Interactive Computer Graphics

* Lecture 15: Warping and Morphing

Warping and Morphing

Warping and Morphing

* What is
— warping ?

— morphing ?

-~

Warping and Morphing

» What is
— warping ?

— morphing ?

Warping

e The term warping refers to the geometric
transformation of graphical objects (images, surfaces
or volumes) from one coordinate system to another
coordinate system.

* Warping does not affect the attributes of the
underlying graphical objects.

* Attributes may be

— color (RGB, HSV)
— texture maps and coordinates

— normals, etc.

Morphing

* The term morphing stands for metamorphosing and
refers to an animation technique in which one
graphical object is gradually turned into another.

» Morphing can affect both the shape and attributes of

the graphical objects.

Morphing = Object Averaging

* The aim is to find “an average” between two

objects

— Not an average of two images of objects...

— ...but an image of the average object!

— How can we make a smooth transition in time?

— Do a “weighted average” over time t

* How do we know what the average object looks

like?

— Need an algorithm to compute the average geometry

and appearance

Averaging

What'’s the average
of Pand Q?

Linear Interpolation
(Affine Combination):
New point aP + bQ,
defined only when a+b =1
So aP+bQ = aP+(1-a)Q

P+ 1.5v

= P+15Q-P)
= -05P+15Q
(extrapolation)

Morphing using cross-dissolve

i
LTIt
(T

* Interpolate whole images:
I(t) = t*I, + (1-0)*1,
* This is called cross-dissolve

* But what is the images are not aligned?

Morphing using warping and cross-dissolve

* Align first, then cross-dissolve

Image warping

* image filtering: change range of image

* 49 = T¢09)
s S
NJ T

* image warping: change domain of image

*8() =f(Tx)

N N

Image warping

» image filtering: change range of image

* g% = h(T(x))

- e ¥ S0
* image warping: change domain of image

* g(x) = f(T(x))

Parametric (global) warping

» Examples of parametric warps:

aspect

perspective

cylindrical

Parametric (global) warping

-

p=(xy) P =Xy
* Transformation T can be expressed as a mapping:
p’ = T(p)
* Transformation T can be expressed as a matrix:
p’=M*p

Scaling

* Scaling a coordinate means multiplying each of its
components by a scalar

* Uniform scaling means this scalar is the same for all
components:

Scaling

* Non-uniform scaling: different scalars per component:

Scaling

* Scaling operation:

x'=ax
y'=by
¢ Or, in matrix form:
x' a 01[x
v [0 by
H_/

scaling matrix S

What is the inverse of S?

2-D Rotation

o (X,Y")
(X,y)
x’=x cos(0) - y sin(0)
0 y’=x sin(0) +y cos(0)

2-D Rotation
x =1 cos (¢)
y =rsin (¢)
x’=rcos (¢ +6)
. y’=rsin (¢ +0)
g (X Y)
Trig Identity...
(X, y) x’ =1 cos(¢) cos(0) — r sin(¢) sin(0)
y’ =r sin(¢) sin(0) + r cos(¢p) cos(0)
0 Substitute. ..
¢ X’ =x ¢0s(0) - y sin(0)

y’ =x sin(0) +y cos(0)

2-D Rotation

« This is easy to capture in matrix form:

[x: =[cos(0) _sin(e)]H
y

sin(@) cos(@) y
|

. R . .
» Even though sin(0) and cos(0) are nonlinear functions of 0,
— X’ is a linear combination of x and y

— y’ is a linear combination of x and y

* What is the inverse transformation?
— Rotation by -0
— For rotation matrices, det(R)=1s0 R™' = R”

2x2 Matrices

* What types of transformations can be
represented with a 2x2 matrix?

2D Identity?
x'=x x'T _ 1 0][x
y'=y Yoo Ly

2D Scale around (0,0)?
x'=s,*x x'T [s, O0][x
y'_ 0 S | [y

Vi=s*y

2x2 Matrices

» What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

2x2 Matrices

» What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

x'=-x [x'T_[-1 O][x

yv= -yl- i 0 1 y
2D Mirror over (0,0)?

