
1

Graphics Lecture 6: Slide 1

Computer Graphics

Lecture 6:

Rasterization, Visibility & Anti-aliasing

Graphics Lecture 6: Slide 10

Rasterization

• Determine which pixels are drawn into the framebuffer
• Interpolate parameters (colors, texture coordinates, etc.)

Graphics Lecture 6: Slide 11

Rasterization

• What does interpolation mean?
• Examples: Colors, normals, shading, texture

coordinates

Graphics Lecture 6: Slide 12

a

c

bb - a

c - a

O

y

x

A triangle in terms of vectors

• We can use vertices a, b and c to specify the three
points of a triangle
• We can also compute the edge vectors

2

Graphics Lecture 6: Slide 13

Points and planes

• The three non-collinear points determine a plane

• Example: The vertices a, b and c determine a plane
• The vectors b-a and c-a form a basis for this plane

a

c

bb - a

c - a

Graphics Lecture 6: Slide 14

Basis vectors

• This (non-orthogonal) basis can be used to specify the
location of any point p in the plane

a

c

bb - a

c - a

!

p = a + "(b# a) + $(c # a)

Graphics Lecture 6: Slide 15

Barycentric coordinates

• We can reorder the terms of the equation:

• In other words:

• with

• α, β, γ and called barycentric coordinates

!

p = a + "(b# a) + $(c # a)

!

= (1"# " $)a + #b+ $c

!

="a + #b+ $c

!

p(",#,$) ="a + #b+ $c

!

" + # + $ =1

Graphics Lecture 6: Slide 16

Barycentric coordinates

• Barycentric coordinates describe a point p as an
affine combination of the triangle vertices

• For any point p inside the triangle (a, b, c):

• Point on an edge: one coefficient is 0
• Vertex: two coefficients are 0, remaining one is 1

!

p(",#,$) ="a + #b+ $c

!

" + # + $ =1

!

0 <" <1

!

0 < " <1

!

0 < " <1

3

Graphics Lecture 6: Slide 17

!

" = 0

Barycentric coordinates and signed distances

• Let p = αa+βb+γc. Each coordinate (e.g. β) is the
signed distance from p to the line through a triangle
edge (e.g. ac)

a

c

b

p

Graphics Lecture 6: Slide 18

!

" = 0

Barycentric coordinates and signed distances

• Let p = αa+βb+γc. Each coordinate (e.g. β) is the
signed distance from p to the line through a triangle
edge (e.g. ac)

a

c

b

p

!

" =1

Graphics Lecture 6: Slide 19

!

" = 0

Barycentric coordinates and signed distances

• Let p = αa+βb+γc. Each coordinate (e.g. β) is the
signed distance from p to the line through a triangle
edge (e.g. ac)

a

c

b

p

!

" = 0.5

!

" =1

!

" =1.5

!

" = #0.5
Graphics Lecture 6: Slide 20

!

" = 0

Barycentric coordinates and signed distances

• The signed distance can be computed by evaluating
implicit line equations, e.g., fac(x,y) of edge ac

a

c

b

p

!

" = 0.5

!

" =1

!

" =1.5

!

" = #0.5

4

Graphics Lecture 6: Slide 21

Recall: Implicit equation for lines

• Implicit equation in 2D:

– Points with f(x, y) = 0 are on the line
– Points with f(x, y) ≠0 are not on the line

• General implicit form

• Implict line through two points (xa, ya) and (xa, ya)

!

f (x,y) = 0

!

Ax + By + C = 0

!

