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Graphics Lecture 3 

Interactive Computer Graphics 

• The Graphics Pipeline: Clipping 

Some slides adopted from  
F. Durand and B. Cutler, MIT 

Graphics Lecture 3 

The Graphics Pipeline 
Modelling  

Transformations 

Illumination 
(Shading) 

Viewing Transformation 
(Perspective / Orthographic) 

Clipping 

Projection 
(to Screen Space) 

Scan Conversion 
(Rasterization) 

Visibility / Display Output: 2D image 
for framebuffer display 

Input: 
- geometric model 
-  illumination model 
-  camera model 
-  viewport 
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Modelling  
Transformations 

Illumination 
(Shading) 

Viewing Transformation 
(Perspective / Orthographic) 

Clipping 

Projection 
(to Screen Space) 

Scan Conversion 
(Rasterization) 

Visibility / Display 

The Graphics Pipeline 

•  3D models are defined in their 
own coordinate system 

•  Modeling transformations 
orient the models within a 
common coordinate frame 
(world coordinates) 
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Modelling  
Transformations 

Illumination 
(Shading) 

Viewing Transformation 
(Perspective / Orthographic) 

Clipping 

Projection 
(to Screen Space) 

Scan Conversion 
(Rasterization) 

Visibility / Display 

The Graphics Pipeline 

•  Vertices are lit (shaded) 
according to material 
properties, surface properties 
and light sources 

•  Uses a local lighting model 
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Graphics Lecture 3 

Modelling  
Transformations 

Illumination 
(Shading) 

Viewing Transformation 
(Perspective / Orthographic) 

Clipping 

Projection 
(to Screen Space) 

Scan Conversion 
(Rasterization) 

Visibility / Display 

The Graphics Pipeline 

•  Maps world space to eye 
(camera) space 

•  Viewing position is 
transformed to origin and 
viewing direction is oriented 
along some axis (typically z) 
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Modelling  
Transformations 

Illumination 
(Shading) 

Viewing Transformation 
(Perspective / Orthographic) 

Clipping 

Projection 
(to Screen Space) 

Scan Conversion 
(Rasterization) 

Visibility / Display 

The Graphics Pipeline 

•  Transforms to Normalized Device 
Coordinates 

•  Portions of the scene outside the 
viewing volume (view frustum) are 
removed (clipped) 

Eye space NDC 
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Modelling  
Transformations 

Illumination 
(Shading) 

Viewing Transformation 
(Perspective / Orthographic) 

Clipping 

Projection 
(to Screen Space) 

Scan Conversion 
(Rasterization) 

Visibility / Display 

The Graphics Pipeline 

•  The objects are projected to 
the 2D imaging plane (screen 
space) 

NDC Screen Space 
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Modelling  
Transformations 

Illumination 
(Shading) 

Viewing Transformation 
(Perspective / Orthographic) 

Clipping 

Projection 
(to Screen Space) 

Scan Conversion 
(Rasterization) 

Visibility / Display 

The Graphics Pipeline 

•  Rasterizes objects into pixels 
•  Interpolate values inside 

objects (color, depth, etc.) 
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Graphics Lecture 3 

Modelling  
Transformations 

Illumination 
(Shading) 

Viewing Transformation 
(Perspective / Orthographic) 

Clipping 

Projection 
(to Screen Space) 

Scan Conversion 
(Rasterization) 

Visibility / Display 

The Graphics Pipeline 

•  Handles occlusions 
•  Determines which objects are 

closest and therefore visible 
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Clipping  

•  Eliminate portions of objects 
outside the viewing frustum 

•  View frustum 
–  boundaries of the image plane 

projected in 3D 
–  a near & far clipping plane 

•  User may define additional 
clipping planes 

top 

far 

left 

bottom 

right 

near 

Graphics Lecture 3 

Why clipping ? 

•  Avoid degeneracy 
–  e.g. don’t draw objects behind 

the camera 

•  Improve efficiency 
–  e.g. do not process objects 

which are not visisble 

top 

left 

bottom 

right 

near 
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When to clip? 

