
Graphics Lecture 1: Slide 1

Interactive Computer Graphics

Lecturers: Duncan Gillies (dfg@doc.ic.ac.uk)
Daniel Rueckert (dr@doc.ic.ac.uk)

Tutors: Paul Aljabar (pa100@doc.ic.ac.uk)
Vu Luong (vl05@doc.ic.ac.uk)
Peng He (ph206@doc.ic.ac.uk)
Robin Wolz (rw1008@doc.ic.ac.uk)

Webpage:
http:/www.doc.ic.ac.uk/~dfg/graphics/graphics.html

Graphics Lecture 1: Slide 2

Non-DOC Students

 In order to do this course for credit you need
register with the department of computing.
Information on enrolment can be found on the
department of computing web page:

 www.doc.ic.ac.uk

 Follow: Internal-> Student Centered Teaching
-> External Student Registration

http://www.doc.ic.ac.uk/

Graphics Lecture 1: Slide 3

Interactive Computer Graphics

 Lecture 1:

 Three Dimensional Graphical Scenes,
Projection and Transformation

Graphics Lecture 1: Slide 4

Two Dimensional Graphics

 The lowest level of graphics processing operates
directly on the pixels in a window provided by
the operating system.

 Typical Primitives are:

 SetPixel(int x, int y, int colour);
 DrawLine(int xs, int ys, int xf, int yf);
 etc.

Graphics Lecture 1: Slide 5

World Coordinate Systems

 To achieve device independence when drawing
objects we can define a world coordinate
system.

 This will define our drawing area in units that
are suited to the application:

 meters
 light years
 microns
 etc

Graphics Lecture 1: Slide 6

Example
SetWindow(30,10,70,50)
DrawLine (50,30,80,50)
DrawLine (50,5,80,50)

30 70

10

50

World Coordinates

Visible parts of lines

Clipped parts of lines
Drawing Area

Graphics Lecture 1: Slide 7

Normalisation

 To map device independent graphics commands to
the drawing commands using the screen pixels we
need a process of normalisation.

 First we must call the API to find out from the
operating system the pixel addresses of the corners
of the area we are using.

 Then we translate the world coordinates to pixel
coordinates.

Graphics Lecture 1: Slide 8

Normalisation

[Xd,Yd]

[Xw,Yw]

Wxmin Wxmax

Dxmin Dxmax

World Coordinate Window

Screen

Viewport (Pixel Coordinates)

Graphics Lecture 1: Slide 9

Normalisation

 Having defined our world coordinates, and
obtained our device coordinates we relate the
two by simple ratios:

 rearranging we get:

Graphics Lecture 1: Slide 10

Normalisation
 A similar equation allows us to calculate the Y pixel
coordinate. The two form a simple pair of linear
equations:

 Xd := Xw * A + B;

 Yd := Yw * C + D;

Where A, B, C and D are constants defining the
normalisation

Graphics Lecture 1: Slide 11

Input for Graphics Systems

 An input event occurs when something
changes, ie a mouse is moved or a button is
pressed. The operating system informs the
application program of events that are relevant
to it.

 The application program must receive this
information in what is sometimes called a
callback procedure (or event loop).

Graphics Lecture 1: Slide 12

Simple Callback procedure

 while (executing) do
 { if (menu event) ProcessMenuRequest();
 if (mouse event)
 { GetMouseCoordinates();
 GetMouseButtons();
 PerformMouseProcess();
 }
 if (window resize event) RedrawGraphics();
 }

Graphics Lecture 1: Slide 13

Polygon Rendering

 Many graphics applications use scenes built
out of planar polyhedra.

 These are three dimensional objects whose
faces are all planar polygons often called
facets.

Graphics Lecture 1: Slide 14

Representing Planar Polygons

 In order to represent planar polygons in the
computer we will require a mixture of
numerical and topological data.

 Numerical Data
 Actual 3D coordinates of vertices, etc.

