
1

Graphics Lecture 3

Interactive Computer Graphics

• The Graphics Pipeline: Clipping

Some slides adopted from
F. Durand and B. Cutler, MIT

Graphics Lecture 3

The Graphics Pipeline
Modelling

Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display Output: 2D image
for framebuffer display

Input:
- geometric model
-  illumination model
-  camera model
-  viewport

Graphics Lecture 3

Modelling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

•  3D models are defined in their
own coordinate system

•  Modeling transformations
orient the models within a
common coordinate frame
(world coordinates)

Graphics Lecture 3

Modelling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

•  Vertices are lit (shaded)
according to material
properties, surface properties
and light sources

•  Uses a local lighting model

2

Graphics Lecture 3

Modelling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

•  Maps world space to eye
(camera) space

•  Viewing position is
transformed to origin and
viewing direction is oriented
along some axis (typically z)

Graphics Lecture 3

Modelling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

•  Transforms to Normalized Device
Coordinates

•  Portions of the scene outside the
viewing volume (view frustum) are
removed (clipped)

Eye space NDC

Graphics Lecture 3

Modelling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

•  The objects are projected to
the 2D imaging plane (screen
space)

NDC Screen Space

Graphics Lecture 3

Modelling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

•  Rasterizes objects into pixels
•  Interpolate values inside

objects (color, depth, etc.)

3

Graphics Lecture 3

Modelling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

The Graphics Pipeline

•  Handles occlusions
•  Determines which objects are

closest and therefore visible

Graphics Lecture 3

Clipping

•  Eliminate portions of objects
outside the viewing frustum

•  View frustum
–  boundaries of the image plane

projected in 3D
–  a near & far clipping plane

•  User may define additional
clipping planes

top

far

left

bottom

right

near

Graphics Lecture 3

Why clipping ?

•  Avoid degeneracy
–  e.g. don’t draw objects behind

the camera

•  Improve efficiency
–  e.g. do not process objects

which are not visisble

top

left

bottom

right

near

Graphics Lecture 3

When to clip?

•  Before perspective transform
in 3D space
–  use the equation of 6 planes
–  natural, not too degenerate

•  In homogeneous coordinates after
perspective transform (clip space)
–  before perspective divide

(4D space, weird w values)
–  canonical, independent of camera
–  simplest to implement

•  In the transformed 3D screen space
after perspective division
–  problem: objects in the plane of the camera

4

Graphics Lecture 3

Y

X

The concept of a halfspace

Graphics Lecture 3

The concept of a halfspace

Graphics Lecture 3

The concept of a halfspace

Graphics Lecture 3

The concept of a halfspace

5

Graphics Lecture 3

The concept of a halfspace in 3D

Plane equation F(x, y, z) = 0
or Ax + By + Cz + D = 0

For all points in this halfspace
F(xi, yi, zi) < 0

For all points in this halfspace
F(xi, yi, zi) > 0

Graphics Lecture 3

Reminder: Homogeneous Coordinates

• Recall:
– For each point (x,y,z,w)

 there are an infinite number of
 equivalent homogenous coordinates:
 (sx, sy, sz, sw)

•  Infinite number of equivalent plane expressions:
 sAx+sBy+sCz+sD = 0 → H = (sA,sB,sC,sD)

H = (A,B,C,D)

Graphics Lecture 3

Point-to-Plane Distance

•  If (A,B,C) is normalized:
d = H•p = HTp
(the dot product in homogeneous
 coordinates)

•  d is a signed distance:
positive = "inside"
negative = "outside" H = (A,B,C,D)

d

Graphics Lecture 3

Clipping a Point with respect to a Plane

•  If d = H•p ≥ 0
Pass through

•  If d = H•p < 0:
Clip (or cull or reject)

H = (A,B,C,D)

d

6

Graphics Lecture 3

Clipping with respect to View Frustum

•  Test against each of the 6 planes
–  Normals oriented towards the interior

•  Clip (or cull or reject) point p if any H•p < 0

Graphics Lecture 3

What are the View Frustum Planes?

Hnear =
Hfar =

Hbottom =
Htop =
Hleft =

Hright =

(0 0 –1 –near)
(0 0 1 far)
(0 near bottom 0)
(0 –near –top 0)
(left near 0 0)
(–right –near 0 0)

(left, bottom, –near)

(right*far/near, top*far/near, –far)

Graphics Lecture 3

Line – Plane Intersection

•  Explicit (Parametric) Line Equation
 L(t) = P0 + µ (P1 – P0)

•  How do we intersect?
 Insert explicit equation of line into
 implicit equation of plane or use the
 normal vector

Graphics Lecture 3

Line – Plane Intersection

• Compute the intersection between the line and plane
for any vector p lying on the plane n•p = 0
• Let the intersection point be µp1 + (1-µ)p0 and assume

that v is a point on the plane, a vector in the plane is
given by µp1 + (1-µ)p0 - v
• Thus n•(µp1 + (1-µ)p0 - v) = 0 and we can solve this

for µi and hence find the point of intersection
• We then replace p0 with the intersection point