(ya " yb)x + (xb " xa)y + xa yb " xb ya = 0

Graphics Lecture 6: Slide 22

Implicit equation for lines: Example

A =
B =
C =

Graphics Lecture 6: Slide 23

Implicit equation for lines: Example

Solution 1: -2x + 4y = 0
Solution 2: 2x - 4y = 0

 for any k

!

kf (x,y) = 0

Graphics Lecture 6: Slide 24

Edge equations

• Given a triangle with vertices (xa,ya), (xb,yb), and
(xc,y2).
• The line equations of the edges of the triangle are:

!

fab (x,y) = (ya " yb)x + (xb " xa)y + xa yb " xb ya

!

fbc (x,y) = (yb " yc)x + (xc " xb)y + xb yc " xcya

!

fca (x,y) = (yc " ya)x + (xa " xc)y + xcya " xa yc

!

fab
!

fbc

!

fca

5

Graphics Lecture 6: Slide 25

Barycentric Coordinates

• Remember that:
• A barycentric coordinate (e.g. β) is a signed distance

from a line (e.g. the line that goes through ac)
• For a given point p, we would like to compute its

barycentric coordinate β using an implicit edge
equation.
• We need to choose k such that

!

f (x,y) = 0" kf (x,y) = 0

!

kfac (x,y) = "

Graphics Lecture 6: Slide 26

Barycentric Coordinates

• We would like to choose k such that:
• We know that β = 1 at point b:

• The barycentric coordinate β for point p is:

!

kfac (x,y) = "

!

kfac (x,y) =1" k =
1

fac (xb,yb)

!

" =
fac (x,y)

fac (xb ,yb)

Graphics Lecture 6: Slide 27

!

" =
fac (x,y)

fac (xb ,yb)

!

" =
fbc (x,y)

fbc (xc,yc)

!

" =1#$ #%

Barycentric Coordinates

• In general, the barycentric coordinates for point p are:

• Given a point p with cartesian coordinates (x, y), we
can compute its barycentric coordinates (α, β, γ) as
above.

Graphics Lecture 6: Slide 28

Triangle Rasterization

• Many different ways to generate fragments for a
triangle
• Checking (α, β, γ) is one method, e.g.

(0< α <1 && 0< β <1 && 0 < γ <1)
• In practice, the graphics hardware use optimized

methods:
– fixed point precision (not floating-point)
– incremental (use results from previous pixel)

6

Graphics Lecture 6: Slide 29

Triangle Rasterization

• We can use barycentric coordinates to rasterize and
color triangles

for all x do
for all y do

compute (alpha, beta, gamma) for (x,y)
if (0 < alpha < 1 and
 0 < beta < 1 and
 0 < gamma < 1) then

c = alpha c0 + beta c1 + gamma c2
drawpixel(x,y) with color c

• The color c varies smoothly within the triangle

Graphics Lecture 6: Slide 30

Visibility: One triangle

• With one triangle, things are simple
• Pixels never overlap!

Graphics Lecture 6: Slide 31

Hidden Surface Removal

• Idea: keep track of visible surfaces
• Typically, we see only the front-most surface
• Exception: transparency

Graphics Lecture 6: Slide 32

Visibility: Two triangles

• Things get more complicated with multiple triangles
• Fragments might overlap in screen space!

7

Graphics Lecture 6: Slide 33

Visibility: Pixels vs Fragments

• Each pixel has a unique framebuffer (image) location
• But multiple fragments may end up at same address

Graphics Lecture 6: Slide 34

Visibility: Which triangle should be drawn first?

• Two possible cases:

Graphics Lecture 6: Slide 35

Visibility: Which triangle should be drawn first?

• Many other cases possible!

Graphics Lecture 6: Slide 36

Visibility: Painter’s Algorithm

• Sort triangles (using z values in eye space)
• Draw triangles from back to front

Viewer

8

Graphics Lecture 6: Slide 37

Visibility: Painter’s Algorithm - Problems

• Correctness issues:
– Intersections
– Cycles
– Solve by splitting triangles, but ugly and expensive

• Efficiency (sorting)

Graphics Lecture 6: Slide 38

The Depth Buffer (Z-Buffer)

• Perform hidden surface removal per-fragment
• Idea:

– Each fragment gets a z value in screen space
– Keep only the fragment with the smallest z value

Graphics Lecture 6: Slide 39

The Depth Buffer (Z-Buffer)

• Example:
– fragment from green triangle has z value of 0.7

Graphics Lecture 6: Slide 40

The Depth Buffer (Z-Buffer)

