
1

Interactive Computer Graphics

• Lecture 15: Warping and Morphing

Warping and Morphing

Warping and Morphing

• What is
– warping ?
– morphing ?

?

Warping and Morphing

• What is
– warping ?
– morphing ?

2

Warping

• The term warping refers to the geometric
transformation of graphical objects (images, surfaces
or volumes) from one coordinate system to another
coordinate system.

• Warping does not affect the attributes of the
underlying graphical objects.

• Attributes may be
– color (RGB, HSV)
–  texture maps and coordinates
– normals, etc.

Morphing

• The term morphing stands for metamorphosing and
refers to an animation technique in which one
graphical object is gradually turned into another.

• Morphing can affect both the shape and attributes of
the graphical objects.

Morphing = Object Averaging

•  The aim is to find “an average” between two
objects
–  Not an average of two images of objects…
–  …but an image of the average object!
–  How can we make a smooth transition in time?

– Do a “weighted average” over time t
•  How do we know what the average object looks

like?
–  Need an algorithm to compute the average geometry

and appearance

Averaging

P

Q
v = Q - P

P + 0.5v
= P + 0.5(Q – P)
= 0.5P + 0.5 Q

P + 1.5v
= P + 1.5(Q – P)
= -0.5P + 1.5 Q
(extrapolation)

Linear Interpolation
(Affine Combination):
New point aP + bQ,
defined only when a+b = 1
So aP+bQ = aP+(1-a)Q

What’s the average
of P and Q?

3

Morphing using cross-dissolve

•  Interpolate whole images:
I(t) = t*I1 + (1-t)*I2

• This is called cross-dissolve
• But what is the images are not aligned?

Morphing using warping and cross-dissolve

• Align first, then cross-dissolve

Image warping

•  image filtering: change range of image
•  g(x) = T(f(x))

f

x

T
f

x

f

x

T
f

x

•  image warping: change domain of image
•  g(x) = f(T(x))

Image warping

T

T

f

f g

g

•  image filtering: change range of image
•  g(x) = h(T(x))

•  image warping: change domain of image
•  g(x) = f(T(x))

4

Parametric (global) warping

• Examples of parametric warps:

translation rotation aspect

affine
perspective

cylindrical

Parametric (global) warping

• Transformation T can be expressed as a mapping:
p’ = T(p)

• Transformation T can be expressed as a matrix:
p’ = M*p

T

p = (x,y) p’ = (x’,y’)

=

y
x

y
x

M
'
'

Scaling

•  Scaling a coordinate means multiplying each of its
components by a scalar

• Uniform scaling means this scalar is the same for all
components:

× 2

• Non-uniform scaling: different scalars per component:

Scaling

X × 2,
Y × 0.5

5

byy
axx

=

=

'
'

=

y
x

b
a

y
x

0
0

'
'

scaling matrix S

What is the inverse of S?

Scaling

•  Scaling operation:

• Or, in matrix form:

2-D Rotation

θ

(x, y)

(x’, y’)

x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)

2-D Rotation

x = r cos (φ)
y = r sin (φ)
x’ = r cos (φ + θ)
y’ = r sin (φ + θ)

Trig Identity…
x’ = r cos(φ) cos(θ) – r sin(φ) sin(θ)
y’ = r sin(φ) sin(θ) + r cos(φ) cos(θ)

Substitute…
x’ = x cos(θ) - y sin(θ)
y’ = x sin(θ) + y cos(θ)

θ

(x, y)

(x’, y’)

φ

2-D Rotation

•  This is easy to capture in matrix form:

•  Even though sin(θ) and cos(θ) are nonlinear functions of θ,
–  x’ is a linear combination of x and y
–  y’ is a linear combination of x and y

•  What is the inverse transformation?
–  Rotation by –θ
–  For rotation matrices, det(R) = 1 so

€

x '
y '

 =

cos θ() −sin θ()
sin θ() cos θ()

x
y

TRR =−1

R

6

2x2 Matrices

•  What types of transformations can be
represented with a 2x2 matrix?

