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Interactive Computer Graphics 

• Lecture 15: Warping and Morphing 

Warping and Morphing 
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Warping 

• The term warping refers to the geometric 
transformation of graphical objects (images, surfaces 
or volumes) from one coordinate system to another 
coordinate system.  

• Warping does not affect the attributes of the 
underlying graphical objects. 

• Attributes may be 
– color (RGB, HSV) 
–  texture maps and coordinates 
– normals, etc. 

Morphing 

• The term morphing stands for metamorphosing and 
refers to an animation technique in which one 
graphical object is gradually turned into another.  

• Morphing can affect both the shape and attributes of 
the graphical objects. 

Morphing = Object Averaging 

•  The aim is to find “an average” between two 
objects 
–  Not an average of two images of objects… 
–  …but an image of the average object! 
–  How can we make a smooth transition in time? 

– Do a “weighted average” over time t 
•  How do we know what the average object looks 

like? 
–  Need an algorithm to compute the average geometry 

and appearance 

Averaging 

P 

Q 
v = Q - P 

P + 0.5v 
=  P + 0.5(Q – P) 
=  0.5P + 0.5 Q 

P + 1.5v 
=  P + 1.5(Q – P) 
=  -0.5P + 1.5 Q 
(extrapolation) 

Linear Interpolation 
(Affine Combination): 
New point aP + bQ, 
defined only when a+b = 1 
So aP+bQ = aP+(1-a)Q 

What’s the average 
of P and Q? 
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Morphing using cross-dissolve 

•  Interpolate whole images: 
I(t) = t*I1 + (1-t)*I2 

• This is called cross-dissolve 
• But what is the images are not aligned? 

Morphing using warping and cross-dissolve 

• Align first, then cross-dissolve 

Image warping 

•  image filtering: change range of image 
•  g(x) = T(f(x)) 

f 

x 

T 
f 

x 

f 

x 

T 
f 

x 

•  image warping: change domain of image 
•  g(x) = f(T(x)) 

Image warping 

T 

T 

f 

f g 

g 

•  image filtering: change range of image 
•  g(x) = h(T(x)) 

•  image warping: change domain of image 
•  g(x) = f(T(x)) 
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Parametric (global) warping 

• Examples of parametric warps: 

translation rotation aspect 

affine 
perspective 

cylindrical 

Parametric (global) warping 

• Transformation T can be expressed as a mapping: 
p’ = T(p) 

• Transformation T can be expressed as a matrix: 
p’ = M*p 

T 

p = (x,y) p’ = (x’,y’) 
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Scaling 

•  Scaling a coordinate means multiplying each of its 
components by a scalar 

• Uniform scaling means this scalar is the same for all 
components: 

× 2 

• Non-uniform scaling: different scalars per component: 

Scaling 

X × 2, 
Y × 0.5 
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scaling matrix S 

What is the inverse of S? 

Scaling 

•  Scaling operation: 

• Or, in matrix form: 

2-D Rotation 

θ 

(x, y) 

(x’, y’) 

x’ = x cos(θ) - y sin(θ) 
y’ = x sin(θ) + y cos(θ) 

2-D Rotation 

x = r cos (φ) 
y = r sin (φ) 
x’ = r cos (φ + θ) 
y’ = r sin (φ + θ) 

Trig Identity… 
x’ = r cos(φ) cos(θ) – r sin(φ) sin(θ) 
y’ = r sin(φ) sin(θ) + r cos(φ) cos(θ) 

Substitute… 
x’ = x cos(θ) - y sin(θ) 
y’ = x sin(θ) + y cos(θ) 

θ 

(x, y) 

(x’, y’) 

φ

2-D Rotation 

•  This is easy to capture in matrix form: 

•  Even though sin(θ) and cos(θ) are nonlinear functions of θ, 
–  x’ is a linear combination of x and y 
–  y’ is a linear combination of x and y 

•  What is the inverse transformation? 
–  Rotation by –θ 
–  For rotation matrices, det(R) = 1 so 
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2x2 Matrices 

•  What types of transformations can be  
represented with a 2x2 matrix? 

2D Identity? 
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2D Scale around (0,0)? 
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2x2 Matrices 

•  What types of transformations can be  
represented with a 2x2 matrix? 

2D Rotate around (0,0)? 

yxy
yxx
*cos*sin'
*sin*cos'
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2D Shear? 

yxshy
yshxx
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2x2 Matrices 

•  What types of transformations can be  
represented with a 2x2 matrix? 

2D Mirror about Y axis? 
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2D Mirror over (0,0)? 
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2x2 Matrices 

•  What types of transformations can be  
represented with a 2x2 matrix? 

2D Translation? 

y
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Only linear 2D transformations  
can be represented with a 2x2 matrix 

NO! 
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All 2D Linear Transformations 

•  Linear transformations are combinations of … 
–  Scale, 
–  Rotation, 
–  Shear, and 
–  Mirror 

•  Properties of linear transformations: 
–  Origin maps to origin 
–  Lines map to lines 
–  Parallel lines remain parallel 
–  Ratios are preserved 
–  Closed under composition 
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Homogeneous Coordinates 

• Q: How can we represent translation as a matrix 
transformation? 

