Computer Graphics

Lecture 8:

Rasterization, Visibility & Anti-aliasing

Some slides adopted from
H. Pfister, Harvard

Rasterization

* Determine which pixels are drawn into the framebuffer

* Interpolate parameters (colors, texture coordinates, etc.)

Rasterization

* What does interpolation mean?

* Examples: Colors, normals, shading, texture
coordinates

A triangle in terms of vectors

* We can use vertices a, b and c to specify the three
points of a triangle

* We can also compute the edge vectors

y °
b-a b
a

Points and planes

* The three non-collinear points determine a plane

b-a
a

» Example: The vertices a, b and ¢ determine a plane
* The vectors b-a and c-a form a basis for this plane

Basis vectors

* This (non-orthogonal) basis can be used to specify the
location of any point p in the plane

p=a+f(-a)+y(c-a)

b-a

Barycentric coordinates

* We can reorder the terms of the equation:
p=a+p(Mb-a)+y(c-a)
=(1-B-ypa+pb+y
=aa+ fb+yc
* In other words:
p(a.f.y) =ca+pb+ye
" with a+f+y=1

* a, B, y and called barycentric coordinates

Barycentric coordinates

* Barycentric coordinates describe a point p as an
affine combination of the triangle vertices

p(a,B,y)=ca+ b+ yc a+pP+y=1
* For any point p inside the triangle (a, b, ¢):
O<a<l
0<p<l1
O<y<l
* Point on an edge: one coefficient is 0
* Vertex: two coefficients are 0, remaining one is 1

Barycentric coordinates and signed distances

* Let p=oaa+fb+yc. Each coordinate (e.g. f) is the
signed distance from p to the line through a triangle
edge (e.g. ac)

c

Barycentric coordinates and signed distances

* Let p=oaa+fb+yc. Each coordinate (e.g. f) is the
signed distance from p to the line through a triangle
edge (e.g. ac)

o

Barycentric coordinates and signed distances

e Let p=caa+pb+yc. Each coordinate (e.g. B) is the
signed distance from p to the line through a triangle
edge (e.g. ac)

Wil

B=-05 B=0 p=05 p=1 p=

Barycentric coordinates and signed distances

* The signed distance can be computed by evaluating
implicit line equations, e.g., f,.(x,») of edge ac

Cc

a

f=-05 =0 B=05 p=1 p=15

Recall: Implicit equation for lines

* Implicit equation in 2D:
f(xy)=0

— Points with f{x, y) = 0 are on the line
— Points with f{x,) #0 are not on the line

* General implicit form
Ax+By+(C=0

* Implict line through two points (x,, y,) and (x,, ,)
Ve =yp) X+ (X, =X)y +x,, = x,y, =0

Implicit equation for lines: Example

(4.2)

Implicit equation for lines: Example

Solution 1: -2x+4y =0
Solution 2: 2x -4y =0

kf (x,y)=0 foranyk

(4.2)

Edge equations

* Given a triangle with vertices (x,y,), (x;,»;), and

(xc’y 2)'
¢ The line equations of the edges of the triangle are:

S (X:3) =V, = y,)x +(x, —Xx,)y +X,y, = X,Y,
Soe(6Y) =y, =y)X+ (X, =X,y + X,y — Xy,
fca('xvy) =(yL _yg)'x+ (‘xa _xc)y+‘xcyu _‘xayc

f ca f be

Jav

Barycentric Coordinates

* Remember that: f(x,y)=0 < kf(x,y)=0

* A barycentric coordinate (e.g. f3) is a signed distance
from a line (e.g. the line that goes through ac)

* For a given point p, we would like to compute its
barycentric coordinate {3 using an implicit edge
equation.

* We need to choose & such that kf, (x,y)=pf

Barycentric Coordinates

* We would like to choose & such that: kf,.(x,y)=f
* We know that 3 = 1 at point b:
1

K (o) =le k=
f oY fac(xb’yb)

* The barycentric coordinate 3 for point p is:

I CED))

B Jue(X,5¥3)

Barycentric Coordinates

* In general, the barycentric coordinates for point p are:

PR /A C25') B S) S PP
fhc(xa’ya) fac('xb’yb)

* Given a point p with cartesian coordinates (x, y), we
can compute its barycentric coordinates (o, 3, y) as
above.

Triangle Rasterization

* Many different ways to generate fragments for a
triangle
e Checking (o, f3, v) is one method, e.g.
(<o <l && 0<P <] && 0<y<Il)
* In practice, the graphics hardware use optimized
methods:
— fixed point precision (not floating-point)
— incremental (use results from previous pixel)

Triangle Rasterization

* We can use barycentric coordinates to rasterize and
color triangles

for all x do
for all y do
compute (alpha, beta, gamma) for (x,y)
if (0 < alpha < 1 and
0 < beta < 1 and
0 < gamma < 1) then

c = alpha c0 + beta cl + gamma c2
drawpixel (x,y) with color c

e The color ¢ varies smoothly within the triangle

Visibility: One triangle

* With one triangle, things are simple
* Pixels never overlap!

