Computer Graphics

Lecture 6:

Rasterization, Visibility \& Anti-aliasing

Graphics Lecture 6: Slide 1

Rasterization

- Determine which pixels are drawn into the framebuffer
- Interpolate parameters (colors, texture coordinates, etc.)

[^0]
Rasterization

- What does interpolation mean?
- Examples: Colors, normals, shading, texture coordinates

A triangle in terms of vectors

- We can use vertices a, b and c to specify the three points of a triangle
- We can also compute the edge vectors

Points and planes

- The three non-collinear points determine a plane

- Example: The vertices a, b and c determine a plane
- The vectors b -a and $\mathrm{c}-\mathrm{a}$ form a basis for this plane

Graphics Lecture 6: Slide 13

Basis vectors

- This (non-orthogonal) basis can be used to specify the location of any point \mathbf{p} in the plane

Graphics Lecture 6; side 14

Barycentric coordinates

- We can reorder the terms of the equation:

$$
\begin{aligned}
\mathbf{p} & =\mathbf{a}+\beta(\mathbf{b}-\mathbf{a})+\gamma(\mathbf{c}-\mathbf{a}) \\
& =(1-\beta-\gamma) \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \\
& =\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}
\end{aligned}
$$

- In other words:

$$
\mathbf{p}(\alpha, \beta, \gamma)=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}
$$

- with

$$
\alpha+\beta+\gamma=1
$$

- α, β, γ and called barycentric coordinates

Barycentric coordinates

- Barycentric coordinates describe a point \mathbf{p} as an affine combination of the triangle vertices

$$
\mathbf{p}(\alpha, \beta, \gamma)=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c} \quad \alpha+\beta+\gamma=1
$$

- For any point \mathbf{p} inside the triangle $(\mathbf{a}, \mathbf{b}, \mathbf{c})$:

$$
\begin{aligned}
& 0<\alpha<1 \\
& 0<\beta<1 \\
& 0<\gamma<1
\end{aligned}
$$

- Point on an edge: one coefficient is 0
- Vertex: two coefficients are 0 , remaining one is 1

Graphics Lecture 6: Slide 16

Barycentric coordinates and signed distances

- Let $\mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$. Each coordinate (e.g. β) is the signed distance from \mathbf{p} to the line through a triangle edge (e.g. ac)

Barycentric coordinates and signed distances

- Let $\mathbf{p}=\alpha \mathbf{\alpha}+\boldsymbol{\beta} \mathbf{b}+\boldsymbol{\gamma}$. Each coordinate (e.g. β) is the signed distance from \mathbf{p} to the line through a triangle edge (e.g. ac)

Barycentric coordinates and signed distances

- Let $\mathbf{p}=\alpha \mathbf{a}+\beta \mathbf{b}+\gamma \mathbf{c}$. Each coordinate (e.g. β) is the signed distance from \mathbf{p} to the line through a triangle

Barycentric coordinates and signed distances

- The signed distance can be computed by evaluating implicit line equations, e.g., $f_{\mathrm{ac}}(x, y)$ of edge ac

Recall: Implicit equation for lines

- Implicit equation in 2D:

$$
f(x, y)=0
$$

- Points with $f(x, y)=0$ are on the line
- Points with $f(x, y) \neq 0$ are not on the line
- General implicit form

$$
A x+B y+C=0
$$

- Implict line through two points $\left(x_{a}, y_{a}\right)$ and $\left(x_{a}, y_{a}\right)$

$$
\left(y_{a}-y_{b}\right) x+\left(x_{b}-x_{a}\right) y+x_{a} y_{b}-x_{b} y_{a}=0
$$

Graphics Leturue6: Slide21

Implicit equation for lines: Example

$\mathrm{A}=$
$B=$
$\mathrm{C}=$

Graphics Lecture 6: Slide 22

Implicit equation for lines: Example
Solution 1: $\quad-2 \mathrm{x}+4 \mathrm{y}=0$
Solution 2: $2 x-4 y=0$

