Revision Tutorial Solution:

Animations, Transformations, Projections and Normalisation

1. Animating Objects

The transformation is in three parts:

Translate the coordinates so that the centre of the cube is at the origin Scale the coordinates by 99/100 Translate the cube back to its original position

In matrices this becomes

(1	0	0	0)	(0.99	0	0	0)	(1	0	0	0)
0	1					0					
0	0	1	0	0	0	0.99	0	0	0	1	0
-5	-5					0					

which multiplies out to

(0.99	0	0	0)	
	0	0.99	0	0	
	0	0	0.99	0	
	0.05	0.05	0.1	1)	

2. Viewing transformations

The third vertical direction is $v = w \ge u$.

This can be evaluated using the cross product determinant which gives

$$\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 0.6 & -0.2 & 0.77 \\ 0.79 & 0 & 0.61 \end{vmatrix} = 0.122 \,\hat{\mathbf{i}} + 0.9743 \,\hat{\mathbf{j}} + 0.158 \,\hat{\mathbf{k}} = \begin{pmatrix} 0.122 \\ 0.9743 \\ 0.158 \end{pmatrix}$$

and is pretty much upwards.

The transformation is:

$$\begin{pmatrix} u_x & v_x & w_x & 0 \\ u_y & v_y & w_y & 0 \\ u_z & v_z & w_z & 0 \\ -\mathbf{C}.\mathbf{u} & -\mathbf{C}.\mathbf{v} & -\mathbf{C}.\mathbf{w} & 1 \end{pmatrix} = \begin{pmatrix} 0.79 & 0.122 & 0.6 & 0 \\ 0 & 0.974 & -0.2 & 0 \\ -0.61 & 0.158 & 0.77 & 0 \\ -1.8 & -12.54 & -11.7 & 1 \end{pmatrix}$$

3. Projection

The combined transform (with the projection matrix second) is:

										0.122		
0	0.974	-0.2	0	0	1	0	0		0	0.974	-0.2	-0.1
-0.61	0.158	0.77	0	0	0	1	0.5	-	-0.61	0.158	0.77	0.385
-1.8	-12.54	-11.7	1)	0	0	0	0)		-1.8	-12.54	-11.7	-5.85)

The coordinate (10, 10, 20, 1) projects to (-6.1, 1.58, 7.7, 3.85).

To convert this to a Cartesian coordinate we divide by the last ordinate to get (-1.58, 0.41, 2, 1). The value of z = 2 confirms that the point has projected into the viewing plane.

4. Normalisation

This can be done with ratios. In the diagram below, let **P** represent the projected point, i.e. (-1.58, 0.41) in world coordinates, and let **O** represent the origin.

In the world coordinate system the ratio of the distance from x to the right hand side to the total window width is

$$\frac{5 - (-1.58)}{10} = 0.658$$

The same ratio must be preserved if we measure in pixels so $x_{pix} = 66$.

Similarly the *y* ratio is 0.459 so $y_{pix} = 46$.