•  Before perspective transform  
in 3D space 
–  use the equation of 6 planes 
–  natural, not too degenerate 

•  In homogeneous coordinates after  
perspective transform (clip space) 
–  before perspective divide  

(4D space, weird w values) 
–  canonical, independent of camera 
–  simplest to implement 

•  In the transformed 3D screen space  
after perspective division 
–  problem: objects in the plane of the camera 
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Graphics Lecture 3 

Y

X

The concept of a halfspace 

Graphics Lecture 3 

The concept of a halfspace 

Graphics Lecture 3 

The concept of a halfspace 

Graphics Lecture 3 

The concept of a halfspace 
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Graphics Lecture 3 

The concept of a halfspace in 3D 

Plane equation F(x, y, z) = 0 
or Ax + By + Cz + D = 0 

For all points in this halfspace 
F(xi, yi, zi) < 0 

For all points in this halfspace 
F(xi, yi, zi) > 0 

Graphics Lecture 3 

Reminder: Homogeneous Coordinates 

• Recall:  
– For each point (x,y,z,w)   

 there are an infinite number of  
 equivalent homogenous coordinates:   
 (sx, sy, sz, sw) 

•  Infinite number of equivalent plane expressions:   
 sAx+sBy+sCz+sD = 0  →  H = (sA,sB,sC,sD) 

H = (A,B,C,D) 
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Point-to-Plane Distance 

•  If  (A,B,C)  is normalized: 
d = H•p = HTp 
(the dot product in homogeneous  
 coordinates) 

•  d is a signed distance:  
positive = "inside"  
negative = "outside" H = (A,B,C,D) 

d 
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Clipping a Point with respect to a Plane 

•  If  d = H•p ≥ 0 
Pass through  

•  If  d = H•p < 0: 
Clip (or cull or reject)  

H = (A,B,C,D) 

d 
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Graphics Lecture 3 

Clipping with respect to View Frustum 

•  Test against each of the 6 planes 
–  Normals oriented towards the interior 

•  Clip (or cull or reject) point p if any H•p < 0 

Graphics Lecture 3 

What are the View Frustum Planes? 

Hnear =  
Hfar = 

Hbottom =  
Htop = 
Hleft =  

Hright =  

(   0         0        –1   –near)  
(   0         0          1      far )   
(   0       near  bottom   0  )  
(   0      –near  –top      0  )  
(  left     near      0        0  )  
(–right –near     0        0  )  

(left, bottom, –near) 

(right*far/near, top*far/near, –far) 
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Line – Plane Intersection 

•  Explicit (Parametric) Line Equation 
 L(t) = P0 + µ (P1 – P0)  

•  How do we intersect? 
 Insert explicit equation of line into 
 implicit equation of plane or use the 
 normal vector 

Graphics Lecture 3 

Line – Plane Intersection 

• Compute the intersection between the line and plane 
for any vector p lying on the plane n•p = 0 
• Let the intersection point be µp1 + (1-µ)p0 and assume 

that v is a point on the plane, a vector in the plane is 
given by µp1 + (1-µ)p0 - v 
• Thus n•(µp1 + (1-µ)p0 - v) = 0 and we can solve this 

for µi and hence find the point of intersection 
• We then replace p0 with the intersection point 
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Graphics Lecture 3 

Segment Clipping 

•  If H•p > 0 and H•q < 0 

•  If H•p < 0 and H•q > 0 

•  If H•p > 0 and H•q > 0 

•  If H•p < 0 and H•q < 0 

p 

q 

Graphics Lecture 3 

Segment Clipping 

•  If H•p > 0 and H•q < 0 
– clip q to plane 

•  If H•p < 0 and H•q > 0 

•  If H•p > 0 and H•q > 0 

•  If H•p < 0 and H•q < 0 

p 

q 
n 

Graphics Lecture 3 

Segment Clipping 

•  If H•p > 0 and H•q < 0 
– clip q to plane 

•  If H•p < 0 and H•q > 0 
– clip p to plane 

•  If H•p > 0 and H•q > 0 

•  If H•p < 0 and H•q < 0 

p 

q 

n 

Graphics Lecture 3 

Segment Clipping 

•  If H•p > 0 and H•q < 0 
– clip q to plane 

•  If H•p < 0 and H•q > 0 
– clip p to plane 

•  If H•p > 0 and H•q > 0 
– pass through 

•  If H•p < 0 and H•q < 0 

p 

q 

n 



8 

Graphics Lecture 3 

Segment Clipping 

•  If H•p > 0 and H•q < 0 
– clip q to plane 

•  If H•p < 0 and H•q > 0 
– clip p to plane 

•  If H•p > 0 and H•q > 0 
– pass through 

•  If H•p < 0 and H•q < 0 
– clipped out 

p 

q 

n 

Graphics Lecture 3 

Clipping against the frustum 

•  For each frustum plane H 
–  If H•p > 0 and H•q < 0,  clip q to H  
–  If H•p < 0 and H•q > 0,  clip p to H  
–  If H•p > 0 and H•q > 0, pass through  
–  If H•p < 0 and H•q < 0, clipped out 

Result is a single 
segment.   