Graphics Leeture 6: Shude 23

Edge equations

- Given a triangle with vertices $\left(x_{a} y_{a}\right),\left(x_{b}, y_{b}\right)$, and $\left(x_{c} y_{2}\right)$.
- The line equations of the edges of the triangle are:
$f_{a b}(x, y)=\left(y_{a}-y_{b}\right) x+\left(x_{b}-x_{a}\right) y+x_{a} y_{b}-x_{b} y_{a}$ $f_{b c}(x, y)=\left(y_{b}-y_{c}\right) x+\left(x_{c}-x_{b}\right) y+x_{b} y_{c}-x_{c} y_{a}$ $f_{c a}(x, y)=\left(y_{c}-y_{a}\right) x+\left(x_{a}-x_{c}\right) y+x_{c} y_{a}-x_{a} y_{c}$

Graphics Lecture 6: Slide 24

Barycentric Coordinates

- Remember that: $f(x, y)=0 \Leftrightarrow k f(x, y)=0$
- A barycentric coordinate (e.g. β) is a signed distance from a line (e.g. the line that goes through ac)
- For a given point \mathbf{p}, we would like to compute its barycentric coordinate β using an implicit edge equation.
- We need to choose k such that $k f_{a c}(x, y)=\beta$

Graphics Lecture 6: Slide 2

Barycentric Coordinates

- We would like to choose k such that: $k f_{a c}(x, y)=\beta$
- We know that $\beta=1$ at point \mathbf{b} :

$$
k f_{a c}(x, y)=1 \Leftrightarrow k=\frac{1}{f_{a c}\left(x_{b}, y_{b}\right)}
$$

- The barycentric coordinate β for point \mathbf{p} is:

$$
\beta=\frac{f_{a c}(x, y)}{f_{a c}\left(x_{b}, y_{b}\right)}
$$

Graphics Lecture 6: Slide 26

Barycentric Coordinates

- In general, the barycentric coordinates for point \mathbf{p} are

$$
\alpha=\frac{f_{b c}(x, y)}{f_{b c}\left(x_{c}, y_{c}\right)} \quad \beta=\frac{f_{a c}(x, y)}{f_{a c}\left(x_{b}, y_{b}\right)} \quad \gamma=1-\alpha-\beta
$$

- Given a point \mathbf{p} with cartesian coordinates (x, y), we can compute its barycentric coordinates (α, β, γ) as above.

Graphics Lecture 6: Slide 27

Triangle Rasterization

- Many different ways to generate fragments for a triangle
- Checking (α, β, γ) is one method, e.g

$$
(0<\alpha<1 \& \& 0<\beta<1 \& \& 0<\gamma<1)
$$

- In practice, the graphics hardware use optimized methods:
- fixed point precision (not floating-point)
- incremental (use results from previous pixel)

Graphics Leeture 6: Slide 28

Triangle Rasterization

- We can use barycentric coordinates to rasterize and color triangles

$$
\begin{aligned}
& \text { for all } \mathrm{x} \text { do } \\
& \text { for all } \mathrm{y} \text { do }
\end{aligned}
$$

compute (alpha, beta, gamma) for (x, y)
if (0 < alpha < 1 and
$0<$ beta < 1 and
$0<$ gamma < 1) then + gamma c2
drawpixel (x, y) with color c

- The color c varies smoothly within the triangle

Graphics Lecture 6: Slide 29

Visibility: One triangle

- With one triangle, things are simple
- Pixels never overlap!

Graphics Lecture 6; Slide 30

Hidden Surface Removal

- Idea: keep track of visible surfaces
- Typically, we see only the front-most surface
- Exception: transparency

Visibility: Two triangles

- Things get more complicated with multiple triangles
- Fragments might overlap in screen space!

Graphics Lecture 6: Slide 32

Visibility: Pixels vs Fragments

- Each pixel has a unique framebuffer (image) location
- But multiple fragments may end up at same address

Graphics Lecture 6: Slide 33

Visibility: Which triangle should be drawn first?

- Two possible cases:

Graphics Lecture 6; Slide 34

Visibility: Which triangle should be drawn first?

- Many other cases possible!