• Example:
– fragment from red triangle has z value of 0.3

9

Graphics Lecture 6: Slide 41

The Depth Buffer (Z-Buffer)

• Since 0.3 < 0.7, the red fragment wins

Graphics Lecture 6: Slide 42

The Depth Buffer (Z-Buffer)

• Many fragments might map to the same pixel location
• How to track their z-values?
• Solution: z-buffer (2D buffer, same size as image)

Graphics Lecture 6: Slide 43

The Z-Buffer Algorithm

• Let CB be color (frame) buffer, ZB be z-
buffer

• Initialize z-buffer contents to 1.0 (far
away)

• For each triangle T
–Rasterize T to generate fragments
–For each fragment F with screen
position (x,y,z) and color value C
•If (z < ZB[x,y]) then

– Update color: CB[x,y] = C
– Update depth: ZB[x,y] = z

Graphics Lecture 6: Slide 44

Z-buffer Algorithm Properties

• What makes this method nice?
– simple (faciliates hardware implementation)
– handles intersections
– handles cycles
– draw opaque polygons in any order

10

Graphics Lecture 6: Slide 45

Alias Effects

• One major problem with rasterization is called alias
effects, e.g straight lines or triangle boundaries look
jagged
• These are caused by undersampling, and can cause

unreal visual artefacts.
• It also occurs in texture mapping

Graphics Lecture 6: Slide 46

Desired Boundaries Pixels Set

Alias Effects at straight boundaries in raster
images.

Graphics Lecture 6: Slide 47 Graphics Lecture 6: Slide 48

Anti-Aliasing

• The solution to aliasing problems is to apply a degree
of blurring to the boundary such that the effect is
reduced.
• The most successful technique is called

Supersampling

11

Graphics Lecture 6: Slide 49

Supersampling

• The basic idea is to compute the picture at a higher
resolution to that of the display area.
• Supersamples are averaged to find the pixel value.
• This has the effect of blurring boundaries, but leaving

coherent areas of colour unchanged

Graphics Lecture 6: Slide 50

Solid lines are

pixel boundaries

Dashed lines are

supersamples

Polygon Boundary

I1

I2

I1

(13/16)I2 + (3/16)I1

(3/16)I2 + (13/16)I1

Actual Pixel

Intensities
I1

Graphics Lecture 6: Slide 51

Limitations of Supersampling

• Supersampling works well for scenes made up of
filled polygons.
• However, it does require a lot of extra computation.
• It does not work for line drawings.

Graphics Lecture 6: Slide 52

Actual Pixel

intensities

I/4 I/4

0 0 I/4

I/4 I/4

I/4

12

Graphics Lecture 6: Slide 53

Convolution filtering

• The more common (and much faster) way of dealing
with alias effects is to use a ‘filter’ to blur the image.
• This essentially takes an average over a small region

around each pixel

Graphics Lecture 6: Slide 54

Theoretical Line

Pixels set to

intensity I
(others set to 0)

For example consider the image of a line

Graphics Lecture 6: Slide 55

Consider one

pixel.

We replace the pixel by a local average,

one possibility would be 3*I/9

Treat each pixel of the image

Graphics Lecture 6: Slide 56

Weighted averages

• Taking a straight local average has undesirable
effects.

• Thus we normally use a weighted average.

1/36 * 1 4 1

4 16 4

1 4 1

13

Graphics Lecture 6: Slide 57

Convolution

mask located

at one pixel

Theoretical Line

Pixels set to

intensity I

(others set to 0)

4/9 1/9 1/9

1/9

1/9

1/36 1/36

1/36 1/36

Graphics Lecture 6: Slide 58

Graphics Lecture 6: Slide 59

Pros and Cons of Convolution filtering

• Advantages:
– It is very fast and can be done in hardware
– Generally applicable

• Disadvantages:
– It does degrade the image while enhancing its visual

appearance.

Graphics Lecture 6: Slide 60

Anti-Aliasing textures

• Similar
• When we identify a point in the texture map we return

an average of texture map around the point.
• Scaling needs to be applied so that the less the

samples taken the bigger the local area where
averaging is done.

