Interactive Computer Graphics
•Lecture 15: Warping and Morphing

Warping and Morphing

Warping and Morphing

- What is
- warping ?
- morphing ?

Warping

- The term warping refers to the geometric transformation of graphical objects (images, surfaces or volumes) from one coordinate system to another coordinate system.
- Warping does not affect the attributes of the underlying graphical objects.
- Attributes may be
- color (RGB, HSV)
- texture maps and coordinates
- normals, etc.

Morphing $=$ Object Averaging

- The aim is to find "an average" between two objects
- Not an average of two images of objects..
- ...but an image of the average object!
- How can we make a smooth transition in time? - Do a "weighted average" over time t
- How do we know what the average object looks like?
- Need an algorithm to compute the average geometry and appearance

Morphing

- The term morphing stands for metamorphosing and refers to an animation technique in which one graphical object is gradually turned into another.
- Morphing can affect both the shape and attributes of the graphical objects.

Morphing using warping and cross-dissolve

Image warping

Image warping

- image filtering: change range of image

$$
\text { - } g(x)=T(f(x))
$$

- image warping: change domain of image
- $g(x)=f(T(x))$

Parametric (global) warping

- Examples of parametric warps:

Parametric (global) warping

- Transformation T can be expressed as a mapping:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

- Transformation T can be expressed as a matrix:

$$
\begin{gathered}
\mathrm{p}{ }^{\prime}=\mathbf{M} * \mathrm{p} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{gathered}
$$

Scaling

- Non-uniform scaling: different scalars per component: components by a scalar
- Uniform scaling means this scalar is the same for all components:

Scaling

- Scaling operation:

$$
\begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=b y
\end{aligned}
$$

- Or, in matrix form:

What is the inverse of S ?

2-D Rotation

2-D Rotation

- This is easy to capture in matrix form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]}_{\mathbf{R}}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Even though $\sin (\theta)$ and $\cos (\theta)$ are nonlinear functions of θ, $-x^{\prime}$ is a linear combination of x and y
$-y^{\prime}$ is a linear combination of x and y
-What is the inverse transformation?
- Rotation by $-\theta$
- For rotation matrices, $\operatorname{det}(\mathrm{R})=1$ so $\mathbf{R}^{-1}=\mathbf{R}^{T}$

2×2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Identity?
$x^{\prime}=x$
$y^{\prime}=y$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Scale around (0,0)?

$$
\begin{aligned}
& x^{\prime}=s_{x} * x \\
& y^{\prime}=s_{y} * y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2×2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2×2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Mirror about Y axis?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Mirror over (0,0)?
$x^{\prime}=-x$
$y^{\prime}=-y$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

2x2 Matrices

- What types of transformations can be represented with a 2×2 matrix?

2D Rotate around (0,0) ?

$$
\begin{aligned}
& x^{\prime}=\cos \Theta^{*} x-\sin \Theta^{*} y \\
& y^{\prime}=\sin \Theta^{*} x+\cos \Theta^{*} y
\end{aligned} \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Shear?

$$
\begin{aligned}
& x^{\prime}=x+s h_{x} * y \\
& y^{\prime}=s h_{y}{ }^{*} x+y
\end{aligned} \quad\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s h_{x} \\
s h_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Translation?
$x^{\prime}=x+t_{x} \quad$ NO
$y^{\prime}=\boldsymbol{y}+\boldsymbol{t}_{y}$
Only linear 2D transformations can be represented with a 2×2 matrix

All 2D Linear Transformations

- Linear transformations are combinations of ...
- Scale,
$\begin{aligned} & \text { - Scale, } \\ & \text { - Rotation, } \\ & \text { - Shear, and } \\ & \text { - Mirror }\end{aligned} \quad\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
- Mirror

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Properties of linear transformations:
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{ll}
i & j \\
k & l
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Basic 2D Transformations

- Basic 2D transformations as 3×3 matrices

Translate

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Scale

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=} \\
\text { Rotate }
\end{gathered} \underset{\text { Shear }}{\left[\begin{array}{ccc}
\cos \Theta & -\sin \Theta & 0 \\
\sin \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}\left[\begin{array}{l}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \boldsymbol{s} \boldsymbol{h}_{x} & 0 \\
s \boldsymbol{h}_{y} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]
$$

Homogeneous Coordinates

- Q: How can we represent translation as a matrix transformation?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

- A: Using the translation parameters as the rightmost column:

$$
\mathbf{T}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

2D image transformations

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\searrow
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\diamond
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

Transformations

- Dimensions of transformation

Transformations in 3D: Rigid

- Rigid transformation (6 degrees of freedom)
- 1D: curves
- 2D: images
- 3D: volumes
- Types of transformations
- rigid
- affine
- polynomial
- quadratic
- cubic
- splines

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
r_{01} & r_{02} & r_{03} & t_{x} \\
r_{11} & r_{12} & r_{13} & t_{y} \\
r_{21} & r_{22} & r_{23} & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)=T_{\text {rigid }}^{x} \cdot T_{\text {rigid }}^{y} \cdot T_{\text {rigid }}^{z} \cdot\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)+\left(\begin{array}{c}
t_{x} \\
t_{y} \\
t_{z} \\
0
\end{array}\right)
$$

- $\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}$ describe the 3 translations in x, y and z
- r_{11}, \ldots, r_{33} describe the 3 rotations around x, y, z

