray test

- There are two stages

1. Compute the intersection of the ray with the plane of each face.
2. If the intersection is in the positive part of the ray $(\mu>0)$ check whether the intersection point is contained in the face.

Clipping to concave volumes

- Find every intersection of the line to be clipped with the volume.
- This divides the line into one or more segments.
- Test a point on the first segment for containment
- Adjacent segments will be alternately inside and out.

Graphics Lecture 3

Graphics Lecture 3

Splitting a volume into convex parts

Split the Object

Graphics Lecture 3

[^0]: Graphics Lecture 3

