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Interactive Computer Graphics

Lecturers: Duncan Gillies (dfg@doc.ic.ac.uk)
Daniel Rueckert (dr@doc.ic.ac.uk)

Tutors: Paul Aljabar (pa100@doc.ic.ac.uk)
Vu Luong (vl05@doc.ic.ac.uk)
Peng He (ph206@doc.ic.ac.uk)
Robin Wolz (rw1008@doc.ic.ac.uk)

Webpage: 
http:/www.doc.ic.ac.uk/~dfg/graphics/graphics.html
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Non-DOC Students

 In order to do this course for credit you need 
register with the department of computing. 
Information on enrolment can be found on the 
department of computing web page:

 

 www.doc.ic.ac.uk

 

 Follow: Internal-> Student Centered Teaching 
-> External Student Registration

http://www.doc.ic.ac.uk/
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Interactive Computer Graphics

 Lecture 1:

 Three Dimensional Graphical Scenes, 
Projection and Transformation
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Two Dimensional Graphics

 The lowest level of graphics processing operates 
directly on the pixels in a window provided by 
the operating system.

 Typical Primitives are:

 SetPixel(int x, int y, int colour);
 DrawLine(int xs, int ys, int xf, int yf);
 etc.
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World Coordinate Systems

 To achieve device independence when drawing 
objects we can define a world coordinate 
system.

 This will define our drawing area in units that 
are suited to the application:

 meters
 light years
 microns
 etc
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Example
SetWindow(30,10,70,50)
DrawLine (50,30,80,50)
DrawLine (50,5,80,50)

30 70

10

50

World Coordinates

Visible parts of lines

Clipped parts of lines
Drawing Area



Graphics Lecture 1:  Slide 7

Normalisation

 To map device independent graphics commands to 
the drawing commands using the screen pixels we 
need a process of normalisation. 

 First we must call the API to find out from the 
operating system the pixel addresses of the corners 
of the area we are using. 

 Then we translate the world coordinates to pixel 
coordinates.



Graphics Lecture 1:  Slide 8

Normalisation

[Xd,Yd]

[Xw,Yw]

Wxmin Wxmax

Dxmin Dxmax

World Coordinate Window

Screen

Viewport (Pixel Coordinates)
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Normalisation

 Having defined our world coordinates, and 
obtained our device coordinates we relate the 
two by simple ratios:

 rearranging we get:
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Normalisation
 A similar equation allows us to calculate the Y pixel 
coordinate. The two form a simple pair of linear 
equations:

 Xd := Xw * A + B;

 Yd := Yw * C + D;

Where A, B, C and D are constants defining the 
normalisation
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Input for Graphics Systems

 An input event occurs when something 
changes, ie a mouse is moved or a button is 
pressed. The operating system informs the 
application program of events that are relevant 
to it.

 The application program must receive this 
information in what is sometimes called a 
callback procedure (or event loop).



Graphics Lecture 1:  Slide 12

Simple Callback procedure

 while (executing) do
 {   if (menu event) ProcessMenuRequest();
         if (mouse event) 
     { GetMouseCoordinates();
      GetMouseButtons();
      PerformMouseProcess();
       }
 if (window resize event) RedrawGraphics();
 }
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Polygon Rendering

 Many graphics applications use scenes built 
out of planar polyhedra.

 These are three dimensional objects whose 
faces are all planar polygons often called  
facets.
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Representing Planar Polygons

 In order to represent planar polygons in the 
computer we will require a mixture of 
numerical and topological data.

 Numerical Data
 Actual 3D coordinates of vertices, etc.

 Topological Data
 Details of what is connected to what
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Projections of Wire Frame Models

 Wire frame models simply include points and 
lines.

 In order to draw a 3D wire frame model we 
must first convert the points to a 2D 
representation. Then we can use simple 
drawing primitives to draw them.

 The conversion from 3D into 2D is a 
projection.
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Projection

Projection of Vi
  

Projection Surface
3D Object

Vi

Viewpoint

Projector
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Non Linear Projections

 In general it is possible to project onto any 
surface:

 Sphere
 Cone
 etc

 or to use curved projectors, for example to 
produce lens effects.

 However we will only consider planar linear 
projections.



Graphics Lecture 1:  Slide 18

Normal Orthographic Projection

 This is the simplest form of projection, and 
effective in many cases.

 The viewpoint is at z = - 
 The plane of projection is z=0

 so

 All projectors have direction d = [0,0,-1]
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Orthographic Projection onto z=0

z

x

y

V

Projector
V + d

(d=[0,0,-1)

V'
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Calculating an Orthographic Projection

 Projector Equation: 
 P = V + d     (from vertex V)

 Substitute d = [0,0,-1]
 Yields cartesian form

 Px = Vx + 0   Py = Vy + 0    Pz = Vz - 
 The projection plane is z=0 so the projected 

coordinate is
 [Vx,Vy,0]

 ie we simply take the 3D x and y components 
of the vertex
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Orthographic Projection of a Cube

Looking at a Face

Looking at a vertex

General View
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Perspective Projection

 Orthographic projection is fine in cases where 
we are not worried about depth (ie most objects 
are at the same distance from the viewer).