Transformations in 3D: Rigid

Transformations in 3D: Affine

- Affine transformations (12 degrees of freedom)

$$
\mathbf{T}_{\text {rigid }}^{x}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha & 0 \\
0 & \sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{T}_{\text {rigid }}^{y}=\left(\begin{array}{cccc}
\cos \alpha & 0 & \sin \alpha & 0 \\
0 & 1 & 0 & 0 \\
-\sin \alpha & 0 & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\mathbf{T}_{\text {rigid }}^{z}=\left(\begin{array}{cccc}
\cos \alpha & -\sin \alpha & 0 & 0 \\
\sin \alpha & \cos \alpha & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\begin{gathered}
\mathbf{T}_{\text {scale }}=\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \mathbf{T}_{\text {shear }}^{x y}=\left(\begin{array}{cccc}
1 & 0 & s h_{x} & 0 \\
0 & 1 & s h_{y} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\mathbf{T}(x, y, z)=\mathbf{T}_{\text {shear }} \cdot \mathbf{T}_{\text {scall }} \cdot \mathbf{T}_{\text {rigid }} \cdot\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
\end{gathered}
$$

Non-rigid transformations

- Quadratic transformation (30 degrees of freedom)

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
r_{00} & \cdots & r_{08} & r_{09} \\
r_{10} & \cdots & r_{18} & r_{19} \\
r_{20} & \cdots & r_{28} & r_{29} \\
0 & \cdots & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x^{2} \\
y^{2} \\
\vdots \\
1
\end{array}\right)
$$

Non-rigid transformations

- Can be extended to other higher-order polynomials:
$-3^{\text {rd }}$ order (60 DOF)
$-4^{\text {th }}$ order (105 DOF)
$-5^{\text {th }}$ order (168 DOF)
- Problems:
- can model only global shape changes, not local shape changes
- higher order polynomials introduce artifacts such as oscillations

Image warping

- Given a coordinate transform $\left(x^{\prime}, y^{\prime}\right)=\mathrm{T}(x, y)$ and a source image $f(x, y)$, how do we compute a transformed image $g\left(x^{\prime}, y^{\prime}\right)=f(\mathrm{~T}(x, y))$?

Forward warping

- Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=$ $\mathrm{T}(x, y)$ in the second image
Q : what if pixel lands "between" two pixels?

Forward warping

- Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=\mathrm{T}(x, y)$ in th second image
Q: what if pixel lands "between" two pixels?
A: distribute color among neighboring pixels ($\mathrm{x}^{\prime}, \mathrm{y}$ ')
- known as "splatting"

Inverse warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=\mathrm{T}^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image

Inverse warping

- Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=\mathrm{T}^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
Q : what if pixel comes from "between" two pixels?

Interpolation

Interpolation: Linear, 2D

$$
f(p)=\sum_{i=0}^{n-1} w_{i} f\left(p_{i}\right)
$$

$w_{0}=(1-r)(1-s)$
$w_{1}=r(1-s)$
$w_{2}=(1-r) s$
$w_{3}=r s$

$w_{0}=(1-r)(1-s)(1-t)$
$w_{1}=r(1-s)(1-t)$
$w_{2}=(1-r) s(1-t)$
$w_{3}=r s(1-t)$
$w_{4}=(1-r)(1-s) t$
$w_{5}=r(1-s) t$
$w_{6}=(1-r) s t$
$w_{7}=r s t$

Non-rigid transformations

Feature-Based Warping: Beier-Neeley

- Beier \& Neeley use pairs of lines to specify warp - Given \mathbf{p} in destination image, where is \mathbf{p} ' in source image?

u is a fraction
Source image
Destination image v is a length (in pixels)

Feature-Based Warping: Beier-Neeley

$$
\begin{gathered}
u=\frac{(p-x) \cdot(y-x)}{\|y-x\|^{2}} \quad v=\frac{(p-x) \cdot \text { Perpendicular }(y-x)}{\|y-x\|} \\
p^{\prime}=x+u \cdot\left(y^{\prime}-x^{\prime}\right)+\frac{v \cdot \operatorname{Perpendicular}\left(y^{\prime}-x^{\prime}\right)}{\left\|y^{\prime}-x^{\prime}\right\|}
\end{gathered}
$$

Warping with One Line Pair: Beier-Neeley

- What happens to the "F"?

For each pixel p in the destination image

- find the corresponding u, v
- find the p^{\prime} in the source image for that u, v
$-\operatorname{destination}(p)=\operatorname{source}\left({ }^{\prime}\right)$

Source image

Translation!

Warping with One Line Pair (cont.): Beier-Neeley

- What happens to the "F"?

Warping with One Line Pair (cont.): Beier-Neeley

- What happens to the "F"?

Warping with One Line Pair (cont.): Beier-Neeley

- What happens to the "F"?

Warping with Multiple Line Pairs: Beier-Neeley

- Use weighted combination of points defined each pair of corresponding lines

Warping with Multiple Line Pairs: Beier-Neeley

- Use weighted combination of points defined by each pair corresponding lines

p^{\prime} is a weighted average

Warping Pseudocode: Beier-Neeley

foreach destination pixel p do
psum $=(0,0)$
wsum $=(0,0)$
foreach line $\mathrm{L}[\mathrm{i}]$ in destination do
$p^{\prime}[i]=p$ transformed by (L[i], L'[i])
psum $=$ psum $+p^{\prime}[i]$ * weight[i]
wsum $+=$ weight[i]
end
$\mathrm{p}^{\prime}=\mathrm{psum} / \mathrm{wsum}$
destination $(\mathrm{p})=\operatorname{source}\left(\mathrm{p}^{\prime}\right)$
end

Weighting Effect of Each Line Pair: Beier-Neeley

- To weight the contribution of each line pair

$$
\text { weight }[i]=\left(\frac{\text { length }[i]^{p}}{a+\operatorname{dist}[i]}\right)^{b}
$$

- where
- length[i] is the length of $L[i]$
$-\operatorname{dist}[\mathrm{i}]$ is the distance from X to $\mathrm{L}[\mathrm{i}]$
$-a, b, p$ are constants that control the warp

