
Lecture 13: Radiosity - Principles

Reflectance

Earlier in the course we introduced the reflectance equation for modelling light reflected from surfaces:

Ireflected = ka + Iikdn.s + IiKs(r.v))t

Where Ii is the incident light intensity and the constants represent:
ka the amount of ambient light
kd the amount of diffuse reflection
ks the amount of specular reflection

We used this lighting model for calculating shading values for polygons using both Phong and Gouraud shading.
We used the same equations when calculating the illumination at a ray object intersection while ray tracing. In
both cases we assumed that there was a small number of point light sources, or if light was distributed then it
came from a point source at infinity.

However, according to the reflectance equation, every surface in a graphics scene is emitting light. We have
considered the emitted light travelling in the viewing direction, and neglected the emitted light travelling in
other directions. This light will contribute to the illumination of neighbouring objects. In practice we did not
attempt to calculate this, but rather chose a constant ka to represent the ambient light. We will now attempt to
model it more accurately through the use of radiosity.

A better approximation to the reflectance equation is to make the ambient light term a function of the
incident light as well:

Ireflected = Iika + Iikdn.s + IiKs(r.v))t

or more simply to write (for a given viewpoint)

Ireflected = IiR

where R is the viewpoint dependant reflectance function.

Radiosity

For any given surface (polygon) of our model we can define the term Radiosity as the energy per unit area
leaving a surface. It will not be constant over the surface of a polygon. It is the sum of the emitted energy (if
any) and the reflected energy. For a small area of the surface dA (where the emitted energy can be regarded as
constant) we have:

BdA = EdA+RI

We are now treating each polygon of our scene as a distributed light source. The incident energy at any patch
is collected from all other patches, in particular for patch i:

Ii =
∫
BjFijdAj

where the integral is taken over all patches except i, and Fij is a constant that links patch i and patch j called
the form factor. For computer graphics we cannot expect to compute a continuous solution, so we divide all
polygons up into patches and replace the integral with a sum:

Bi = Ei +Ri
∑

BjFij

where the sum is taken over all patches except i (or alternatively we can sum over all the patches setting Fii =
0). If we can solve this for all Bi then we will be able to render each patch directly with a correct light model.
The B value in the equation is that actual colour that is used to render the patch, so B, E and R are all three
dimensional vector quantities for an rgb colour image. The form factors are the same for each RGB dimension.
We can formulate the problem as the following matrix equation:

1 −R1F12 −R1F13 . . −R1F1n

−R2F21 1 −R2F23 . . −R2F2n

−R3F31 −R3F32 −1 . . −R3F3n

.
−RnFn1 −RnFn2 −RnFn3 . . 1

B1

B2

B3

.
Bn

 =

E1

E2

E3

.
En

Interactive Computer Graphics Lecture 13 1

Where n is the number of patches in the scene. The solution is not so easy to do since the form factors are not
known. Moreover, the matrix will be big 50,000 by 50,000 may be typical.

When considering the computation of the form factors the specular reflection will be seen to cause problems.
The difficulty is that unlike the diffuse reflection which is uniform, the specular reflection is very much direction
dependent and involves the vector to the light source v. But now, as we have noted, every patch is a light source!
There will be problems with specularities as well since all the light sources are no longer points, so we have to
integrate incident light over a specluar cone. All this means that computing specularities will be very difficult,
so for the moment we will consider only diffuse radiosity.

As previously mentioned, we need to divide our graphics scene into patches for computing the radiosity.
If our graphics scene consisted of small polygons we can perhaps use the polygon map as a set of radiosity
patches, but for large polygons, such as might make up a wall, we need to subdivide to make the patches small
enough. This is because the emitted light will not be constant across a large polygon, and if the patches are
too large we will see them as subdivisions of the polygon. In normal circumstances large polygons may have
shading differentials, or shadows thrown across them. Since we calculate just one radiosity value for each
patch, so the patching pattern may form an unwanted visual artefact become visible. There are two ways to get
round this: (i) make the patches small enough to project to (sub) pixel size, or (ii) smooth the results (eg by
interpolation similar to Gouraud shading).

The Form Factors

Figure 1: A form factor couples each pair of
patches

The form factors couple every pair of patches, determining the
proportion of radiated energy from one that strikes the other.
The coupling is illustrated by figure 1, and uses the following
equation.

Fij =
1
|Ai|

∫
Ai

∫
Aj

cosφi cosφj

πr2
dAjdAi

where |Ai| is the area of patch Ai. The two cos terms effec-
tively compute the projection of the two patches in the direction
normal to the line joining them. (If they were at right angles
then there would be no light transmitted from one to the other.
If they are facing each other then they are maximally coupled. The 1/r2 is the normal inverse square law for
the decay of light intensity over distance. The equation can be simplified if we consider Ai to be small. If r
is large, compared with the dimensions of Ai, the cos terms and the 1/r2 can be considered constant over Ai.
Thus the outer integral evaluates to |Ai| times the constant inner integral, and the equation reduces to:

Fij =
∫

Aj

cosφi cosφj

πr2
dAj

And, of course, we can make the same assumption for patch Aj . Thus this integrand can also be treated as
a constant, to give the approximate solution:

Fij =
cosφi cosφj |Aj |

πr2

The Hemicube method

Although we have simplified the form factor equation, it would still be expensive to evaluate on a patch by
patch basis. Accordingly, a fast algorithm was devised which makes the computation of form factors uniform.
Using a bounding hemisphere it can be shown that all patches that project onto the same area of the hemisphere
have the same form factor. This is illustrated by figure 2(a), where all four patches have the same form factor.
In particular, the patches on the hemicube are used in the algorithm.