 However for close work (particularly computer 
games) it will not do.

 Instead we use perspective projection
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Canonical Form for Perspective Projection

Y

Z

X

Plane of 
Projection (z=f)

Viewpoint

Scene

Projector

f

Projected point
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Calculating Perspective Projection

 Projector Equation (from vertex V): 
 P = V   (all projectors go through the origin)

 At the projected point Pz=f
 p= Pz/Vz = f/Vz

 Px = pVx and  Py = pVy

 Thus
 Px = f Vx/Vz and Py = f Vy/Vz 

 The constant p is sometimes called the fore-
shortening factor
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Perspective Projection of a Cube

Looking at a vertex

General View

Looking at a Face
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Problem Break

 Given that the viewpoint is at the origin, and 
the viewing plane is at z=5: What point on the 
viewplane corresponds to the 3D vertex 
{10,10,10} in

 a. Perspective projection
 b. Orthographic projection
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Problem Break

 Given that the viewpoint is at the origin, and 
the viewing plane is at z=5: What point on the 
viewplane corresponds to the 3D vertex 
{10,10,10} in

 a. Perspective projection
 b. Orthographic projection

Perspective     x'= f x/z = 5 and y' = f y/z = 5

Orthographic  x' = 10 and y' =10
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The Need for Transformations

 Graphics scenes are defined in a particular co-
ordinate system, however we want to be able to 
draw a graphics scene from any angle

 To draw a graphics scene we need the 
viewpoint to be the origin and the z axis to be 
the direction of view.

 Hence we need to be able to transform the 
coordinates of a graphics scene.
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Transformation of viewpoint

Y

X

Z

Y
X

Z

Coordinate System
 for definition

Coordinate System 
for viewing

Required Viewpoint
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Other Transformations

 We also need transformations for other 
purposes:

 Animating Objects 
 eg flying titles rotating shrinking etc.

 Multiple Instances
 the same object may appear at different places or different 

sizes 

 Reflections and other special effects
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Matrix transformations of points

 To transform points we use matrix 
multiplications, for example to make an object at 
the origin twice as big we could use:

 which multiplied out gives:
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Translation by Matrix multiplication

 Many of our transformations will require 
translation of the points. 

 For example if we want to move all the points 
two units along the x axis we would require:

 x’ = x + 2
 y’ = y 
 z’ = z

 But how can we do this with a matrix?
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Honogenous Coordinates

 The answer is to use 4D homogenous coordinates. 
The use of the fourth ordinate allows us to place a 
translation in the bottom row of the matrix.

 multiplying out gives:

 x' = x + 2,   y' = y,    z' = z
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General Homogenous Coordinates

 In most cases the last ordinate will be 1, but in 
general it is a scale factor. 

 Thus, in the projection from 4D to 3D:

       [x, y, z, s]   is equivalent to   [x/s, y/s, z/s]
     Homogenous                             Cartesian
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Affine Transformations

 Affine transformations are those that preserve 
parallel lines.

 Most transformations we require are affine, the 
most important being:

 Scaling
 Translating
 Rotating

 Other more complex transforms will be built 
from these three.
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Translation

 We can apply a general translation by (tx, ty, tz) 
to the points of a scene by using the following 
matrix multiplication.
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Inverting a translation

 Since we know what transformation matrices 
do, we can write down their inversions directly

 For example:
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Scaling

 Scaling simply multiplies each ordinate by a 
scaling factor. It can be done with the following 
homogenous matrix: 



Graphics Lecture 1:  Slide 39

Inverting scaling

 To invert a scaling we simply divide the 
individual ordinates by the scale factor.
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Combining transformations

 Suppose we want to make an object at the 
origin twice as big and then move it to a point 
[5, 5, 20].

 The transformation is a scaling followed by a 
translation:
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Combined transformations

 We multiply out the transformation matrices 
first, then transform the points
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Transformations are not commutative

 The order in which transformations are applied 
matters:

 In general

 TT * SS is not the same as SS * TT 
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The order of transformations is significant

Graphics Scene  
(Square at origin)

Translate 
x:=x+1

Scale 
x:=2x
 

Translate 
x:=x+1

Scale 
x:=2x 

Y

X

Y

X

Y

X

Y

X

Y

X
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Rotation

 To define a rotation we need an axis.

 The simplest rotations are about the Cartesian 
axes

 eg

 RxRx - Rotate about the X axis
 RyRy - Rotate about the Y axis
 Rz - Rotate about the Z axis
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Rotation Matrices
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Deriving Rz

Rotate by 
r

r


 [x,y]

[xt, yt]Y

X
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Signs of Rotations

 Rotations have a direction. 

 The following rule applies to the matrix 
formulations given in the notes:

 Rotation is clockwise when viewed from the 
positive side of the axis
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Inverting Rotation

 Inverting a rotation by an angle  is equivalent 
to rotating through an angle of -, now

 Cos(-) = Cos()

 and

 Sin(-) = -Sin()
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Inverting Rz

 To invert a rotation matrix simply change the 
sign of the sin terms.
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