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Interactive Graphics

 Lecture 9: Introduction to Spline Curves



Interactive Graphics Lecture 13:  Slide 2



Interactive Graphics Lecture 9:  Slide 3

Splines

 The word spline comes from the ship building trade 
where planks were originally shaped by bending them 
round pegs fixed in the ground.

 Originally it was the pegs that were referred to as 
splines.

 Now it is the smooth curve that is called a spline.
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Interpolating Splines

 Modern splines are smooth curves defined from a 
small set of points often called knots. 

 In one main class of splines, the curve must pass 
through each point of the set.

 These are called interpolating splines
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Approximating Splines

 In other cases the curves do not pass through the 
points.

 The points act as control points which the user can 
move to adjust the shape of the curve interactively
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Non Parametric Spline

 The simplest splines are just equations in x and y (for 
two dimensions)

 The most common is the polynomial spline:

 y = a2x2 + a1x + a0

 given three points we can calculate  a2 a1 and a0
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A non parametric (parabolic spline)

P0

P1

P2

y = a2x2 + a1x + a0

 There is no control using non parametric splines. 

   Only one curve (a parabola) fits the data.
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Parametric Splines

 If we write our spline in a vector form we get:

 P = a22 + a1 + a0

 which has a parameter 

 by convention, as  ranges from 0 to 1 the point P 
traces out a curve.
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Calculating simple parametric splines

 We can now solve for the vector constants a0 a1 and a2 
as follows.

 Suppose we want the curve to start at point P0 

 P0 = a22 + a1 + a0

 we have =0 at the start so

 P0 = a0
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Calculating simple parametric splines

 Suppose we want the spline to end at P2

 we have that at the end  = 1

 thus P2 = a22 + a1 + a0 

                   = a2
 + a1 + a0

                   = a2
 + a1 + P0 
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Calculating simple parametric splines

 and in the middle (say = 1/2) we want it to pass 
through P1

 P1  = a22 + a1 + a0

      = a2 + a1 + P0

 We have enough equations to solve for a1 and a2.

 Notice that this formulation is the same in 2 and 3 
dimensions.
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Possibilities using parametric splines

P0

P1

P2

P0

P1

P2

P = a22 + a1 + a0 P0

P1

P2

P0

P1

P2
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Higher order parametric splines

 Parametric polynomial splines must have an order to 
match the number of knots.

 3 knots - quadratic polynomial
 4 knots - cubic polynomial
 etc.

 Higher order polynomials are undesirable since they 
tend to oscillate
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Spline Patches

 To get round the problem, we can piece together a 
number of patches, each patch being a parametric 
spline.

Patch 1 Patch 3

Patch 2



Interactive Graphics Lecture 9:  Slide 15

Cubic Spline Patches

 The simplest, and most effective way to calculate 
parametric spline patches is to use a cubic 
polynomial.

 P = a33 + a22 + a1 + a0

 This allows us to join the patches together smoothly
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Choosing the gradients

P = a33 + a22 + a1 + a0

P0

P3

P1

P2

Gradient P1' = (P2 - P0)/2

P2' =  (P3 - P1)/2
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Calculating a Cubic Spline Patch

 P = a33 + a22 + a1 + a0

 for a patch joining points Pi and  Pi+1 we have =0 at Pi 
and =1 at Pi+1 

 Substituting these values we get

 Pi =  a0

 Pi+1 = a3 + a2 + a1 + a0
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Calculating a Cubic Spline Patch

 differentiating P = a33 + a22 + a1 + a0  we get

 P’ = 3a32 + 2a2 + a1

 substituting for =0 at Pi and =1 at Pi+1 we get

 P'i =  a1

 P'i+1 = 3a3 + 2a2 + a1
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Calculating a Cubic Spline Patch

 Putting these four equations into matrix form we get:



Interactive Graphics Lecture 9:  Slide 20

Calculating a Cubic Spline Patch

 Finally, inverting the matrix gives us the result we 
want. Notice that the matrix is the same for every 
patch
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Bezier Curves

 Bezier curves were developed as a method for CAD 
design. They give very predictable results for small 
sets of knots, and so are useful as spline patches.

 The main characteristics of Bezier curves are

 They interpolate the end points

 The slope at an end is the same as the line joining the end 
point to its neighbour
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A typical Bezier Curve

P0
P3

P2

P1
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Casteljau’s Algorithm

 Bezier curves may be computed and visualised using 
a geometric construction due to Paul de Casteljau.

 Like a cubic patch, we need a parameter  which is to 
be 0 at the start of the curve, and 1 at the end.

 A construction can be made for any value of 
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P0,0

P0,3

P0,2

P0,1

P3,0
P2,0

P2,1

P1,0

P1,1

P1,2

Casteljau’s Construction  = 0.25
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Casteljau’s Construction  = 0.5

P0,0

P0,3

P0,2

P0,1

P3,0P2,0

P2,1

P1,0

P1,1

P1,2
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P0,0

P0,3

P0,2

P0,1

P3,0

P2,0

P2,1

P1,0

P1,1

P1,2

Casteljau’s Construction  = 0.75
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Bernstein Blending Function

 Splines (including Bezier curves) can be formulated 
as a blend of the knots.

 Consider the vector line equation

 P =  (1-)P0 +  P1

 It is a linear ‘blend’ of two points, and could also be 
considered the 2 point Bezier curve!
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Blending Equation

 Any point on the spline is simply a blend of all the 
other points. For N+1 knots we have:

 where W is the Bernstein blending function
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Expanded Bezier Equations

 2 Point: P0(1-) + P1

 3 Point:  P0(1-)+ 2P1(1-) + P2

 4 Point:  P0(1-)+ 3P1(1-)+ 3P2(1-) + P3

 etc
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Bezier Curves lack local control

 Since all the knots of the Bezier curve all appear in the 
blend they cannot be used for curves with fine detail.

 However they are very effective as spline patches.
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Four point Bezier Curves and Cubic Patches

 Four point Bezier curves are equivalent to cubic 
patches going through the first and last knot (P0 and 
P3)

 It is possible to show their equivalence in two ways:

 Expanding the iterative blending equation
 Reversing the de Casteljau algorithm
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Expanding the blending equation

 For the case of four knots we can expand the Bernstein 
blending function to get a polynomial in :

 This can be multiplied out to give an equation of the 
form:

 where:
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Casteljau’s algorithm gives the same result

P0,0
P0,3

P0,2

P0,1

P3,0P2,0

P2,1
P1,0

P1,1

P1,2

We start from point P
3,0

 

and express it in terms 
of its construction line. 
Then the process is 
continued.
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Continuing expanding

 We can drop the first subscript (which indicates the 
recursion level) to get:

 which is the same as before
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Control Points

 We can summarise the four point Bezier Curve by 
saying that it has two points that are interpolated and 
two control points. 

 The curve starts at P0 and ends at P3 and its shape can 
be determined by moving control points (P1 and P2).

 This could be done interactively using a mouse.
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In summary

 The simplest and most effective way to draw a 
smooth curve through a set of points is to use a cubic 
patch.

 If no interaction is needed setting the gradients by the 
central difference (Pi+1 - Pi-1)/2 is effective.

 If the user wants to interactively adjust the shape the 
four point Bezier formulation is ideal
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