Computer Graphics

Lecture 6:

Rasterization, Visibility & Anti-aliasing

Graphics Lecture 6: Slide 1

Rasterization

* Determine which pixels are drawn into the framebuffer

* Interpolate parameters (colors, texture coordinates, etc.)

Graphics Lecture 6: Slide 10

Rasterization

* What does interpolation mean?

¢ Examples: Colors, normals, shading, texture
coordinates

Graphics Lecture 6: Slide 11

A triangle in terms of vectors

* We can use vertices a, b and c to specify the three
points of a triangle

¢ We can also compute the edge vectors

b-a
(0) X

Graphics Lecture 6: Slide 12

Points and planes

* The three non-collinear points determine a plane

b-a

» Example: The vertices a, b and ¢ determine a plane
¢ The vectors b-a and c-a form a basis for this plane

Graphics Lecture 6: Slide 13

Basis vectors

* This (non-orthogonal) basis can be used to specify the
location of any point p in the plane

p=a+p(Mb-a)+y(c-a)

b-a

Graphics Lecture 6: Slide 14

Barycentric coordinates

¢ We can reorder the terms of the equation:
p=a+p(Mb-a)+y(c-a)
=(1-f-ya+pb+ye

=aa+ b+ yc
¢ In other words:

p(a.f.y) = oa+fb+yc
* with
a+pP+y=1
* a, B, y and called barycentric coordinates

Graphics Lecture 6: Slide 15

Barycentric coordinates

e Barycentric coordinates describe a point p as an
affine combination of the triangle vertices

P(a,ﬂ’)/)=aa+/5b+yc a+/5+)/=1

* For any point p inside the triangle (a, b, ¢):
O<a<l
0<p<l1
0<y<l

* Point on an edge: one coefficient is 0

* Vertex: two coefficients are 0, remaining one is |

Graphics Lecture 6: Slide 16

Barycentric coordinates and signed distances

e Let p = ca+Bb+yc. Each coordinate (e.g. f) is the
signed distance from p to the line through a triangle
edge (e.g. ac)

c

B=0

Graphics Lecture 6: Slide 17

Barycentric coordinates and signed distances

e Let p = aa+Bb+yc. Each coordinate (e.g. f) is the
signed distance from p to the line through a triangle
edge (e.g. ac)

o

Graphics Lecture 6: Sli d 18

Barycentric coordinates and signed distances

e Let p = ca+Bb+yc. Each coordinate (e.g. f) is the
signed distance from p to the line through a triangle
edge (e.g. ac)

Wil

B=-05 B=0 B=05 p= 5

(phLl(ildl)

Barycentric coordinates and signed distances

¢ The signed distance can be computed by evaluating
implicit line equations, e.g., f,.(x,y) of edge ac

p=-05 /5;/0 p=05 p=1 p=15

Graphics Lecture 6: Slide 20

Recall: Implicit equation for lines

* Implicit equation in 2D:
f(-x’y) =0

— Points with f{x, y) = 0 are on the line
— Points with f{x, y) #0 are not on the line

* General implicit form
Ax+By+C=0
e Implict line through two points (x,, y,) and (x,, y,)
(ya _yb)x+(xh _xa)y+xayh _xhya =O

Graphics Lecture 6: Slide 21

Implicit equation for lines: Example

. 4.2)

(0,0)

Graphics Lecture 6: Slide 22

Implicit equation for lines: Example

Solution 1: -2x +4y =0
Solution2: 2x -4y =0

kf (x,y)=0 forany k

/-/ (4,2)

(0,0)

Graphics Lecture 6: Slide 23

Edge equations

* Given a triangle with vertices (x,,y,), (x;), and
(xXe)2)-

* The line equations of the edges of the triangle are:
S (0:3) = (Vg =) X + (X, =X)y + X, ¥, = X, ¥,
Joe(xy) = (3, =YX+ (X, = X,)y + X,y = XY,
Jay) = (e =y)X+ (X, =X)y + XY, = X, Y.

fva fbc

Graphics Lecture 6: Slide 24 f
ab

Barycentric Coordinates

* Remember that: f(x,y) =0 < kf(x,y)=0
e A barycentric coordinate (e.g.) is a signed distance
from a line (e.g. the line that goes through ac)

* For a given point p, we would like to compute its
barycentric coordinate 3 using an implicit edge
equation.