Hidden Surface Removal

* Idea: keep track of visible surfaces
e Typically, we see only the front-most surface
 Exception: transparency

Visibility: Two triangles

* Things get more complicated with multiple triangles
» Fragments might overlap in screen space!

Visibility: Pixels vs Fragments

* Each pixel has a unique framebuffer (image) location

* But multiple fragments may end up at same address

Visibility: Which triangle should be drawn first?

* Two possible cases:

green triangle on top orange triangle on top

Visibility: Which triangle should be drawn first?

* Many other cases possible!

intersection #1 intersection #2

Visibility: Painter’s Algorithm

* Sort triangles (using z values in eye space)
* Draw triangles from back to front

draw last draw first

- 303}

increasing z

Visibility: Painter’s Algorithm - Problems

e Correctness issues:

— Intersections

— Cycles

— Solve by splitting triangles, but ugly and expensive
* Efficiency (sorting)

—_‘\

The Depth Buffer (Z-Buffer)

* Perform hidden surface removal per-fragment
* Idea:

— Each fragment gets a z value in screen space
— Keep only the fragment with the smallest z value

The Depth Buffer (Z-Buffer)

* Example:
— fragment from green triangle has z value of 0.7

The Depth Buffer (Z-Buffer)

* Example:
— fragment from red triangle has z value of 0.3

The Depth Buffer (Z-Buffer)

* Since 0.3 < 0.7, the red fragment wins

The Depth Buffer (Z-Buffer)

* Many fragments might map to the same pixel location
* How to track their z-values?

* Solution: z-buffer (2D buffer, same size as image)

10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 mm 1.0 1.0 1.0 10 1.0
10 10 10 10 10 1.0 10 1.0 10 10 10 10 10 10
10 10 1.0 1.0 10 1.0 10 1.0 10 mmw 10 1.0 1.0 1.0

1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 mmm 1.0 1.0 10 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Hmmm 1.0 1.0 1.0 1.0
10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Hmmmﬁ 10 10 1.0
0 1.0 1. 0 10 10 10 1.0 1.omm 1.0 10 1.0

5
5
5
5
5
5
5

The Z-Buffer Algorithm

e Let CB be color (frame) buffer, ZB be z-
buffer

e Initialize z-buffer contents to 1.0 (far
away)

* For each triangle T
—Rasterize T to generate fragments

—For each fragment F with screen
position (x,y,z) and color value C

*If (z < ZB[x,y]) then
- Update color: CB[x,y]
— Update depth: ZB[x,y]

]
N

Z-buffer Algorithm Properties

* What makes this method nice?
— simple (faciliates hardware implementation)
— handles intersections
— handles cycles
— draw opaque polygons in any order

Alias Effects

* One major problem with rasterization is called alias
effects, e.g straight lines or triangle boundaries look
jagged

* These are caused by undersampling, and can cause
unreal visual artefacts.

* It also occurs in texture mapping

Alias Effects at straight boundaries in raster
images.

Desired Boundaries Pixels Set

Appearance of the textured polygon
in the image

Texture

4 Pixels
3 Pixels

eo0 0
o8
[

Samples

Polygon width /
12 Pixels oe | e Y o6
6 Pixels O®o

Anti-Aliasing

e The solution to aliasing problems is to apply a degree
of blurring to the boundary such that the effect is
reduced.

* The most successful technique is called
Supersampling

10

Supersampling

* The basic idea is to compute the picture at a higher
resolution to that of the display area.

* Supersamples are averaged to find the pixel value.

* This has the effect of blurring boundaries, but leaving
coherent areas of colour unchanged

L

Polygon Boundary

I Solid lines are
pixel boundaries

Dashed lines are
supersamples

(13/16)L, + (3/16)],

GN6)L + (13/16)],

/

L

Actual Pixel

L Intensities

Limitations of Supersampling

* Supersampling works well for scenes made up of
filled polygons.

* However, it does require a lot of extra computation.

¢ It does not work for line drawings.

4 | 14

1/4 1/4

Actual Pixel

/4

/4 0 0

intensities

11

Convolution filtering

* The more common (and much faster) way of dealing
with alias effects is to use a “filter’ to blur the image.

* This essentially takes an average over a small region
around each pixel

For example consider the image of a line

Theoretical Line

Pixels set to
intensity I
(others set to 0)

Treat each pixel of the image

L + + Consider one
pixel.

‘We replace the pixel by a local average,
one possibility would be 3*1/9

Weighted averages

* Taking a straight local average has undesirable
effects.

* Thus we normally use a weighted average.

1736 | 1] 411

12

Convolution

Theoretical Line mask located

at one pixel

Pixels set to
intensity I
(others set to 0)

Convolution mask
located at one pixel

Theoretical Line

Pixels set to
intensity I
(others set to 0)

Final Pixel Intensities

(9/36)1§21/36)]

21/36)1)(9/36)1

Pros and Cons of Convolution filtering

¢ Advantages:
— It is very fast and can be done in hardware
— Generally applicable

* Disadvantages:

— It does degrade the image while enhancing its visual
appearance.

Anti-Aliasing textures

e Similar
* When we identify a point in the texture map we return
an average of texture map around the point.

* Scaling needs to be applied so that the less the
samples taken the bigger the local area where
averaging is done.

13