Graphics Lecture 3 

Two Definitions of Convex 

1.  A line joining any two points on the boundary lies 
inside the object. 

2.  The object is the intersection of planar halfspaces.  

Graphics Lecture 3 

Algorithm for determining if an object is convex 

convex = true 
for each face of the object 
{    find the plane equation of the face F(x,y,z) = 0 
      choose one object point (xi,yi,zi) not on the face 
                   and find sign(F(xi,yi,zi)) 
      for all other points of the object 
     {     if  (sign(F(xj,yj,zj)) ! = sign(F(xi,yi,zi))) 
            then convex = false 
     } 
} 
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Graphics Lecture 3 

Testing for Convex 

Graphics Lecture 3 

Testing for Containment 

• A frequently encountered problem is to determine 
whether a point is inside an object or not. 
• We need this for clipping against polyhedra 

Graphics Lecture 3 

Algorithm for Containment 

let the test point be (xt,yt,zt) 
contained = true 
for each face of the object 
{    find the plane equation of the face F(x,y,z) = 0 
      choose one object point (xi,yi,zi) not on the face 
                   and find sign(F(xi,yi,zi)) 
     if  (sign(F (xt,yt,zt)) != sign(F(xi,yi,zi))) 
            then contained = false 
} 

Graphics Lecture 3 

Vector formulation 

• The same test can be expressed in vector form. 
• This avoids the need to calculate the Cartesian 

equation of the plane, if, in our model we store the 
normal n vector to each face of our object. 
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Graphics Lecture 3 

Vector test for containment 

Graphics Lecture 3 

Normal vector to a face 

• The vector formulation does not require us to find the 
plane equation of a face, but it does require us to find 
a normal vector to the plane; same thing really since 
for plane Ax + By + Cz + D = 0 a normal vector is  

 n = (A, B, C) 

Graphics Lecture 3 

Finding a normal vector 

• The normal vector can be found from the cross 
product of two vectors on the plane, say two edge 
vectors 

Graphics Lecture 3 

But which normal vector points inwards? 
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Graphics Lecture 3 

Checking the normal direction 

Graphics Lecture 3 

Concave Objects 

• Containment and clipping can also be carried out with 
concave objects. 
• Most algorithms are based on the ray containment 

test. 

Graphics Lecture 3 

The Ray test in two dimensions 

Find all intersections between the ray and the polygon edges.
If the number of intersections is odd the point is contained

Test Point

Polygon

Ray

Graphics Lecture 3 

Calculating intersections with rays 

• Rays have equivalent equations to lines, but go in 
only one direction. For test point T a ray is defined as 

   R = T + µ d    µ>0 

• We choose a simple to compute direction eg 

   d = [1,0,0] 
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Valid Intersections 
Line segment
P = V2 + ν (V1 - V2)

Ray
P = T + µ d   (d = [1,0])

Intersection
T + µ d = V2 + ν (V1 - V2)
Solve for ν and µ
Valid intersection if
µ>0, 0<=ν<1

V1

V2

T

Graphics Lecture 3 

A ray is projected in any direction.

If the number of intersections with the
object is odd, then the test  point is inside

Test
point

Extending the ray test to 3D 

Graphics Lecture 3 

3D Ray test 

•  There are two stages: 
1.  Compute the intersection of the ray with the plane of 

each face. 
2.  If the intersection is in the positive part of the ray (µ>0) 

check whether the intersection point is contained in the 
face. 
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The plane of a face 

• Unfortunately the plane of a face does not in general 
line up with the Cartesian axes, so the second part is 
not a two dimensional problem.  

• However, containment is invariant under  
orthographic projection, so it can be simply reduced 
to two dimensions. 
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Clipping to concave volumes 

•  Find every intersection of the line to be clipped with 
the volume. 

• This divides the line into one or more segments. 

• Test a point on the first segment for containment 

• Adjacent segments will be alternately inside and out. 
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Splitting a volume into convex parts 

If all the object vertices lie on one
side of the plane of of a face, we
proceed to the next face

Graphics Lecture 3 

If the plane of a face cuts the object: 

New Face

Split Face

Graphics Lecture 3 

Split the Object 
 

New Face 

Split Face Repeat on all concave sub parts 