 Topological Data
 Details of what is connected to what

Graphics Lecture 1: Slide 15

Projections of Wire Frame Models

 Wire frame models simply include points and
lines.

 In order to draw a 3D wire frame model we
must first convert the points to a 2D
representation. Then we can use simple
drawing primitives to draw them.

 The conversion from 3D into 2D is a
projection.

Graphics Lecture 1: Slide 16

Projection

Projection of Vi

Projection Surface
3D Object

Vi

Viewpoint

Projector

Graphics Lecture 1: Slide 17

Non Linear Projections

 In general it is possible to project onto any
surface:

 Sphere
 Cone
 etc

 or to use curved projectors, for example to
produce lens effects.

 However we will only consider planar linear
projections.

Graphics Lecture 1: Slide 18

Normal Orthographic Projection

 This is the simplest form of projection, and
effective in many cases.

 The viewpoint is at z = -
 The plane of projection is z=0

 so

 All projectors have direction d = [0,0,-1]

Graphics Lecture 1: Slide 19

Orthographic Projection onto z=0

z

x

y

V

Projector
V + d

(d=[0,0,-1)

V'

Graphics Lecture 1: Slide 20

Calculating an Orthographic Projection

 Projector Equation:
 P = V + d (from vertex V)

 Substitute d = [0,0,-1]
 Yields cartesian form

 Px = Vx + 0 Py = Vy + 0 Pz = Vz - 
 The projection plane is z=0 so the projected

coordinate is
 [Vx,Vy,0]

 ie we simply take the 3D x and y components
of the vertex

Graphics Lecture 1: Slide 21

Orthographic Projection of a Cube

Looking at a Face

Looking at a vertex

General View

Graphics Lecture 1: Slide 22

Perspective Projection

 Orthographic projection is fine in cases where
we are not worried about depth (ie most objects
are at the same distance from the viewer).

 However for close work (particularly computer
games) it will not do.

 Instead we use perspective projection

Graphics Lecture 1: Slide 23

Canonical Form for Perspective Projection

Y

Z

X

Plane of
Projection (z=f)

Viewpoint

Scene

Projector

f

Projected point

Graphics Lecture 1: Slide 24

Calculating Perspective Projection

 Projector Equation (from vertex V):
 P = V (all projectors go through the origin)

 At the projected point Pz=f
 p= Pz/Vz = f/Vz

 Px = pVx and Py = pVy

 Thus
 Px = f Vx/Vz and Py = f Vy/Vz

 The constant p is sometimes called the fore-
shortening factor

Graphics Lecture 1: Slide 25

Perspective Projection of a Cube

Looking at a vertex

General View

Looking at a Face

Graphics Lecture 1: Slide 26

Problem Break

 Given that the viewpoint is at the origin, and
the viewing plane is at z=5: What point on the
viewplane corresponds to the 3D vertex
{10,10,10} in

 a. Perspective projection
 b. Orthographic projection

Graphics Lecture 1: Slide 27

Problem Break

 Given that the viewpoint is at the origin, and
the viewing plane is at z=5: What point on the
viewplane corresponds to the 3D vertex
{10,10,10} in

 a. Perspective projection
 b. Orthographic projection

Perspective x'= f x/z = 5 and y' = f y/z = 5

Orthographic x' = 10 and y' =10

Graphics Lecture 1: Slide 28

The Need for Transformations

 Graphics scenes are defined in a particular co-
ordinate system, however we want to be able to
draw a graphics scene from any angle

 To draw a graphics scene we need the
viewpoint to be the origin and the z axis to be
the direction of view.

 Hence we need to be able to transform the
coordinates of a graphics scene.

Graphics Lecture 1: Slide 29

Transformation of viewpoint

Y

X

Z

Y
X

Z

Coordinate System
 for definition

Coordinate System
for viewing

Required Viewpoint

Graphics Lecture 1: Slide 30

Other Transformations

 We also need transformations for other
purposes:

 Animating Objects
 eg flying titles rotating shrinking etc.