* We need to choose & such that kf, (x,y)=pf

Graphics Lecture 6: Slide 25

Barycentric Coordinates

* We would like to choose & such that: kf, (x,y)=p
* We know that § = 1 at point b:

1

k. (x,y)=l<ek=——
f (X, y)=1< o)

e The barycentric coordinate { for point p is:

_ _Juxy)

= o)

Graphics Lecture 6: Slide 26

Barycentric Coordinates

* In general, the barycentric coordinates for point p are:

qo L@y g fuy)

r=l-a-p
fbc(xc’yc) fac(xb,yb)

* Given a point p with cartesian coordinates (x, y), we
can compute its barycentric coordinates (a., 3, ¥) as
above.

Graphics Lecture 6: Slide 27

Triangle Rasterization

* Many different ways to generate fragments for a
triangle
¢ Checking (o, f3, y) is one method, e.g.
(0<a<l && 0<PB <1 && 0<y<Il)
* In practice, the graphics hardware use optimized
methods:
— fixed point precision (not floating-point)

— incremental (use results from previous pixel)

Graphics Lecture 6: Slide 28

Triangle Rasterization

¢ We can use barycentric coordinates to rasterize and
color triangles

for all x do
for all y do
compute (alpha, beta, gamma) for (x,y)
if (0 < alpha < 1 and
0 < beta < 1 and
0 < gamma < 1) then

c = alpha c0 + beta cl + gamma c2
drawpixel (x,y) with color c

* The color ¢ varies smoothly within the triangle

Graphics Lecture 6: Slide 29

Visibility: One triangle

» With one triangle, things are simple
* Pixels never overlap!

Graphics Lecture 6: Slide 30

Hidden Surface Removal

* Idea: keep track of visible surfaces
* Typically, we see only the front-most surface
 Exception: transparency

Graphics Lecture 6: Slide 31

Visibility: Two triangles

* Things get more complicated with multiple triangles
* Fragments might overlap in screen space!

Graphics Lecture 6: Slide 32

Visibility: Pixels vs Fragments

¢ Each pixel has a unique framebuffer (image) location
* But multiple fragments may end up at same address

Graphics Lecture 6: Slide 33

Visibility: Which triangle should be drawn first?

* Two possible cases:

green triangle on top orange triangle on top

Graphics Lecture 6: Slide 34

Visibility: Which triangle should be drawn first?

* Many other cases possible!

g e

intersection #1 intersection #2

Graphics Lecture 6: Slide 35

Visibility: Painter’s Algorithm

* Sort triangles (using z values in eye space)
* Draw triangles from back to front

draw last draw first

Viewer

increasing z

Graphics Lecture 6: Slide 36

Visibility: Painter’s Algorithm - Problems

¢ Correctness issues:

— Intersections

— Cycles

— Solve by splitting triangles, but ugly and expensive
* Efficiency (sorting)

Y

Graphics Lecture 6: Slide 3/

The Depth Buffer (Z-Buffer)

¢ Perform hidden surface removal per-fragment
* Idea:

— Each fragment gets a z value in screen space

— Keep only the fragment with the smallest z value

Graphics Lecture 6: Slide 38

The Depth Buffer (Z-Buffer)

¢ Example:
— fragment from green triangle has z value of 0.7

Graphics Lecture 6: Slide 39

The Depth Buffer (Z-Buffer)

e Example:
— fragment from red triangle has z value of 0.3

Graphics Lecture 6: Slide 40

The Depth Buffer (Z-Buffer) The Depth Buffer (Z-Buffer)

¢ Since 0.3 <0.7, the red fragment wins * Many fragments might map to the same pixel location
* How to track their z-values?
* Solution: z-buffer (2D buffer, same size as image)

1.0/1.0/10 10 1.0 10 10 10 10 1.0 10 1.0/1.0 10/ 10

10 1.0 10 10 1.0 10 10 1.0 10 1.0 1.0/ 1.0 10 10
10 1.0 10 10 1.0 10 10 10 10 %] 10 10 10 10
10 1.0 10 1.0 1.0 10 1.0 10 10 Hmm 10 1.0 10 1.0
10 1.0 10 10 1.0 10 10 10 m 10 10 10 10

1.0 1.0 1.0 1.0 1.0 1.0 1. 0 1.0

”
=
: B
= S
: B
: B
BR
BR
=
S
P

1.0 1.0 10 1.0 1.0 1.0 1.

