Computer Graphics

Lecture 8:

Rasterization, Visibility & Anti-aliasing

Some slides adopted from
H. Pfister, Harvard

Rasterization

* Determine which pixels are drawn into the framebuffer

* Interpolate parameters (colors, texture coordinates, etc.)

Rasterization

* What does interpolation mean?

* Examples: Colors, normals, shading, texture
coordinates

A triangle in terms of vectors

* We can use vertices a, b and c to specify the three
points of a triangle

* We can also compute the edge vectors
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Points and planes

* The three non-collinear points determine a plane

b-a
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» Example: The vertices a, b and ¢ determine a plane
* The vectors b-a and c-a form a basis for this plane

Basis vectors

* This (non-orthogonal) basis can be used to specify the
location of any point p in the plane

p=a+f(-a)+y(c-a)

b-a

Barycentric coordinates

* We can reorder the terms of the equation:
p=a+p(Mb-a)+y(c-a)
=(1-B-ypa+pb+y
=aa+ fb+yc
* In other words:
p(a.f.y) =ca+pb+ye
" with a+f+y=1

* a, B, y and called barycentric coordinates

Barycentric coordinates

* Barycentric coordinates describe a point p as an
affine combination of the triangle vertices

p(a,B,y)=ca+ b+ yc a+pP+y=1
* For any point p inside the triangle (a, b, ¢):
O<a<l
0<p<l1
O<y<l
* Point on an edge: one coefficient is 0
* Vertex: two coefficients are 0, remaining one is 1




Barycentric coordinates and signed distances

* Let p=oaa+fb+yc. Each coordinate (e.g. f) is the
signed distance from p to the line through a triangle
edge (e.g. ac)

c

Barycentric coordinates and signed distances

* Let p=oaa+fb+yc. Each coordinate (e.g. f) is the
signed distance from p to the line through a triangle
edge (e.g. ac)

o

Barycentric coordinates and signed distances

e Let p=caa+pb+yc. Each coordinate (e.g. B) is the
signed distance from p to the line through a triangle
edge (e.g. ac)
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Barycentric coordinates and signed distances

* The signed distance can be computed by evaluating
implicit line equations, e.g., f,.(x,») of edge ac
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Recall: Implicit equation for lines

* Implicit equation in 2D:
f(xy)=0

— Points with f{x, y) = 0 are on the line
— Points with f{x, ) #0 are not on the line

* General implicit form
Ax+By+(C=0

* Implict line through two points (x,, y,) and (x,, ,)
Ve =yp) X+ (X, =X )y +x,, = x,y, =0

Implicit equation for lines: Example

(4.2)

Implicit equation for lines: Example

Solution 1: -2x+4y =0
Solution 2: 2x -4y =0

kf (x,y)=0 foranyk

(4.2)

Edge equations

* Given a triangle with vertices (x,y,), (x;,»;), and

(xc’y 2)'
¢ The line equations of the edges of the triangle are:

S (X:3) =V, = y,)x +(x, —Xx,)y +X,y, = X,Y,
Soe(6Y) =y, =y )X+ (X, =X,y + X,y — Xy,
fca('xvy) =(yL _yg)'x+ (‘xa _xc)y+‘xcyu _‘xayc

f ca f be
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Barycentric Coordinates

* Remember that: f(x,y)=0 < kf(x,y)=0

* A barycentric coordinate (e.g. f3) is a signed distance
from a line (e.g. the line that goes through ac)

* For a given point p, we would like to compute its
barycentric coordinate {3 using an implicit edge
equation.

* We need to choose & such that kf, (x,y)=pf

Barycentric Coordinates

* We would like to choose & such that: kf,.(x,y)=f
* We know that 3 = 1 at point b:
1

K (o) =le k=
f oY fac(xb’yb)

* The barycentric coordinate 3 for point p is:
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Barycentric Coordinates

* In general, the barycentric coordinates for point p are:

PR /A C25') B S ) S PP
fhc(xa’ya) fac('xb’yb)

* Given a point p with cartesian coordinates (x, y), we
can compute its barycentric coordinates (o, 3, y) as
above.

Triangle Rasterization

* Many different ways to generate fragments for a
triangle
e Checking (o, f3, v) is one method, e.g.
(<o <l && 0<P <] && 0<y<Il)
* In practice, the graphics hardware use optimized
methods:
— fixed point precision (not floating-point)
— incremental (use results from previous pixel)




Triangle Rasterization

* We can use barycentric coordinates to rasterize and
color triangles

for all x do
for all y do
compute (alpha, beta, gamma) for (x,y)
if (0 < alpha < 1 and
0 < beta < 1 and
0 < gamma < 1 ) then

c = alpha c0 + beta cl + gamma c2
drawpixel (x,y) with color c

e The color ¢ varies smoothly within the triangle

Visibility: One triangle

* With one triangle, things are simple
* Pixels never overlap!

