Revision Tutorial Solution:

Animations, Transformations, Projections and Normalisation

1. Animating Objects

The transformation is in three parts:
Translate the coordinates so that the centre of the cube is at the origin Scale the coordinates by 99/100
Translate the cube back to its original position
In matrices this becomes

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-5 & -5 & -10 & 1
\end{array}\right)\left(\begin{array}{cccc}
0.99 & 0 & 0 & 0 \\
0 & 0.99 & 0 & 0 \\
0 & 0 & 0.99 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
5 & 5 & 10 & 1
\end{array}\right)
$$

which multiplies out to

$$
\left(\begin{array}{cccc}
0.99 & 0 & 0 & 0 \\
0 & 0.99 & 0 & 0 \\
0 & 0 & 0.99 & 0 \\
0.05 & 0.05 & 0.1 & 1
\end{array}\right)
$$

2. Viewing transformations

The third vertical direction is $\boldsymbol{v}=\boldsymbol{w} \times \boldsymbol{u}$.
This can be evaluated using the cross product determinant which gives

$$
\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
0.6 & -0.2 & 0.77 \\
0.79 & 0 & 0.61
\end{array}\right|=0.122 \hat{\mathbf{i}}+0.9743 \hat{\mathbf{j}}+0.158 \hat{\mathbf{k}}=\left(\begin{array}{c}
0.122 \\
0.9743 \\
0.158
\end{array}\right)
$$

and is pretty much upwards.
The transformation is:

$$
\left(\begin{array}{cccc}
u_{x} & v_{x} & w_{x} & 0 \\
u_{y} & v_{y} & w_{y} & 0 \\
u_{z} & v_{z} & w_{z} & 0 \\
-\mathbf{C . u} & -\mathbf{C . v} & -\mathbf{C . w} & 1
\end{array}\right)=\left(\begin{array}{cccc}
0.79 & 0.122 & 0.6 & 0 \\
0 & 0.974 & -0.2 & 0 \\
-0.61 & 0.158 & 0.77 & 0 \\
-1.8 & -12.54 & -11.7 & 1
\end{array}\right)
$$

3. Projection

The combined transform (with the projection matrix second) is:

$$
\left(\begin{array}{cccc}
0.79 & 0.122 & 0.6 & 0 \\
0 & 0.974 & -0.2 & 0 \\
-0.61 & 0.158 & 0.77 & 0 \\
-1.8 & -12.54 & -11.7 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
0.79 & 0.122 & 0.6 & 0.3 \\
0 & 0.974 & -0.2 & -0.1 \\
-0.61 & 0.158 & 0.77 & 0.385 \\
-1.8 & -12.54 & -11.7 & -5.85
\end{array}\right)
$$

The coordinate $(10,10,20,1)$ projects to $(-6.1,1.58,7.7,3.85)$.
To convert this to a Cartesian coordinate we divide by the last ordinate to get ($-1.58,0.41,2,1$). The value of $z=2$ confirms that the point has projected into the viewing plane.

4. Normalisation

This can be done with ratios. In the diagram below, let \mathbf{P} represent the projected point, i.e. $(-1.58,0.41)$ in world coordinates, and let \mathbf{O} represent the origin.

In the world coordinate system the ratio of the distance from x to the right hand side to the total window width is

$$
\frac{5-(-1.58)}{10}=0.658
$$

The same ratio must be preserved if we measure in pixels so $x_{\text {pix }}=66$.

Similarly the y ratio is 0.459 so $y_{\text {pix }}=46$.