 Multiple Instances
 the same object may appear at different places or different

sizes

 Reflections and other special effects

Graphics Lecture 1: Slide 31

Matrix transformations of points

 To transform points we use matrix
multiplications, for example to make an object at
the origin twice as big we could use:

 which multiplied out gives:

Graphics Lecture 1: Slide 32

Translation by Matrix multiplication

 Many of our transformations will require
translation of the points.

 For example if we want to move all the points
two units along the x axis we would require:

 x’ = x + 2
 y’ = y
 z’ = z

 But how can we do this with a matrix?

Graphics Lecture 1: Slide 33

Honogenous Coordinates

 The answer is to use 4D homogenous coordinates.
The use of the fourth ordinate allows us to place a
translation in the bottom row of the matrix.

 multiplying out gives:

 x' = x + 2, y' = y, z' = z

Graphics Lecture 1: Slide 34

General Homogenous Coordinates

 In most cases the last ordinate will be 1, but in
general it is a scale factor.

 Thus, in the projection from 4D to 3D:

 [x, y, z, s] is equivalent to [x/s, y/s, z/s]
 Homogenous Cartesian

Graphics Lecture 1: Slide 35

Affine Transformations

 Affine transformations are those that preserve
parallel lines.

 Most transformations we require are affine, the
most important being:

 Scaling
 Translating
 Rotating

 Other more complex transforms will be built
from these three.

Graphics Lecture 1: Slide 36

Translation

 We can apply a general translation by (tx, ty, tz)
to the points of a scene by using the following
matrix multiplication.

Graphics Lecture 1: Slide 37

Inverting a translation

 Since we know what transformation matrices
do, we can write down their inversions directly

 For example:

Graphics Lecture 1: Slide 38

Scaling

 Scaling simply multiplies each ordinate by a
scaling factor. It can be done with the following
homogenous matrix:

Graphics Lecture 1: Slide 39

Inverting scaling

 To invert a scaling we simply divide the
individual ordinates by the scale factor.

Graphics Lecture 1: Slide 40

Combining transformations

 Suppose we want to make an object at the
origin twice as big and then move it to a point
[5, 5, 20].

 The transformation is a scaling followed by a
translation:

Graphics Lecture 1: Slide 41

Combined transformations

 We multiply out the transformation matrices
first, then transform the points

Graphics Lecture 1: Slide 42

Transformations are not commutative

 The order in which transformations are applied
matters:

 In general

 TT * SS is not the same as SS * TT

Graphics Lecture 1: Slide 43

The order of transformations is significant

Graphics Scene
(Square at origin)

Translate
x:=x+1

Scale
x:=2x

Translate
x:=x+1

Scale
x:=2x

Y

X

Y

X

Y

X

Y

X

Y

X

Graphics Lecture 1: Slide 44

Rotation

 To define a rotation we need an axis.

 The simplest rotations are about the Cartesian
axes

 eg

 RxRx - Rotate about the X axis
 RyRy - Rotate about the Y axis
 Rz - Rotate about the Z axis

Graphics Lecture 1: Slide 45

Rotation Matrices

Graphics Lecture 1: Slide 46

Deriving Rz

Rotate by 
r

r


 [x,y]

[xt, yt]Y

X

Graphics Lecture 1: Slide 47

Signs of Rotations

 Rotations have a direction.

 The following rule applies to the matrix
formulations given in the notes:

 Rotation is clockwise when viewed from the
positive side of the axis

Graphics Lecture 1: Slide 48

Inverting Rotation

 Inverting a rotation by an angle  is equivalent
to rotating through an angle of -, now

 Cos(-) = Cos()

 and

 Sin(-) = -Sin()

Graphics Lecture 1: Slide 49

Inverting Rz

 To invert a rotation matrix simply change the
sign of the sin terms.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

