Interactive Computer Graphics

- The Graphics Pipeline: Illumination and Shading
ome slides adopted from F. Durand and B. Cutler, MIT

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)
Viewing Transformation (Perspective / Orthographic)
Clipping
Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display

- 3D models are defined in their own coordinate system
- Modeling transformations orient the models within a common coordinate frame (world coordinates)

The Graphics Pipeline

The Graphics Pipeline

Modelling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display

- Maps world space to eye (camera) space
- Viewing position is transformed to origin and viewing direction is oriented along some axis (typically z)

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)

- Transforms to Normalized Device Coordinates
- Portions of the scene outside the viewing volume (view frustum) are

```
Viewing Transformation
```

Clipping

\author{

}

$\begin{array}{c}\text { Scan Conversion } \\ \text { (Rasterization) }\end{array}$

(Rasterization)
Visibility / Display

The Graphics Pipeline

- The objects are projected to the 2 D imaging plane (screen space)

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)
Viewing Transformation (Perspective / Orthographic)
Clipping
Projection (to Screen Space)
Scan Conversion (Rasterization)
Visibility / Display

- Rasterizes objects into pixels
- Interpolate values inside objects (color, depth, etc.)

The Graphics Pipeline

Modelling Transformations
Illumination (Shading)
Viewing Transformation (Perspective / Orthographic)
Clipping
Projection (to Screen Space)
Scan Conversion (Rasterization)
Visibility / Display

- Handles occlusions
- Determines which objects are closest and therefore visible

The Physics of shading

- Object properties:
- Looking at a point on an object we see the reflection of the light that falls on it. This reflection is governed by:

1. The position of the object relative to the light sources
2. The surface normal vector
3. The albedo of the surface (ability to adsorb light energy)
4. The reflectivity of the surface

- Light source properties:
- The important properties of the light source are

1. Intensity of the emitted light
2. The distance to the point on the surface

The Physics of shading

- If we look at a point on an object we perceive a colour and a shading intensity that depends on the various characteristics of the object and the light sources that illuminate it.
- For the time being we will consider only the brightness at each point. We will extend the treatment to colour later.

Radiometry

- Energy of a photon

$$
e_{\lambda}=\frac{h c}{\lambda} \quad h \approx 6.63 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \quad c \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}
$$

- Radiant Energy of n photons

$$
Q=\sum_{i=1}^{n} \frac{h c}{\lambda_{i}}
$$

- Radiation flux (electromagnetic flux, radiant flux)

Units: Watts

$$
\Phi=\frac{d Q}{d t}
$$

Radiometry

- Radiance - radiant flux per unit solid angle per unit projected area
- Number of photons arriving per time at a small area from a particular direction

Units : $\frac{\text { Watt }}{\text { meter }^{2} \text { steradian }}$

Radiometry

- Irradiance - differential flux falling onto differential area

$$
E=\frac{d \Phi}{d A} \quad \text { Units }: \frac{\text { Watt }}{\text { meter }^{2}}
$$

- Irradiance can be seen as a density of the incident flux falling onto a surface.
- It can be also obtained by integrating the radiance over the solid angle

Light Emission

- Light sources: sun, fire, light bulbs etc.

Reflection \& Reflectance

- Reflection - the process by which electromagnetic flux incident on a surface leaves the surface without a change in frequency.
- Reflectance - a fraction of the incident flux that is reflected
- We do not consider:
- absorption, transmission, fluorescence
- diffraction
$E=\frac{\Phi_{s} \cos \theta}{4 \pi d^{2}} \quad L=\frac{\Phi_{s}}{4 \pi d^{2}}$
Φ_{s} - power of the light source d-distance to the light source

Reflectance

Isotropic BRDFs

- Rotation along surface normal does not change reflectance

$$
f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)=\frac{d L_{r}\left(\theta_{r}, \phi_{r}\right)}{d E_{i}\left(\theta_{i}, \phi_{i}\right)} \quad \text { Units }: \frac{1}{\text { steradian }}
$$

$$
f_{r}\left(\theta_{i}, \theta_{r}, \phi_{r}-\phi_{i}\right)=f_{r}\left(\theta_{i}, \theta_{r}, \phi_{d}\right)=\frac{d L_{r}\left(\theta_{r}, \phi_{d}\right)}{d E_{i}\left(\theta_{i}, \phi_{d}\right)}
$$

Anisotropic BRDFs

Properties of BRDFs

- Non-negativity
$f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right) \geq 0$
- Energy Conservation
$\int_{\Omega} f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right) d \mu\left(\theta_{r}, \phi_{r}\right) \leq 1 \quad$ for all $\left(\theta_{i}, \phi_{i}\right)$
- Reciprocity

$$
f_{r}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)=f_{r}\left(\theta_{r}, \phi_{r}, \theta_{i}, \phi_{i}\right)
$$

How to compute reflected radiance?

