Lecture 9: Introduction to Spline Curves

Splines are used in graphics to represent smooth curves and }
surfaces. They use a small set of control points (knots) and a
function that generates a curve through those points. This al-
lows the creation of complex smooth shapes without the need
for mainpulating many short line segments or polygons at the
cost of a little extra computation time when the objects of a
scene are being designed. We will start with a simple, but not
very useful spline. Taking the equation y = f(z), we can ex-
press f as a polynomial function, say: -

Y= a2$2 + a1x + ag Figure 1: A non-parametric spline

If we now take any three points [xo, yo|, [x1, y1] and [x2, y2], we

can substitute then into the equation to get three simultaneous equations which we can solve for the unknowns
az, a1 and ag. We now have the equation of a curve interpolating the three points. It is of course a parabola, or
parabolic spline. Notice that we don’t have any control over the curve. There is only one parabola that will fit
the data as shown in figure 1.

Parametric Splines

We can improve our choice by the simple expedient of using a parametric spline. Let us consider first a quadratic
polynomial spline written in vector notation as:

P =ayu®+ajp+ag (D

where ag, a; and ag are constant vectors whose values determine the shape of the spline. For two dimensional
curves we now therefore have six unknowns (rather than the three previously). We can use these extra degrees
of freedom to control the shape of the curve.

=a,u’+ +
p, P atauta P, P,
Pz Pz P
2
P, | Py | Py Py | P, | Pa P, | P, | P,
p | 0 121 P1 | 0 1] 1/2 P1 wl|1j2] 0 1 P1
(@) (b) (©
Pl]
PZ
\ Po [P Ps |
MDERENER &
(d)

Figure 2: Possibilities using parametric splines

We will use the convention that 0 < u < 1 over the range of interest. Hence at y = 0 the curve is at the
first point to be interpolated, and at 1« = 1 it is at the last. Now consider interpolating the three points as before
(Po = [%0,%0], P1 = [z1,y1] and P2 = [x2,y2]). When p = 0 the curve passes through the first point, say

Interactive Computer Graphics Lecture 9 1

Py, and so, substituting 1+ = 0 into equation 1 we can write Pg = ag. Similarly, when pz = 1 the point passes
through the last point, say P2, and this gives us the equation:

Py = az + a; + ao,

substituting for ag we get
Py —Pg=az +ay. 2

We have now met all our conditions except that the curve shall pass through P;. We can choose 1 anywhere
in the range 0 < p < 1, and get a third equation to solve for the curve parameters. In other words we can
now pick one of a family of curves interpolating the three points, by selecting the value of 1 at P;. Choosing
p=1/4 we get

P1 —Po=az/16 + a1 /4. 3)

We can now solve equations 2 and 3 for the values of a; and ag and draw the curve as shown in Figure 2(d).
Further possible curves using the same three points and parametric equation are shown in Figures 2(a), 2(b) and
2(c).

SplinePatches

Although we have gained more freedom by using
the parametric form, we do not have any intuitive
way of using it. That is to say, we have no simple
way to choose p values for each point to get the
type of interpolating spline we want. Moreover,

Gradient P,' = (P, - P)/2

P,'= (P,-P)/2

we still face the problem of having to use ever P, ; ,
higher degrees of polynomials for higher numbers P=a (0t alitaputa,
of points. To overcome these difficulties we intro- Figure 3: A simple way to join patches

duce a method based on spline patches that allows

simple intuitive spline construction. We define a

different curve between each pair of adjacent knots, as shown in Figure 3. This is most commonly done by
using a cubic spline for each patch, rather than the quadratic splines formulated above. The reason for choosing
a cubic form is so that we can join the patches smoothly together. The equation for a parmetric cubic spline
patch has four unknowns, ag, a;, az and ag:

P = agu® + aspu® + a1 + ag 4

We use the extra degrees of freedom provided by the cubic equation to set the gradient at either end of the patch,
and thus make it join seamlessly to its neighbours. Looking at Figure 3, we see that this can conveniently be
done by taking the difference of the coordinates on either side of the knot in question. This however is not the
only way of setting this gradient, as we will see later. If we differentiate the curve equation we get:

P’ = 3a3u? + 2azu + ag)

Now consider the two ends of a spline patch between P; and Pj; 1, where 4 = 0 or 4 = 1. We can find
the positions and gradients at each end by substituting ;x = 0 and ;¢ = 1 into equations 4 and 5 which gives:
Pi = ag
Pi = a1
Piy1 =ag+az+a1+ag
P£+1 = 3ag + 2as + ay
We can write this system of equations in matrix form:

1 0 0 O ao Pi
0100]|a | | P ©
1 1 11 ag Pi+1
012 3] |as P,

Interactive Computer Graphics Lecture 9 2

and since the a values are unknown and the P and P’ known, we need to invert the matrix to solve for the
parameters of the spline patch.

ag 1 0 0 P;

0 i
as | [0 1 0 0 P}
az a -3 -2 3 -1 Pi+1 (7)
ag 2 1 -2 1 P,

Notice that we have vector quantities, so, this formulation represents eight equations for the 2D case, and twelve
for the 3D case. The matrix is the same for each dimension. For any given set of knots, this cubic patch method
gives a stable, practical solution.

Bezier Curves

One of the simplest ways of approximating a curve was made
popular by the French mathematician Pierre Bezier in the con-
text of car body design. It was based on a mathematical formu-
lation by another French mathematician Paul de Casteljau. A
typical Bezier curve is shown in Figure 4. Here four knots Py,
Pi, P2, P3 are shown. The gradient at each end of the Bezier
curve is the same as the gradient of the line joining the first two
knots, thus: P = k(P1 —Py), where k is the number of knots
- 1. This is an important property as it allows us to join Bezier
patches together smoothly. Computation of the Bezier Curve
may be done in two ways. The first uses a recursive algorithm
based on a method of Casteljau. The idea is illustrated by Fig-
ure 5. For a given value of y, say 1/2 we first construct the points on the lines [Pg o, Po,1] [Po,1, Po,2] and
[Po,2, Po 3] for the chosen value of 1. These are labelled as the first set of constructed points, Py o, P11 and
P12. The new points are joined up and the same procedure is followed to construct the second set of points
P2 and P2 ;. The process is repeated to find the point P3 . This is a point on the Bezier curve. As p varies
from O to 1 the locus of P3 g traces out the Bezier Curve. Using a functional pseudocode which allows us such
liberties as scalar and vector multiplications and typed functions, this algorithm can be written very simply:

P, P,

Figure 4: A typical Bezier Curve

Point Casteljau (knots P[] ; int N, int r, float)
begin

ifr==1)

then Casteljau = p*P[N+1] + (1-p)*P[N]

else Casteljau = p*Casteljau(PN+1,r-1,14) + (1-p)*Casteljau(P,N,r-1,1)
end

and the curve can be drawn with:

for j=1to L

begin
locus=Casteljau(Knotarray,0,N,j/L)
drawto(locus.x,locus.y)

end

Note that here, and for all subsequent treatment of splines we will use a set of N+1 knots, labelled O to N.

Blending

Another way to view a Bezier curve is to think of it as a blend of its knots. In the simplest case, if we apply the
Casteljau algorithm to the degenerate case of two knots we get the parametric line equation:

P = puPo1+ (1 —p)Pop

Interactive Computer Graphics Lecture 9 3

We can think of this as linearly blending the two points to pro-
duce a third. The parameter ;» may be thought of as measuring
the distance along the line. Like the curve constructed using
the Casteljau algorithm, most spline formulations consist of a
blend of the positions of the knots. For more than two points
the blend is expressed by the iterative formulation of the Bezier

Curve: P
N 0,0
P(u) = E :PiW(N’ivu) Figure 5: Using Casteljau’s construction to
i=0

draw a Bezier curve
where W (N, i, 11) is called the Bernstein blending function:

Wz = () a0

(1) = o

As before we are using a parameter p to determine the distance along the curve, and it can be easily verified
that when g is O or 1 the spline interpolates the end points, P(0) = Pg and P(1) = Py, and that when
0 < p < 1then P(u) is a blend of all the knots P;.