• A: Using the translation parameters as the rightmost 
column: 

€ 

T =

1 0 tx
0 1 ty
0 0 1
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Basic 2D Transformations 

•  Basic 2D transformations as 3x3 matrices 
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2D image transformations 
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Transformations 

• Dimensions of transformation 
– 1D: curves 
– 2D: images 
– 3D: volumes 

• Types of transformations 
–  rigid 
– affine 
– polynomial 

– quadratic 
– cubic 

–  splines 

Transformations in 3D: Rigid 

•  Rigid transformation (6 degrees of freedom) 

•  tx, ty, tz describe the 3 translations in x, y and z 
•  r11, ..., r33 describe the 3 rotations around x, y, z 
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Transformations in 3D: Rigid 
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Transformations in 3D: Affine 

• Affine transformations (12 degrees of freedom) 
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Non-rigid transformations 

• Quadratic transformation (30 degrees of freedom) 
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Non-rigid transformations 

• Can be extended to other higher-order polynomials: 
– 3rd order (60 DOF) 
– 4th order (105 DOF) 
– 5th order (168 DOF) 

•  Problems: 
– can model only global shape changes, not local shape 

changes 
– higher order polynomials introduce artifacts such as 

oscillations 

Image warping 

• Given a coordinate transform (x’,y’) = T(x,y) and a 
source image f(x,y), how do we compute a 
transformed image g(x’,y’) = f(T(x,y))? 

x x’ 

T(x,y) 

f(x,y) g(x’,y’) 

y y’ 

f(x,y) g(x’,y’) 

Forward warping 

•  Send each pixel f(x,y) to its corresponding location 
(x’,y’) = T(x,y) in the second image 

x x’ 

T(x,y) 
y y’ 
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f(x,y) g(x’,y’) 

Forward warping 

•  Send each pixel f(x,y) to its corresponding location (x’,y’) = 
T(x,y) in the second image 

 Q:  what if pixel lands “between” two pixels? 

x x’ 

T(x,y) 
y y’ 

f(x,y) g(x’,y’) 

Forward warping 

•  Send each pixel f(x,y) to its corresponding location (x’,y’) = T(x,y) in the 
second image 

 Q:  what if pixel lands “between” two pixels? 
 A:  distribute color among neighboring pixels (x’,y’) 

–  known as “splatting” 

x x’ 

T(x,y) 
y y’ 

f(x,y) g(x’,y’) x 
y 

Inverse warping 

• Get each pixel g(x’,y’) from its corresponding 
location (x,y) = T-1(x’,y’) in the first image 

x x’ 
y’ 

T-1(x,y) 

f(x,y) g(x’,y’) x 
y 

Inverse warping 

•  Get each pixel g(x’,y’) from its corresponding location  
 (x,y) = T-1(x’,y’) in the first image 
 Q:  what if pixel comes from “between” two pixels? 

x x’ 

T-1(x,y) 
y’ 
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f(x,y) g(x’,y’) x 
y 

Inverse warping 

•  Get each pixel g(x’,y’) from its corresponding location  
 (x,y) = T-1(x’,y’) in the first image 
 Q:  what if pixel comes from “between” two pixels? 
 A:  Interpolate color value from neighbors 

– nearest neighbor, bilinear, Gaussian, bicubic 

x x’ 

T-1(x,y) 
y’ 

Interpolation 

Interpolation Interpolation: Linear, 2D 
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Interpolation: Linear, 3D 
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Non-rigid transformations 

Non-rigid transformations: Correspondences Non-rigid transformations: Correspondences 
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Feature-Based Warping: Beier-Neeley  

• Beier & Neeley use pairs of lines to specify warp 
– Given p in destination image, where is p’ in source image? 

y’ 

x’ 

y 

x 

Feature-Based Warping: Beier-Neeley 

€ 

u =
(p − x) ⋅ (y − x)

y − x 2

€ 

v =
(p − x) ⋅ Perpendicular(y − x)

y − x

€ 

p'= x + u ⋅ (y'−x') +
v ⋅ Perpendicular(y '−x ')

y'−x'

y’ 

x’ 
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y’ 
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Feature-Based Warping: Beier-Neeley 

•  For each pixel p in the destination image 
–  find the corresponding u,v 
–  find the p’ in the source image for that u,v 
– destination(p) = source(p’) 

Warping with One Line Pair: Beier-Neeley  

• What happens to the “F” ? 

Translation ! 
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Warping with One Line Pair (cont.): Beier-Neeley  

• What happens to the “F” ? 

Scale ! 

Warping with One Line Pair (cont.): Beier-Neeley  

• What happens to the “F” ? 

Rotation ! 

Warping with One Line Pair (cont.): Beier-Neeley  

• What happens to the “F” ? 

In general, similarity transformations 

Warping with Multiple Line Pairs: Beier-Neeley  

• Use weighted combination of points defined each pair 
of corresponding lines 
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Warping with Multiple Line Pairs: Beier-Neeley  

• Use weighted combination of points defined by each 
pair corresponding lines 

p’ is a weighted average 

Weighting Effect of Each Line Pair: Beier-Neeley  

• To weight the contribution of each line pair 

– where 
–  length[i] is the length of L[i] 
– dist[i] is the distance from X to L[i] 
– a, b, p are constants that control the warp 

bp

idista
ilengthiweight 
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Warping Pseudocode: Beier-Neeley  

foreach destination pixel p do 
 psum = (0, 0) 
 wsum = (0, 0) 
 foreach line L[i] in destination do 

       p’[i] = p transformed by (L[i], L’[i]) 
       psum = psum + p’[i] * weight[i] 
       wsum += weight[i] 
   end 
     p’ = psum / wsum 
     destination(p) = source(p’) 
end 