X'=-x [(x"1_[-1 O][x

y'==-y VLo =1y

xX'=cos®@*x-sin@*y [x'] [cos® -sin®][x
Y'=sin®@*x+cos@*y vy |sin® cos® ||y
2D Shear?
x'=x+sh *y x7 [1 sh][x
Y'=sh *x+y Y| sk, 1 ||y
2x2 Matrices

» What types of transformations can be
represented with a 2x2 matrix?

2D Translation?
X'=x+t,

y'=y+ty

NO!

Only linear 2D transformations
can be represented with a 2x2 matrix

All 2D Linear Transformations Homogeneous Coordinates

* Q: How can we represent translation as a matrix

* Linear transformations are combinations of
— Scale, transformation?
— Rotation, x' _ a b][x . .
— Shear, and y' ¢ d y X'=Xx+1,
— 1] _
Mirror y=y+t Y

* Properties of linear transformations:
— Origin maps to origin
— Lines map to lines
— Parallel lines remain parallel

* A: Using the translation parameters as the rightmost
column:

— Ratios are preserved 1 0 ¢

— Closed undercomposition')) T=l0 1 l;
X_fa bl[e fi J)[x 00 1
V' c dllg hi|lk ||y

Basic 2D Transformations 2D image transformations

» Basic 2D transformations as 3x3 matrices o4 /—m projective
translation

x' 1 0 t][x ! s, 0 0]fx - ﬁ
V=10 1 ¢ |y y'|1=10 s, Ofly Euclidean Aﬂ o
1] oo 1t 1| (o o 11 X
Translate Scale Name Matrix #D.OTL. | Preserves: Icon
translation [I ‘ t])d 2 orientation + - - - L
¥ Tcos® —sin® 01x 1 sh, rigid (Buclidean) | [R ¢] 3 |lengths +--- Q
y'|=|sin® cos® Ofly =|sh, 1 similarity [sr|t],, 4 angles + - - &
1 0 0 1|1 0 0 affine [A]v/ ; 6 parallelism + - - - D
Rotate Shear projective [17]L” 8 straight lines [:‘

Transformations

* Dimensions of transformation
— 1D: curves
— 2D: images
— 3D: volumes
* Types of transformations
—rigid
— affine
— polynomial
— quadratic
— cubic
— splines

Transformations in 3D: Rigid

* Rigid transformation (6 degrees of freedom)

1
X Yoo Ty Ty U X X t,
Y ny hy hy o y , . y t,
= y =Tx'd'T"'d'T~-d' +]
] rigi rigi rigi
z By Py Py L z z t,
1 0o 0 0 1 1 1

*tt,t, describe the 3 translations in x, y and z
* I}, ..., I3 describe the 3 rotations around x, y, z

Transformations in 3D: Rigid

1 0 0 0 cosa 0 sina 0
0 cosa -sina O i 0 1 0 0
T:Egid = . T»*J/:g[d = .
0 sina cosa O -sinaa 0 cosa O
0 0 0 1 0 0 0 1
cosa -sina 0 0
sina cosa 0 0
Trzi’id =
‘ 0 0 1 0
0 0 0 1

Transformations in 3D: Affine

* Affine transformations (12 degrees of freedom)

s, 00 0 10 sh 0
0 s, 00 I (T
scale 0 0 s 0 shear 0 0 1 0
0 0 0 1 00 0 1

X

y

T(x,9,2) =Ty Toeure " Tigia* 2

1

Non-rigid transformations
* Quadratic transformation (30 degrees of freedom)

' e 2

X o0 Tos Too
' n ne 2
Y1 | ho 18 o
1
z Iy Iy Ty
1 0 0 1 1

Non-rigid transformations

* Can be extended to other higher-order polynomials:
— 31 order (60 DOF)
— 4™ order (105 DOF)
— 5% order (168 DOF)

* Problems:

— can model only global shape changes, not local shape
changes

— higher order polynomials introduce artifacts such as
oscillations

Image warping

* Given a coordinate transform (x,y’) = T(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x’,y’) = AT(x,y))?