7

Graphics Lecture 3

Segment Clipping

•  If H•p > 0 and H•q < 0

•  If H•p < 0 and H•q > 0

•  If H•p > 0 and H•q > 0

•  If H•p < 0 and H•q < 0

p

q

Graphics Lecture 3

Segment Clipping

•  If H•p > 0 and H•q < 0
– clip q to plane

•  If H•p < 0 and H•q > 0

•  If H•p > 0 and H•q > 0

•  If H•p < 0 and H•q < 0

p

q
n

Graphics Lecture 3

Segment Clipping

•  If H•p > 0 and H•q < 0
– clip q to plane

•  If H•p < 0 and H•q > 0
– clip p to plane

•  If H•p > 0 and H•q > 0

•  If H•p < 0 and H•q < 0

p

q

n

Graphics Lecture 3

Segment Clipping

•  If H•p > 0 and H•q < 0
– clip q to plane

•  If H•p < 0 and H•q > 0
– clip p to plane

•  If H•p > 0 and H•q > 0
– pass through

•  If H•p < 0 and H•q < 0

p

q

n

8

Graphics Lecture 3

Segment Clipping

•  If H•p > 0 and H•q < 0
– clip q to plane

•  If H•p < 0 and H•q > 0
– clip p to plane

•  If H•p > 0 and H•q > 0
– pass through

•  If H•p < 0 and H•q < 0
– clipped out

p

q

n

Graphics Lecture 3

Clipping against the frustum

•  For each frustum plane H
–  If H•p > 0 and H•q < 0, clip q to H
–  If H•p < 0 and H•q > 0, clip p to H
–  If H•p > 0 and H•q > 0, pass through
–  If H•p < 0 and H•q < 0, clipped out

Result is a single
segment.

Graphics Lecture 3

Two Definitions of Convex

1.  A line joining any two points on the boundary lies
inside the object.

2.  The object is the intersection of planar halfspaces.

Graphics Lecture 3

Algorithm for determining if an object is convex

convex = true
for each face of the object
{ find the plane equation of the face F(x,y,z) = 0
 choose one object point (xi,yi,zi) not on the face
 and find sign(F(xi,yi,zi))
 for all other points of the object
 { if (sign(F(xj,yj,zj)) ! = sign(F(xi,yi,zi)))
 then convex = false
 }
}

9

Graphics Lecture 3

Testing for Convex

Graphics Lecture 3

Testing for Containment

• A frequently encountered problem is to determine
whether a point is inside an object or not.
• We need this for clipping against polyhedra

Graphics Lecture 3

Algorithm for Containment

let the test point be (xt,yt,zt)
contained = true
for each face of the object
{ find the plane equation of the face F(x,y,z) = 0
 choose one object point (xi,yi,zi) not on the face
 and find sign(F(xi,yi,zi))
 if (sign(F (xt,yt,zt)) != sign(F(xi,yi,zi)))
 then contained = false
}

Graphics Lecture 3

Vector formulation

• The same test can be expressed in vector form.
• This avoids the need to calculate the Cartesian

equation of the plane, if, in our model we store the
normal n vector to each face of our object.

10

Graphics Lecture 3

Vector test for containment

Graphics Lecture 3

Normal vector to a face

• The vector formulation does not require us to find the
plane equation of a face, but it does require us to find
a normal vector to the plane; same thing really since
for plane Ax + By + Cz + D = 0 a normal vector is

 n = (A, B, C)

Graphics Lecture 3

Finding a normal vector

• The normal vector can be found from the cross
product of two vectors on the plane, say two edge
vectors

Graphics Lecture 3

But which normal vector points inwards?

11

Graphics Lecture 3

Checking the normal direction

Graphics Lecture 3

Concave Objects

• Containment and clipping can also be carried out with
concave objects.
• Most algorithms are based on the ray containment

test.

Graphics Lecture 3

The Ray test in two dimensions

Find all intersections between the ray and the polygon edges.
If the number of intersections is odd the point is contained

Test Point

Polygon

Ray

Graphics Lecture 3

Calculating intersections with rays

• Rays have equivalent equations to lines, but go in
only one direction. For test point T a ray is defined as

 R = T + µ d µ>0

• We choose a simple to compute direction eg

 d = [1,0,0]

12

Graphics Lecture 3

Valid Intersections
Line segment
P = V2 + ν (V1 - V2)

Ray
P = T + µ d (d = [1,0])

Intersection
T + µ d = V2 + ν (V1 - V2)
Solve for ν and µ
Valid intersection if
µ>0, 0<=ν<1

V1

V2

T

Graphics Lecture 3

A ray is projected in any direction.

If the number of intersections with the
object is odd, then the test point is inside

Test
point

Extending the ray test to 3D

Graphics Lecture 3

3D Ray test

•  There are two stages:
1.  Compute the intersection of the ray with the plane of

each face.
2.  If the intersection is in the positive part of the ray (µ>0)

check whether the intersection point is contained in the
face.

Graphics Lecture 3

The plane of a face

• Unfortunately the plane of a face does not in general
line up with the Cartesian axes, so the second part is
not a two dimensional problem.

• However, containment is invariant under
orthographic projection, so it can be simply reduced
to two dimensions.

13

Graphics Lecture 3

Clipping to concave volumes

•  Find every intersection of the line to be clipped with
the volume.

• This divides the line into one or more segments.

• Test a point on the first segment for containment

• Adjacent segments will be alternately inside and out.

Graphics Lecture 3

Splitting a volume into convex parts

If all the object vertices lie on one
side of the plane of of a face, we
proceed to the next face

Graphics Lecture 3

If the plane of a face cuts the object:

New Face

Split Face

Graphics Lecture 3

Split the Object

New Face

Split Face Repeat on all concave sub parts