- Continuous version

$$
\begin{aligned}
& L_{r}\left(\omega_{r}\right)=\int_{\Omega} f_{r}\left(\omega_{i}, \omega_{r}\right) d E_{i}\left(\omega_{i}\right)= \\
& =\int_{\Omega} f_{r}\left(\omega_{i}, \omega_{r}\right) d L_{i}\left(\omega_{i}\right) \cos \left(\omega_{i} \cdot n\right) d \omega_{i} \quad \omega=(\theta, \phi)
\end{aligned}
$$

- Discrete version - n point light sources

$$
\begin{aligned}
& L_{r}\left(\omega_{r}\right)=\sum_{j=1}^{n} f_{r}\left(\omega_{i j}, \omega_{r}\right) E_{j}= \\
& =\sum_{j=1}^{n} f_{r}\left(\omega_{i j}, \omega_{r}\right) \cos \theta_{j} \frac{\Phi_{s j}}{4 \pi d_{j}^{2}}
\end{aligned}
$$

Ideal Diffuse Reflectance

Ideal Diffuse Reflectance

- BRDF value is constant
- An ideal diffuse surface is, at the microscopic level, a
$L_{r}\left(\omega_{r}\right)=\int_{\Omega} f_{r}\left(\omega_{i}, \omega_{r}\right) d E_{i}\left(\omega_{i}\right)=\quad d B=d A \cos \theta_{i}$
$=f_{r} \int d E_{i}\left(\omega_{i}\right)=$
$=f_{r} E_{i}$
n
- Example: chalk, clay, some paints

Ideal Diffuse Reflectance

- Ideal diffuse reflectors reflect light according to Lambert's cosine law.

Ideal Diffuse Reflectance - More Details

- If \mathbf{n} and \mathbf{I} are facing away from each other, $\mathbf{n} \cdot \mathbf{I}$ becomes negative.
- Using $\max ((\mathbf{n} \cdot \mathbf{I}), 0)$ makes sure that the result is zero.
- From now on, we mean $\max ()$ when we write \cdot

Do not forget to normalize your vectors for the dot product!

Ideal Diffuse Reflectance

- Single Point Light Source
$-k_{d}$: The diffuse reflection coefficient.
- n: Surface normal.
- \mathbf{I} : Light direction.

$$
L\left(\omega_{r}\right)=k_{d}(\mathbf{n} \cdot \mathbf{I}) \frac{\Phi_{s}}{4 \pi d^{2}}
$$

Surface

Ideal Specular Reflectance

- Reflection is only at mirror angle.
- View dependent
- Microscopic surface elements are usually oriented in the same direction as the surface itself.
- Examples: mirrors, highly polished metals.

Ideal Specular Reflectance

- Special case of Snell's Law
- The incoming ray, the surface normal, and the reflected ray all lie in a common plane.

Non-ideal Reflectors

- Snell's law applies only to ideal mirror reflectors.
- Real materials tend to deviate significantly from ideal mirror reflectors.
- They are not ideal diffuse surfaces either

Non-ideal Reflectors

Non-ideal Reflectors: Surface Characteristics

- Simple Empirical Model:
- We expect most of the reflected light to travel in the direction of the ideal ray.
- However, because of microscopic surface variations we might expect some of the light to be reflected just slightly offset from the ideal reflected ray
- As we move farther and farther, in the angular sense, from the reflected ray we expect to see less light reflected.