Forward warping

T fxy) gy

* Send each pixel f{x,y) to its corresponding location
(x’y’) = T(x,y) in the second image

Forward warping

y y’L

T fxy) gy

* Send each pixel f{x,y) to its corresponding location (x’y’) =
T(x,y) in the second image

Q: what if pixel lands “between” two pixels?

Forward warping

y y’L

T fxy) gy

* Send each pixel f{x,y) to its corresponding location (x’,y’) = T(x,y) in the
second image
Q: what if pixel lands “between” two pixels?
A: distribute color among neighboring pixels (x’,y’)
— known as “splatting”

Inverse warping

* Get each pixel g(x’,y’) from its corresponding
location (x,y) = T-'(x’,y’) in the first image

Inverse warping

y y’L

T fxy) o

» Get each pixel g(x’,y’) from its corresponding location

g’y

(x,y) = T'(x",p’) in the first image

Q: what if pixel comes from “between” two pixels?

10

Inverse warping

y y’L

T fxy) gy

* Get each pixel g(x’,y’) from its corresponding location
(x,y) = T-!(x",y") in the first image
Q: what if pixel comes from “between” two pixels?
A: Interpolate color value from neighbors
— nearest neighbor, bilinear, Gaussian, bicubic

Interpolation

Interpolation

Interpolation: Linear, 2D
n-1

S(p)= 2 wif (p;)

P P;

P;
r

wy =(1-r)1-5)

w =r(l-5)
w, =(1-r)s
Wy =rs

1

Interpolation: Linear, 3D

wy =(1-r)1-s)1-9)
w,=r(l-s)1-1)

w, =(1-r)s(1-1)

wy, =rs(1-1t)

w, =(1-r)1-s)t

ws =r(l-s)t

ws =(1-r)st

w, =rst

Non-rigid transformations

Non-rigid transformations.: Correspondences

Non-rigid transformations: Correspondences

12

Feature-Based Warping: Beier-Neeley

* Beier & Neeley use pairs of lines to specify warp

— Given p in destination image, where is p’ in source image?

Mapping
y’ T T P
0 A / — |7 v
, \p’ B
X X uis a fraction
Source image Destination image vis a length (in pixels)

Feature-Based Warping: Beier-Neeley

_ (p-x)(y-x) _ (p - x)- Perpendicular(y — x)
Iy - o [y =~

v Perpendicular(y'-x")

p=x+u-(y'-x)+

"=
, Mapping
Yy L 0 p
. \ / y \
p’ .
X % uis a fraction
Source image Destination image vis a length (in pixels)

Feature-Based Warping: Beier-Neeley

* For each pixel p in the destination image
— find the corresponding u,v
— find the p’ in the source image for that u,v
— destination(p) = source(p’)

u is a fraction
Source image Destination image vis a length (in pixels)

Warping with One Line Pair: Beier-Neeley

* What happens to the “F” ?

Translation ! I

13

Warping with One Line Pair (cont.): Beier-Neeley

* What happens to the “F” ?

Scale !

Warping with One Line Pair (cont.): Beier-Neeley

* What happens to the “F” ?

™~

Warping with One Line Pair (cont.): Beier-Neeley

* What happens to the “F” ?

—/

In general, similarity ‘rr‘ansforma‘rionsl

Warping with Multiple Line Pairs: Beier-Neeley

» Use weighted combination of points defined each pair
of corresponding lines

14

Warping with Multiple Line Pairs: Beier-Neeley

» Use weighted combination of points defined by each
pair corresponding lines

Mapp!

' 4}\7

Source image Destination image

p' is a weighted average I

Weighting Effect of Each Line Pair: Beier-Neeley

» To weight the contribution of each line pair

weight[i] = (M)b
a +dist[i]
— where
— length[i] is the length of L[i]
— dist[i] is the distance from X to L[i]
—a, b, p are constants that control the warp

Warping Pseudocode: Beier-Neeley

foreach destination pixel p do
psum = (0, 0)
wsum = (0, 0)
foreach line L[] in destination do
p’[i] = p transformed by (L[i], L’[i])
psum = psum + p’[i] * weight[i]
wsum += weight[i]
end
p’ = psum / wsum
destination(p) = source(p’)
end

15