Graphics Lecture 6 : Slide 35

Visibility: Painter's Algorithm

- Sort triangles (using z values in eye space)
- Draw triangles from back to front

Graphics Lecture 6: Slide 36

Visibility: Painter's Algorithm - Problems

- Correctness issues:
- Intersections
- Cycles
- Solve by splitting triangles, but ugly and expensive
- Efficiency (sorting)

Graphics Lecture 6: Slide 3,
-

The Depth Buffer (Z-Buffer)

- Perform hidden surface removal per-fragment
- Idea:
- Each fragment gets a z value in screen space
- Keep only the fragment with the smallest z value

Graphics Lecture 6: Slide 38

The Depth Buffer (Z-Buffer)

- Example:
- fragment from green triangle has z value of 0.7

Graphics Lecture 6: Slide 39

The Depth Buffer (Z-Buffer)

- Example:
- fragment from red triangle has z value of 0.3

Graphics Lecture 6: Slide 40

The Depth Buffer (Z-Buffer)

- Since $0.3<0.7$, the red fragment wins

Graphics Lecture 6: Slide 41

The Depth Buffer (Z-Buffer)

- Many fragments might map to the same pixel location
- How to track their z-values?
- Solution: z-buffer (2D buffer, same size as image)

$$
\begin{array}{|lllllllllllllllllllll|}
\hline 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.1 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
\hline 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.1 & 0.1 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
\hline 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.2 & 0.2 & 0.3 & 1.0 & 1.0 & 1.0 & 1.0 \\
\hline 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.3 & 0.3 & 0.4 & 1.0 & 1.0 & 1.0 & 1.0 \\
\hline 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.3 & 0.4 & 0.4 & 0.5 & 1.0 & 1.0 & 1.0 & 1.0 \\
\hline 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.4 & 0.4 & 0.5 & 0.5 & 0.5 & 1.0 & 1.0 & 1.0 \\
\hline 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 0.4 & 0.5 & 1.0 & 1.0 & 1.0 \\
\hline
\end{array}
$$

Graphics Lecture 6: Slide 42

The Z-Buffer Algorithm

- Let CB be color (frame) buffer, $Z B$ be z buffer
- Initialize z-buffer contents to 1.0 (far away)
- For each triangle T
-Rasterize T to generate fragments
-For each fragment F with screen
position ($\mathbf{x}, \mathrm{y}, \mathbf{z}$) and color value C
-If ($\mathrm{z}<\mathrm{ZB}[\mathrm{x}, \mathrm{y}]$) then
- Update color: $C B[x, y]=C$
- Update depth: $Z B[x, y]=z$

Graphics Lecture 6 : Slide 43

Z-buffer Algorithm Properties

- What makes this method nice?
- simple (faciliates hardware implementation)
- handles intersections
- handles cycles
- draw opaque polygons in any order

Alias Effects

- One major problem with rasterization is called alias effects, e.g straight lines or triangle boundaries look jagged
- These are caused by undersampling, and can cause unreal visual artefacts.
- It also occurs in texture mapping

Alias Effects at straight boundaries in raster images.

Desired Boundaries

Pixels Set

Graphics Lecture 6: Slide 46

Anti-Aliasing

- The solution to aliasing problems is to apply a degree of blurring to the boundary such that the effect is reduced.
- The most successful technique is called Supersampling

Supersampling

- The basic idea is to compute the picture at a higher resolution to that of the display area.
- Supersamples are averaged to find the pixel value.
- This has the effect of blurring boundaries, but leaving coherent areas of colour unchanged

Graphiss Lectur 6: Slide 4)

Limitations of Supersampling

- Supersampling works well for scenes made up of filled polygons.
- However, it does require a lot of extra computation
- It does not work for line drawings.

Convolution filtering

- The more common (and much faster) way of dealing with alias effects is to use a 'filter' to blur the image.
- This essentially takes an average over a small region around each pixel

Graphics Lecture 6: Slide 53
For example consider the image of a line

Graphics Scectre 6. side s4

Treat each pixel of the image

We replace the pixel by a local average,
one possibility would be $3 * \mathrm{I} / 9$

Weighted averages

- Taking a straight local average has undesirable effects.
- Thus we normally use a weighted average.

Graphics Lecture 6: Slide 56

Graphics Lecture 6: Slide 58

Pros and Cons of Convolution filtering

- Advantages:
- It is very fast and can be done in hardware
- Generally applicable
- Disadvantages:
- It does degrade the image while enhancing its visual appearance.

Anti-Aliasing textures

- Similar
- When we identify a point in the texture map we return an average of texture map around the point.
- Scaling needs to be applied so that the less the samples taken the bigger the local area where averaging is done.

Graphics Lecture 6: Slide 60

[^0]: Graphics Lecture 6: Slide 10