The iterative equation for the Bezier curve can be computed slightly more efficiently in terms of space
than the recursive form, though for most applications this is not likely to be significant, since it is rare to use
Bezier curves for more than a few points. The iterative solution, though less elegant, generalises to surface
construction more easily, and so tends to be used in preference.

Characteristics of Bezier Curves

As previously mentioned, Bezier curves have their end gradient

clamped to the slope of the end line segments, and, beyond the

ends they blend the positions of all the points. Since Bezier

Curves are a blend of all their control points there is little local

control over a part of the curve. Figure 6 shows how a large

number of control points tends to be ineffectual with Bezier

curves. Moving the intermediate points has little effect, and it

is not possible to create a curve which wiggles with any degree

of complexity. This problem can be offset to some degree by Figure 6: The lack of local detail in Bezier
pieceing together a number of sections, as we did for the cubic
patches.

curves

Relation between Bezier Curves and Cubic Patches

We noted previously that the order of the Bezier curve is one less than the number of knots, so for four knots
we have a cubic spline. This will be verified by expanding the iterative form of the Bezier curve:

3

P(:U’) = Z P1W(37 (2 /’L)
=0

P(u) = Po(l —) + 3P1p(1 — p)? + 3P2p*(1 — p) + Pay®

If we multiply out the brackets are collect the terms we get:
P(p) = agp® + agp® + ajp + ag

where ag =P3— 3P2 +3P1 — Py
az — 3P2 - 6P1 + 3P0
a; = 3P1 — 3P0
ag = PO

Interactive Computer Graphics Lecture 9 4

So, we see that the four point Bezier curve is just a cubic spline patch between P and P3, with two shape
control points, Py and P2, which are manipulated by the designer.
We can also show that the Casteljau construction results in the creation of a cubic spline patch. To do this
we expand the the recursion backwards:
P3o = pP21+(1—p)P2p
= ppPr2+ (1 —w)Pra]+ (1 —p)[pPra+ (1 — p)P1]
(P12 +2p(1 — p)P11+ (1 — p)*Prg
= ([uPos + (1 —p)Po2] +2u(1 — p)[uPo2 + (1 — 1)Po 1]
+(1 = p)*[uPo + (1 — u)Poo]
if we drop the first subscript, which indicated the construction level of the Casteljau algorithm we get:
P(p) = p?luPs+ (1 — p)P2] +2u(1 — u)[pP2 + (1 — p)P1]
+(1 = p)?[pP1 + (1 — p)Py]
= (P34 3p°(1 — p)Ps + 3u(1 — p)*P1 + (1 — p)°Po
which is the same as the blending formulation.
So we can think of a four point Bezier curve as a cubic spline patch with shape control. The curve goes
through points Pg and P3 and by picking up points P and P2 with a mouse and moving them we can control
the shape as desired.

The Gradients at the spline ends

To determine the gradient at any point of a parametric spline curve we differentiate it with respect to the
parameter. Thus if:

P(u) = Po(l — p)* + 3P1p(1 — p)? + 3P2p*(1 — p) + Paye?®
we differentiate to get:
P'(1) = —3Po(1 — p)? + 3P1(1 — p1)* — 6Py (1 —) + 6P2pu(l — p) — 3Pop” + 3Py’
grouping the terms
P'(1) = (3P1 — 3Po)(1 — p)? + (6P2 — 6P1) (1 —) + (3P3 — 3P3)p?

So at the start, where . = 0, the gradient is 3P; — 3P and at the end, where i+ = 1, the gradient is 3P3 — 3Ps.
This confirms that the curve is tangential to P; — Pg at the start and P3 — P2 at the end.

Interactive Computer Graphics Lecture 9 5

