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Interactive Computer Graphics 

• Lecture 16: Warping and Morphing (cont.) 

Non-rigid transformation 

Control points 

Point to be warped 

Non-rigid transformation 

•  For each control point we have a displacement vector 
• How do we interpolate the displacement at a pixel? 

? 

Non-rigid transformation: Piecewise affine 

•  Partition the convex hull of the control points into a 
set of triangles 
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Non-rigid transformation: Piecewise affine 

•  Partition the convex hull of the control points into a 
set of triangles 

Non-rigid transformation: Piecewise affine 

•  Partition the convex hull of the control points into a 
set of triangles 

Non-rigid transformation: Piecewise affine 

•  Find triangle which contains point p and express in 
terms of the vertices of the triangle:   

x1 

x3 

x2 

)()( 13121 xxxxxp −+−+= βα

Non-rigid transformation: Piecewise affine 

• Or                                       with 

• Under the affine transformation this point simply 
maps to 

321 xxxp βαγ ++= )(1 βαγ +−=

'''' 321 xxxp βαγ ++=
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Non-rigid transformation: Piecewise affine Non-rigid transformation: Piecewise affine 

•  Problem: Produces continuous deformations, but the 
deformation may not be smooth. Straight lines can be 
kinked across boundaries between triangles  

Triangulations 

•  A triangulation of set of points in the plane is a partition of the 
convex hull to triangles whose vertices are the points, and do 
not contain other points. 

•  There are an exponential number of triangulations of a point 
set. 

An O(n3) Triangulation Algorithm 

• Repeat until impossible: 
– Select two sites. 
–  If the edge connecting them does not intersect previous 

edges, keep it. 
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“Quality” Triangulations 

•  Let α(T) = (α1, α2 ,.., α3t) be the vector of angles in the 
triangulation T in increasing order. 

•  A triangulation T1 will be “better” than T2 if α(T1) > α(T2) 
lexicographically. 

•  The Delaunay triangulation is the “best”  
–  Maximizes smallest angles 

good bad 

Representing deformations 

Before deformation After deformation 

Representing deformations 

Displacement in the 
horizontal direction 

Displacement in the 
vertical direction 

B-splines 

•  Free-Form Deformation (FFD) are a common 
technique in Computer Graphics for modelling 3D 
deformable objects 

•  FFDs are defined by a  mesh of control points with 
uniform spacing 

•  FFDs deform an underlying object by manipulating a 
mesh of control points 

– control point can be displaced from their original location 
– control points provide a parameterization of the 

transformation 
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Free Form Deformation (FFD) 

Deform space by deforming a lattice around  
   an object 

The deformation is defined by moving  
   the control points 

Imagine it as if the object were encased in rubber 

Free Form Deformation (FFD) 

The lattice defines a B-Spline volume 

€ 

T(u,v,w) = pijkB(u)B(v)B(w)
ijk
∑

Compute lattice coordinates 

Alter the control points 

Compute the deformed points 

€ 

T(u,v,w)

FFDs using linear B-splines 

•  FFDs based on linear B-splines can be expressed as a 
2D (3D) tensor product of linear 1D B-splines: 

where 

and Bi corresponds to the B-spline basis functions 
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FFDs using cubic B-splines 

•  FFDs based on cubic B-splines can be expressed as a 
2D (3D) tensor product of cubic 1D B-splines: 

where 

and Bi corresponds to the B-spline basis functions 
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FFDs in 3D 

source 

target 

FFD Example 

FFD Example FFD: Examples 

From “Fast Volume-Preserving Free Form Deformation

Using Multi-Level Optimization” appeared in ACM Solid Modelling ‘99
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FFD: Examples 

From “Fast Volume-Preserving Free Form Deformation

Using Multi-Level Optimization” appeared in ACM Solid Modelling ‘99


FFD: Examples 

From “Fast Volume-Preserving Free Form Deformation

Using Multi-Level Optimization” appeared in ACM Solid Modelling ‘99


FFDs: alternate grid organizations FFDs: Bulging & Bending 
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FFDs:hierarchical FFDs 

• Used for warping: 
– Lee et al. (1997) 

• Advantages: 
– Control points have local influence since the basis function 

has finite support  
– Fast 

–  linear (in 3D: 2 x 2 x 2 = 8 operations per warp) 
– cubic (in 3D: 4 x 4 x 4 = 64 operations per warp) 

• Disadvantages: 
– Control points must have uniform spatial distribution 

Morphing = (warping)2 + blending 

Blending 

Forward 
warping 

Backward 
warping 

Morphing = (warping)2 + blending 
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Morphing 

GenerateAnimation(Image0, Image1) 
begin 
   foreach intermediate frame time t do 
     Warp0 = WarpImage(Image0, t) 
     Warp1 = WarpImage(Image1, t) 
     foreach pixel p in FinalImage do 
        Result(p) = (1-t)Warp0 + tWarp1 

   end 
 end 

end 

Image Combination 

• Determines how to combine attributes associated with 
geometrical primitives. Attributes may include 

– color 
–  texture coordinates 
– normals 

• Blending 
– cross-dissolve 
– adaptive cross-dissolve 
– alpha-channel blending 
– z-buffer blending 

Image Combination: Cross-dissolve 

• Blending with cross-dissolve: 

–  intensities 
– RGB space 
– HSV space 
–  texture space 

BA ItItI ⋅+⋅−= )1(

Image Combination: Cross-dissolve 

RGB Texture 
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Image Combination: Adaptive cross-dissolve 

• Adaptive cross-dissolve 

–  similar to cross-dissolve but blending function depends on 
position in image 

)(),()()),(1( pppp BA IwIwI ⋅+⋅−= λλ

Image Combination: Alpha channel blending 

• Blending using RGBA images 

•  Images are represented by quadruples: 
– R, G, B indicating color 
– Alpha channel encodes pixel coverage information 

– α = 0  transparent 
– 0 < α < 1  semi-transparent 
– α = 1  opaque 

€ 

I =αa ⋅ IA +αb ⋅ IB

Image Combination: Alpha channel blending 

α = 1 α = 0.5 

Image Combination: Alpha channel blending 

• Convention: 
– RGBA represents a pixel with color                      as 

€ 

C = R,G,B( )

€ 

C = αr,αg,αb,α( )
α = 1 

α = 0 
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•  Suppose we put A over B over background G 

– How much of B is blocked by A? 
    αA 

– How much of B shows through A? 
     (1 - αA) 

– How much of G shows through both A and B? 
    (1 - αA) (1 - αB) 

Image Combination: Alpha channel blending Image Combination: Alpha channel blending 

Image Combination: Alpha channel blending 

• Example: C = A over B 

Image Combination: Z-buffer blending 

• Blending using Z-buffer values: 

– defines an ordering 
– can be used for layering 
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