2D Identity?

yy
xx

=
=
'
'

=

y
x

y
x

10
01

'
'

2D Scale around (0,0)?

ysy
xsx

y

x

*'

*'

=

=

=

y
x

s
s

y
x

y

x

0
0

'
'

2x2 Matrices

•  What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

yxy
yxx
*cos*sin'
*sin*cos'

Θ+Θ=
Θ−Θ=

ΘΘ

Θ−Θ
=

y
x

y
x

cossin
sincos

'
'

2D Shear?

yxshy
yshxx

y

x

+=

+=

*'
*'

=

y
x

sh
sh

y
x

y

x

1
1

'
'

2x2 Matrices

•  What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

yy
xx

=
−=

'
'

−=

y
x

y
x

10
01

'
'

2D Mirror over (0,0)?

yy
xx
−=
−=

'
'

−
−=

y
x

y
x

10
01

'
'

2x2 Matrices

•  What types of transformations can be
represented with a 2x2 matrix?

2D Translation?

y

x

tyy
txx

+=

+=

'
'

Only linear 2D transformations
can be represented with a 2x2 matrix

NO!

7

All 2D Linear Transformations

•  Linear transformations are combinations of …
–  Scale,
–  Rotation,
–  Shear, and
–  Mirror

•  Properties of linear transformations:
–  Origin maps to origin
–  Lines map to lines
–  Parallel lines remain parallel
–  Ratios are preserved
–  Closed under composition

=

y
x

dc
ba

y
x
'
'

=

y
x

lk
ji

hg
fe

dc
ba

y
x
'
'

Homogeneous Coordinates

• Q: How can we represent translation as a matrix
transformation?

• A: Using the translation parameters as the rightmost
column:

€

T =

1 0 tx
0 1 ty
0 0 1

y

x

tyy
txx

+=

+=

'
'

Basic 2D Transformations

•  Basic 2D transformations as 3x3 matrices

ΘΘ

Θ−Θ

=

1100
0cossin
0sincos

1
'
'

y
x

y
x

=

1100
10
01

1
'
'

y
x

t
t

y
x

y

x

=

1100
01
01

1
'
'

y
x

sh
sh

y
x

y

x

Translate

Rotate Shear

=

1100
00
00

1
'
'

y
x

s
s

y
x

y

x

Scale

2D image transformations

8

Transformations

• Dimensions of transformation
– 1D: curves
– 2D: images
– 3D: volumes

• Types of transformations
–  rigid
– affine
– polynomial

– quadratic
– cubic

–  splines

Transformations in 3D: Rigid

•  Rigid transformation (6 degrees of freedom)

•  tx, ty, tz describe the 3 translations in x, y and z
•  r11, ..., r33 describe the 3 rotations around x, y, z

+

⋅⋅⋅=

⋅

=

01110001
'
'
'

232221

131211

030201

z

y

x

z
rigid

y
rigid

x
rigid

z

y

x

t
t
t

z
y
x

TTT
z
y
x

trrr
trrr
trrr

z
y
x

Transformations in 3D: Rigid

−
=

1000
0cossin0
0sincos0
0001

αα

ααx
rigidT

 −

=

1000
0100
00cossin
00sincos

αα

αα

z
rigidT

−
=

1000
0cos0sin
0010
0sin0cos

αα

αα

y
rigidT

Transformations in 3D: Affine

• Affine transformations (12 degrees of freedom)

=

1000
000
000
000

z

y

x

scale s
s

s

T

=

1000
0100
010
001

y

x

xy
shear

sh
sh

T

⋅⋅⋅=

1

),,(
z
y
x

zyx rigidscaleshear TTTT

9

Non-rigid transformations

• Quadratic transformation (30 degrees of freedom)

⋅

=

11001
'
'
'

2

2

292820

191810

090800

y
x

rrr
rrr
rrr

z
y
x

Non-rigid transformations

• Can be extended to other higher-order polynomials:
– 3rd order (60 DOF)
– 4th order (105 DOF)
– 5th order (168 DOF)

•  Problems:
– can model only global shape changes, not local shape

changes
– higher order polynomials introduce artifacts such as

oscillations

Image warping

• Given a coordinate transform (x’,y’) = T(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

f(x,y) g(x’,y’)

Forward warping

•  Send each pixel f(x,y) to its corresponding location
(x’,y’) = T(x,y) in the second image

x x’

T(x,y)
y y’

10

f(x,y) g(x’,y’)

Forward warping

•  Send each pixel f(x,y) to its corresponding location (x’,y’) =
T(x,y) in the second image