Hidden Surface Removal

* Idea: keep track of visible surfaces
e Typically, we see only the front-most surface
 Exception: transparency

Visibility: Two triangles

* Things get more complicated with multiple triangles
» Fragments might overlap in screen space!




Visibility: Pixels vs Fragments

* Each pixel has a unique framebuffer (image) location

* But multiple fragments may end up at same address

Visibility: Which triangle should be drawn first?

* Two possible cases:

green triangle on top orange triangle on top

Visibility: Which triangle should be drawn first?

* Many other cases possible!

intersection #1 intersection #2

Visibility: Painter’s Algorithm

* Sort triangles (using z values in eye space)
* Draw triangles from back to front

draw last draw first

- 303}

increasing z




Visibility: Painter’s Algorithm - Problems

e Correctness issues:

— Intersections

— Cycles

— Solve by splitting triangles, but ugly and expensive
* Efficiency (sorting)

—_‘\

The Depth Buffer (Z-Buffer)

* Perform hidden surface removal per-fragment
* Idea:

— Each fragment gets a z value in screen space
— Keep only the fragment with the smallest z value

The Depth Buffer (Z-Buffer)

* Example:
— fragment from green triangle has z value of 0.7

The Depth Buffer (Z-Buffer)

* Example:
— fragment from red triangle has z value of 0.3




The Depth Buffer (Z-Buffer)

* Since 0.3 < 0.7, the red fragment wins

The Depth Buffer (Z-Buffer)

* Many fragments might map to the same pixel location
* How to track their z-values?

* Solution: z-buffer (2D buffer, same size as image)
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The Z-Buffer Algorithm

e Let CB be color (frame) buffer, ZB be z-
buffer

e Initialize z-buffer contents to 1.0 (far
away)

* For each triangle T
—Rasterize T to generate fragments

—For each fragment F with screen
position (x,y,z) and color value C

*If (z < ZB[x,y]) then
- Update color: CB[x,y]
— Update depth: ZB[x,y]

]
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Z-buffer Algorithm Properties

* What makes this method nice?
— simple (faciliates hardware implementation)
— handles intersections
— handles cycles
— draw opaque polygons in any order




Alias Effects

* One major problem with rasterization is called alias
effects, e.g straight lines or triangle boundaries look
jagged

* These are caused by undersampling, and can cause
unreal visual artefacts.

* It also occurs in texture mapping

Alias Effects at straight boundaries in raster
images.

Desired Boundaries Pixels Set

Appearance of the textured polygon
in the image

Texture

4 Pixels
3 Pixels

eo0 0
o8
[

Samples

Polygon width /
12 Pixels oe | e Y o6
6 Pixels O®o

Anti-Aliasing

e The solution to aliasing problems is to apply a degree
of blurring to the boundary such that the effect is
reduced.

* The most successful technique is called
Supersampling
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Supersampling

* The basic idea is to compute the picture at a higher
resolution to that of the display area.

* Supersamples are averaged to find the pixel value.

* This has the effect of blurring boundaries, but leaving
coherent areas of colour unchanged

L

Polygon Boundary

I Solid lines are
pixel boundaries

Dashed lines are
supersamples

(13/16)L, + (3/16)],

GN6)L + (13/16)],

/
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Actual Pixel

L Intensities

Limitations of Supersampling

* Supersampling works well for scenes made up of
filled polygons.

* However, it does require a lot of extra computation.

¢ It does not work for line drawings.
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Actual Pixel
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Convolution filtering

* The more common (and much faster) way of dealing
with alias effects is to use a “filter’ to blur the image.

* This essentially takes an average over a small region
around each pixel

For example consider the image of a line

Theoretical Line

Pixels set to
intensity I
(others set to 0)

Treat each pixel of the image

L + + Consider one
pixel.

‘We replace the pixel by a local average,
one possibility would be 3*1/9

Weighted averages

* Taking a straight local average has undesirable
effects.

* Thus we normally use a weighted average.

1736 | 1] 411
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Convolution

Theoretical Line mask located

at one pixel

Pixels set to
intensity I
(others set to 0)

Convolution mask
located at one pixel

Theoretical Line

Pixels set to
intensity I
(others set to 0)

Final Pixel Intensities

(9/36)1§21/36)]

21/36)1)(9/36)1

Pros and Cons of Convolution filtering

¢ Advantages:
— It is very fast and can be done in hardware
— Generally applicable

* Disadvantages:

— It does degrade the image while enhancing its visual
appearance.

Anti-Aliasing textures

e Similar
* When we identify a point in the texture map we return
an average of texture map around the point.

* Scaling needs to be applied so that the less the
samples taken the bigger the local area where
averaging is done.
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