Perfectly Matt surface
and intensity is the same in all directions

The Phong Model

- Parameters
$-k_{s}$: specular reflection coefficient
$-q$: specular reflection exponent

$$
L\left(\omega_{r}\right)=k_{s}(\cos \alpha)^{q} \frac{\Phi_{s}}{4 \pi d^{2}}=k_{s}(\mathbf{v} \cdot \mathbf{r})^{q} \frac{\Phi_{s}}{4 \pi d^{2}}
$$

Blinn-Phong Variation

- Uses the halfway vector \mathbf{h} between \mathbf{I} and \mathbf{v}

$$
h=\frac{\mathbf{l}+\mathbf{v}}{\|\mathbf{l}+\mathbf{v}\|}
$$

$$
L\left(\omega_{r}\right)=k_{s}(\cos \beta)^{q} \frac{\Phi_{s}}{4 \pi d^{2}}=k_{s}(\mathbf{n} \cdot \mathbf{h})^{q} \frac{\Phi_{s}}{4 \pi d^{2}}
$$

The Phong Model

- Sum of three components: diffuse reflection + specular reflection + ambient.

Phong vs Blinn-Phong

- The following spheres illustrate specular reflections as the direction of the light source and the coefficient of shininess is varied.

Blinn-Phong
(Lower Exponent)

Ambient Illumination

- Represents the reflection of all indirect illumination.
- This is a total hack!
- Avoids the complexity of global illumination.

$L\left(\omega_{r}\right)=k_{a}$

Putting it all together

- Phong Illumination Model

$$
L\left(\omega_{r}\right)=k_{a}+\left(k_{d}(\mathbf{n} \cdot \mathbf{l})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) \frac{\Phi_{s}}{4 \pi d^{2}}
$$

Ambient $\quad+\quad$ Diffuse

Specular
$=$ Phong Reflection

Putting it all together

- Phong Illumination Model

$$
L\left(\omega_{r}\right)=k_{a}+\left(k_{d}(\mathbf{n} \cdot \mathbf{l})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) \frac{\Phi_{s}}{4 \pi d^{2}}
$$

Inverse Square Law

- It is well known that light falls off according to an inverse square law. Thus, if we have light sources close to our polygons we should model this effect.

$$
L\left(\omega_{r}\right)=k_{a}+\left(k_{d}(\mathbf{n} \cdot \mathbf{l})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) \frac{\Phi_{s}}{4 \pi d^{2}}
$$

where d is the distance from the light source to the object

Heuristic Law

- Although physically correct the inverse square law does not produce the best results.
- Instead the following is often used:

$$
L\left(\omega_{r}\right)=k_{a}+\left(k_{d}(\mathbf{n} \cdot \mathbf{l})+k_{s}(\mathbf{v} \cdot \mathbf{r})^{q}\right) \frac{\Phi_{s}}{4 \pi(d+s)}
$$

where s is an heuristic constant.

- One might be tempted to think that light intensity falls off with the distance to the viewpoint, but it doesn't!
- Why not?

Questions?

Using Shading

- There are three levels at which shading can be applied

Using Shading

- Flat Shading
- Each polygon is shaded uniformly over its surface.
- The shade is computed by taking a point in the centre and the surface normal vector. (Equivalent to a light source at infinity)
- Usually only diffuse and ambient components are used.
- Interpolation Shading:
- A more accurate way to render a shaded polygon is to compute an independent shade value at each point.
- This is done quickly by interpolation:

1. Compute a shade value at each vertex
2. Interpolate to find the shade value at the boundary
3. Interpolate to find the shade values in the middle

Calculating the shades at the edges

Calculating the internal shades

Computing an average normal vector at a vertex

Smooth Shading

Interpolation of the $3 D$ normals

- We may express any point for this facet in parametric form:

$$
\mathbf{P}=\mathbf{V}_{\mathbf{1}}+\mu_{1}\left(\mathbf{V}_{\mathbf{2}}-\mathbf{V}_{\mathbf{1}}\right)+\mu_{2}\left(\mathbf{V}_{\mathbf{3}}-\mathbf{V}_{\mathbf{1}}\right)
$$

- The average normal vector at the same point may be calculated as the vector a:

$$
\mathbf{a}=\mathbf{n}_{1}+\mu_{1}\left(\mathbf{n}_{\mathbf{2}}-\mathbf{n}_{1}\right)+\mu_{2}\left(\mathbf{n}_{3}-\mathbf{n}_{1}\right)
$$

and then
$\mathbf{n}_{\text {average }}=\mathbf{a} /|\mathbf{a}|$

$2 D$ or $3 D$

- The interpolation calculations may be done in either 2D or 3D
- For specular reflections the calculation of the reflected vector and viewpoint vector must be done in 3D.