 Q: what if pixel lands “between” two pixels?

x x’

T(x,y)
y y’

f(x,y) g(x’,y’)

Forward warping

•  Send each pixel f(x,y) to its corresponding location (x’,y’) = T(x,y) in the
second image

 Q: what if pixel lands “between” two pixels?
 A: distribute color among neighboring pixels (x’,y’)

–  known as “splatting”

x x’

T(x,y)
y y’

f(x,y) g(x’,y’) x
y

Inverse warping

• Get each pixel g(x’,y’) from its corresponding
location (x,y) = T-1(x’,y’) in the first image

x x’
y’

T-1(x,y)

f(x,y) g(x’,y’) x
y

Inverse warping

•  Get each pixel g(x’,y’) from its corresponding location
 (x,y) = T-1(x’,y’) in the first image
 Q: what if pixel comes from “between” two pixels?

x x’

T-1(x,y)
y’

11

f(x,y) g(x’,y’) x
y

Inverse warping

•  Get each pixel g(x’,y’) from its corresponding location
 (x,y) = T-1(x’,y’) in the first image
 Q: what if pixel comes from “between” two pixels?
 A: Interpolate color value from neighbors

– nearest neighbor, bilinear, Gaussian, bicubic

x x’

T-1(x,y)
y’

Interpolation

Interpolation Interpolation: Linear, 2D

rsw
srw
srw

srw

=

−=

−=

−−=

3

2

1

0

)1(
)1(

)1)(1(

p0

p2 p3

p1
y

x
r

s

)()(
1

0
i

n

i
i pfwpf ∑

−

=

=

12

Interpolation: Linear, 3D

z
y

rstw
strw
tsrw

tsrw
trsw

tsrw
tsrw

tsrw

=

−=

−=

−−=

−=

−−=

−−=

−−−=

7

6

5

4

3

2

1

0

)1(
)1(

)1)(1(
)1(

)1()1(
)1)(1(

)1)(1)(1(

p5

p2 p3

p7

p4

p0 p1

p6

s

t

r

x

Non-rigid transformations

Non-rigid transformations: Correspondences Non-rigid transformations: Correspondences

y

x

13

Feature-Based Warping: Beier-Neeley

• Beier & Neeley use pairs of lines to specify warp
– Given p in destination image, where is p’ in source image?

y’

x’

y

x

Feature-Based Warping: Beier-Neeley

€

u =
(p − x) ⋅ (y − x)

y − x 2

€

v =
(p − x) ⋅ Perpendicular(y − x)

y − x

€

p'= x + u ⋅ (y'−x') +
v ⋅ Perpendicular(y '−x ')

y'−x'

y’

x’

y

x

y’

x’

y

x

Feature-Based Warping: Beier-Neeley

•  For each pixel p in the destination image
–  find the corresponding u,v
–  find the p’ in the source image for that u,v
– destination(p) = source(p’)

Warping with One Line Pair: Beier-Neeley

• What happens to the “F” ?

Translation !

14

Warping with One Line Pair (cont.): Beier-Neeley

• What happens to the “F” ?

Scale !

Warping with One Line Pair (cont.): Beier-Neeley

• What happens to the “F” ?

Rotation !

Warping with One Line Pair (cont.): Beier-Neeley

• What happens to the “F” ?

In general, similarity transformations

Warping with Multiple Line Pairs: Beier-Neeley

• Use weighted combination of points defined each pair
of corresponding lines

15

Warping with Multiple Line Pairs: Beier-Neeley

• Use weighted combination of points defined by each
pair corresponding lines

p’ is a weighted average

Weighting Effect of Each Line Pair: Beier-Neeley

• To weight the contribution of each line pair

– where
–  length[i] is the length of L[i]
– dist[i] is the distance from X to L[i]
– a, b, p are constants that control the warp

bp

idista
ilengthiweight

+
=

][
][][

Warping Pseudocode: Beier-Neeley

foreach destination pixel p do
 psum = (0, 0)
 wsum = (0, 0)
 foreach line L[i] in destination do

 p’[i] = p transformed by (L[i], L’[i])
 psum = psum + p’[i] * weight[i]
 wsum += weight[i]
 end
 p’ = psum / wsum
 destination(p) = source(p’)
end

