Interactive Computer Graphics

- Lecture 16: Warping and Morphing (cont.)

Non-rigid transformation

- For each control point we have a displacement vector
- How do we interpolate the displacement at a pixel?

Non-rigid transformation

Point to be warped
-
-

Non-rigid transformation: Piecewise affine

- Partition the convex hull of the control points into a set of triangles

Non-rigid transformation: Piecewise affine

- Partition the convex hull of the control points into a set of triangles

Non-rigid transformation: Piecewise affine

- Find triangle which contains point \mathbf{p} and express in terms of the vertices of the triangle:

Non-rigid transformation: Piecewise affine

- Partition the convex hull of the control points into a set of triangles

Non-rigid transformation: Piecewise affine

- Or $\mathbf{p}=\gamma \mathbf{x}_{1}+\alpha \mathbf{x}_{2}+\beta \mathbf{x}_{3}$ with $\gamma=1-(\alpha+\beta)$
- Under the affine transformation this point simply maps to

$$
\mathbf{p}^{\prime}=\gamma \mathbf{x}_{1}{ }^{\prime}+\alpha \mathbf{x}_{2}{ }^{\prime}+\beta \mathbf{x}_{3}{ }^{\prime}
$$

Non-rigid transformation: Piecewise affine

Triangulations

- A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and do not contain other points.
- There are an exponential number of triangulations of a point set.

Non-rigid transformation: Piecewise affine

- Problem: Produces continuous deformations, but the deformation may not be smooth. Straight lines can be kinked across boundaries between triangles

An $O\left(\mathrm{n}^{3}\right)$ Triangulation Algorithm

- Repeat until impossible:
- Select two sites.
- If the edge connecting them does not intersect previous edges, keep it.

"Quality" Triangulations

- Let $\alpha(T)=\left(\alpha_{1}, \alpha_{2}, . ., \alpha_{3 t}\right)$ be the vector of angles in the triangulation T in increasing order.
- A triangulation T_{1} will be "better" than T_{2} if $\alpha\left(T_{1}\right)>\alpha\left(T_{2}\right)$ lexicographically.
- The Delaunay triangulation is the "best"
- Maximizes smallest angles

Representing deformations

Before deformation

After deformation

B-splines

- Free-Form Deformation (FFD) are a common technique in Computer Graphics for modelling 3D deformable objects
- FFDs are defined by a mesh of control points with uniform spacing
- FFDs deform an underlying object by manipulating a mesh of control points
- control point can be displaced from their original location
- control points provide a parameterization of the transformation

Free Form Deformation (FFD)

Deform space by deforming a lattice around an object

The deformation is defined by moving the control points

Imagine it as if the object were encased in rubber

FFDs using linear B-splines

- FFDs based on linear B-splines can be expressed as a 2D (3D) tensor product of linear 1D B-splines:

$$
\mathbf{u}(x, y)=\sum_{i=0}^{1} \sum_{m=0}^{1} B_{l}(u) B_{m}(v) \phi_{i+l, j+m}
$$

where

$$
i=\left\lfloor\frac{x}{\delta_{x}}\right\rfloor, j=\left\lfloor\frac{y}{\delta_{y}}\right\rfloor, u=\frac{x}{\delta_{x}}-\left\lfloor\frac{x}{\delta_{x}}\right\rfloor, v=\frac{y}{\delta_{y}}-\left\lfloor\frac{y}{\delta_{y}}\right\rfloor
$$

and B_{i} corresponds to the B -spline basis functions

$$
\begin{aligned}
& B_{0}(s)=1-s \\
& B_{1}(s)=s
\end{aligned}
$$

Free Form Deformation (FFD)

The lattice defines a B-Spline volume

$$
\mathbf{T}(u, v, w)=\sum_{i j k} \mathbf{p}_{i j k} B(u) B(v) B(w)
$$

Compute lattice coordinates
(u, v, w)
Alter the control points
$\mathbf{p}_{i j k}$
Compute the deformed points
$\mathbf{T}(u, v, w)$