A hemicube of side 1 unit is placed over the centre of a patch whose form factors are to be computed. Each
of the five faces of the hemicube is divided regularly into a set of square patches called hemicube pixels. An
example is given in figure 2(b) where each face is divided into sixteen. There will be a trade off here between
speed and accuracy. The larger the size of the hemicube pixels, the worse the estimate of the form factors, but
the faster the algorithm.

Interactive Computer Graphics Lecture 13 2

(a) The Hemisphere and
Hemicube

(b) Delta form factors (c) Ray casting for radiosity

Figure 2: Calculating Radiosity with the hemicube

Figure 3: Computing the Delta Form Factors

It will be observed that the form factors between the
hemicube pixels and patch under consideration, called the delta
form factors, will be the same whichever patch we are com-
puting. Moreover, they will be simple to compute since the
geometry is highly regular. For example, suppose that the cen-
tre of a hemicube pixel shown in figure 3 is at the coordinate
[xp, yp, 1]. Thus a unit vector from the patch towards the origin

can be written as [−xp,−yp,−1]/r where r =
√
x2

p + y2
p + 1.

The unit surface normal to the patch is [0, 0,−1], and thus tak-
ing the dot product of the two vectors we find that cosφi = 1/r.
Similar reasoning shows us that cosφj = 1/r If the area of a
hemicube pixel is ∆A, then its form factor is:

cosφicosφj∆A/πr2

Thus the delta form factors on the top plane are given by the equation:

∆A/πr4

By similar reasoning we can deduce that the form factors of the pixels on the sides are given by:

∆Azp/πr4

Values can therefore easily be computed and stored for these pixels, and similarly a simple equation can be
derived for the delta form factors of the sides of the hemicube.

We have previously noted that all patches that project onto the same area on the hemicube have the same
form factor. Thus if a patch were to project exactly to a hemicube pixel, its form factor would be the same
as the delta form factor for that hemicube pixel. If a patch projects to several hemicube pixels, its form factor
will be simply the sum of the delta form factors of those hemicube pixels. We use this to find an approximate
value for the form factors using a ray casting operation which is shown in figure 2(c). For each hemicube pixel
we cast a ray through its centre and find the nearest intersection with another patch of the scene. We assume
that this is the patch that projects entirely to that hemicube pixel, and all other patches are occluded by it. The
smaller the hemicube pixels the more likely this is to be true, and the better the estimate of the form factors.
The ray casting can be done using the techniques described in the ray tracing lecture. For each hemicube pixel

Interactive Computer Graphics Lecture 13 3

we project a ray from the centre of the patch whose form factors we are computing, through the centre of the
pixel and out into the scene. We find the nearest patch that it intersects with. All the previously elaborated
methods can be used to establish coherence and minimise the ray patch intersection calculations. Notice that
all we need to determine is which patches are visible at each hemicube pixel. We do not need to generate any
secondary rays after the nearest intersection has been found.

We can do do the same computation by the alternative means of polygon rendering. To do this we need to
transform the scene. The origin of the transformed scene will be the centre of the patch that we are calculating,
and, for the top face of the hemicube, the viewing direction will be through the centre of the face, verticaly
upwards in figure 2(c). Each patch vertex can then be projected onto the top plane with one matrix multiplica-
tion, and the pixels it projects to can be determined by a raster filling algorithm. We need to find the closest
patch that projects to a hemicube pixel, and all others can be considered occluded. Essentially we have the
same choices to make as we had when removing hidden parts when rendering a scene. We could make use of a
z-buffer, and allocate a patch to a pixel only if it is closer than any other previous allocation. Alternatively we
can use the painter’s algorithm, and sort the patches by distance before projecting them onto the hemicube. The
last patch to be allocated to a particular pixel displaces all others. When the allocation process is complete, the
form factors with each patch of the scene are found by summing the delta form factors of the hypercube pixels
to which they project. If a patch is not allocated to any pixel its form factor is zero, which is generally the case.

In summary, the radiosity method is as follows:

1. Divide the graphics world into discrete patches

2. Compute form factors by the hemicube method

3. Solve the matrix equation for the radiosity of each patch.

4. Average the radiosity values at the corners of each patch,

5a. Compute a texture map of each point on the patch (for walkthroughs), or

5b. Project to the viewing window and render with interpolation shading.

Radiosity Images

Much of the early work on radiosity was carried out at Cornell University, and images and tutorial material can
be found on their web site.

http://www.graphics.cornell.edu/online/research/

Interactive Computer Graphics Lecture 13 4