Graphics Lecture 6: Slide 41 Graphics Lecture 6: Slide 42
The Z-Buffer Algorithm Z-buffer Algorithm Properties
e Let CB be color (frame) buffer, ZB be z- . What makes thls method nice?
buffer — simple (faciliates hardware implementation)
* Initialize z-buffer contents to 1.0 (far _ handles intersections
away)

) — handles cycles
e For each triangle T .
. — draw opaque polygons in any order
—-Rasterize T to generate fragments
- For each fragment F with screen

position (x,y,z) and color value C

«If (z < ZB[x,y]) then
- Update color: CB[x,y]

- Update depth: ZB[x,y]

]
N

Graphics Lecture 6: Slide 43 Graphics Lecture 6: Slide 44

Alias Effects

¢ One major problem with rasterization is called alias
effects, e.g straight lines or triangle boundaries look
jagged

* These are caused by undersampling, and can cause
unreal visual artefacts.

* It also occurs in texture mapping

Graphics Lecture 6: Slide 45

Alias Effects at straight boundaries in raster
images.

Desired Boundaries Pixels Set

Graphics Lecture 6: Slide 46

Appearance of the textured
polygon in the image

Texture

Polygon width

12 Pixels [o0 [¢6

6 Pixels ®@ 0O @0

4 Pixels ®@ O O

3 Pixels @ o
Samples

Graphics Lecture 6: Slide 47

Anti-Aliasing

¢ The solution to aliasing problems is to apply a degree
of blurring to the boundary such that the effect is
reduced.

¢ The most successful technique is called
Supersampling

Graphics Lecture 6: Slide 48

10

Supersampling

¢ The basic idea is to compute the picture at a higher
resolution to that of the display area.

* Supersamples are averaged to find the pixel value.

* This has the effect of blurring boundaries, but leaving
coherent areas of colour unchanged

Graphics Lecture 6: Slide 49

L

Polygon Boundary

I Solid lines are
' pixel boundaries

Dashed lines are

(13/16)1, + (3/16)1,

(3/16)1, + (13/16)],

/

1 Actual Pixel
1

Limitations of Supersampling

e Supersampling works well for scenes made up of
filled polygons.

* However, it does require a lot of extra computation.

* It does not work for line drawings.

Graphics Lecture 6: Slide 51

supersamples L Intensities
Graphics Lecture 6: Slide 50
V4 | V4 I
> g ~ T T
- V4 | /4
| Actual Pixel
1/4 V4 0 0 intensities

Graphics Lecture 6

Slide 52

11

Convolution filtering

* The more common (and much faster) way of dealing
with alias effects is to use a ‘filter’ to blur the image.

* This essentially takes an average over a small region
around each pixel

Graphics Lecture 6: Slide 53

For example consider the image of a line

Theoretical Line

~| .
/ Pixels set to
/ \‘ntensity I

—
‘A———/ (others set to 0)

Graphics Lecture 6: Slide 54

Treat each pixel of the image

Consider one
pixel.

We replace the pixel by a local average,
one possibility would be 3*1/9

Graphics Lecture 6: Slide 55

Weighted averages

* Taking a straight local average has undesirable
effects.

¢ Thus we normally use a weighted average.

136* | 1] 4|1

Graphics Lecture 6: Slide 56

12

Convolution
mask located

Theoretical Line

at one pixel

Pixels set to
intensity I
(others set to 0)

Graphics Lecture 6: Slide 57

Convolution
mask located

Theoretical Line

at one pixel

Pixels set to
intensity I
(others set to 0)

Final Pixel Intensities

(9/36)1§21/36

21/36)4(9/36)1}

Graphics Lecture 6: Slide 58

Pros and Cons of Convolution filtering

¢ Advantages:
— It is very fast and can be done in hardware
— Generally applicable

¢ Disadvantages:

— It does degrade the image while enhancing its visual
appearance.

Graphics Lecture 6: Slide 59

Anti-Aliasing textures

e Similar
* When we identify a point in the texture map we return
an average of texture map around the point.

¢ Scaling needs to be applied so that the less the
samples taken the bigger the local area where
averaging is done.

Graphics Lecture 6: Slide 60

13