FFDs using cubic B-splines

- FFDs based on cubic B-splines can be expressed as a 2D (3D) tensor product of cubic 1D B-splines:

$$
\mathbf{u}(x, y)=\sum_{j=0}^{3} \sum_{m=0}^{3} B_{l}(u) B_{m}(v) \phi_{i+l, j+m}
$$

where
$i=\left\lfloor\frac{x}{\delta_{x}}\right.$

and B_{i} corresponds to the B -spline basis functions

$$
B_{0}(s)=(1-s)^{3} / 6 \quad B_{2}(s)=\left(-3 s^{3}+3 s^{2}+3 s+1\right) / 6
$$

$$
B_{1}(s)=\left(3 s^{3}-6 s^{2}+4\right) / 6 \quad B_{3}(s)=s^{3} / 6
$$

FFD Example

FFD: Examples

From "Fast Volume-Preserving Free Form Deformation
Using MultiLevel Optimization" appeared in ACM Solid Modelling ‘99

FFD: Examples

FFD: Examples

From "Fast Volume-Preserving Free Form Deformation From "Fast Volume-Preserving Free Form Deformation
\square

FFDs: alternate grid organizations

FFDs: Bulging \& Bending

Bulging

FFDs:hierarchical

FFDs

- Used for warping: - Lee et al. (1997)
- Advantages:
- Control points have local influence since the basis function has finite support
- Fast
- linear (in 3D: $2 \times 2 \times 2=8$ operations per warp)
- cubic (in 3D: $4 \times 4 \times 4=64$ operations per warp)
- Disadvantages:
- Control points must have uniform spatial distribution

Morphing $=(\text { warping })^{2}+$ blending

Morphing

GenerateAnimation(Image ${ }_{0}$, Image $_{1}$)
begin
foreach intermediate frame time t do
Warp $_{0}=$ WarpImage $\left(\right.$ Image $\left._{0}, \mathrm{t}\right)$
Warp $_{1}=$ WarpImage $\left(\right.$ Image $\left._{1}, \mathrm{t}\right)$
foreach pixel p in FinalImage do
$\operatorname{Result}(\mathrm{p})=(1-t) \mathrm{Warp}_{0}+t \mathrm{Warp}_{1}$
end
end
end

Image Combination

- Determines how to combine attributes associated with geometrical primitives. Attributes may include
- color
- texture coordinates
- normals
- Blending
- cross-dissolve
- adaptive cross-dissolve
- alpha-channel blending
- z-buffer blending

Image Combination: Adaptive cross-dissolve

- Adaptive cross-dissolve

$$
I=(1-w(\mathbf{p}, \lambda)) \cdot I_{A}(\mathbf{p})+w(\mathbf{p}, \lambda) \cdot I_{B}(\mathbf{p})
$$

- similar to cross-dissolve but blending function depends on position in image

Image Combination: Alpha channel blending

- Blending using RGBA images

$$
I=\alpha_{a} \cdot I_{A}+\alpha_{b} \cdot I_{B}
$$

- Images are represented by quadruples:
- R, G, B indicating color
- Alpha channel encodes pixel coverage information
$-\alpha=0$
transparent
$-0<\alpha<1 \quad$ semi-transparent
$-\alpha=1 \quad$ opaque \quad Example: $\alpha=0.3$

Image Combination: Alpha channel blending

- Convention:
- RGBA represents a pixel with color $C=(R, G, B)$ as

Image Combination: Alpha channel blending

- Suppose we put A over B over background G

- How much of B is blocked by A?
α_{A}
- How much of B shows through A? ($1-\alpha_{A}$)
- How much of G shows through both A and B ?

$$
\left(1-\alpha_{A}\right)\left(1-\alpha_{B}\right)
$$

Image Combination: Alpha channel blending

- Example: C = A over B
- For colors that are not premultiplied:
$\circ C=\alpha_{A} A+\left(1-\alpha_{A}\right) \alpha_{B} B$
$\alpha=\alpha_{A}+\left(1-\alpha_{A}\right) \alpha_{B}$
- For colors that are premultiplied
$\circ C^{\prime}=A^{\prime}+\left(1-\alpha_{A}\right) B^{\prime}$
- $\alpha=\alpha_{A}+(1-\alpha) \alpha_{B}$

Image Combination: Alpha channel blending

Image Combination: Z-buffer blending

- Blending using Z-buffer values:

$$
I=\left\{\begin{array}{cc}
I_{a} & \text { if } z_{a}<z_{b} \\
I_{b} & \text { else }
\end{array}\right.
$$

- defines an ordering
- can be used for layering

