
Interactive Graphics Lecture 9: Slide 1

Interactive Graphics

 Lecture 9: Introduction to Spline Curves

Interactive Graphics Lecture 13: Slide 2

Interactive Graphics Lecture 9: Slide 3

Splines

 The word spline comes from the ship building trade
where planks were originally shaped by bending them
round pegs fixed in the ground.

 Originally it was the pegs that were referred to as
splines.

 Now it is the smooth curve that is called a spline.

Interactive Graphics Lecture 9: Slide 4

Interpolating Splines

 Modern splines are smooth curves defined from a
small set of points often called knots.

 In one main class of splines, the curve must pass
through each point of the set.

 These are called interpolating splines

Interactive Graphics Lecture 9: Slide 5

Approximating Splines

 In other cases the curves do not pass through the
points.

 The points act as control points which the user can
move to adjust the shape of the curve interactively

Interactive Graphics Lecture 9: Slide 6

Non Parametric Spline

 The simplest splines are just equations in x and y (for
two dimensions)

 The most common is the polynomial spline:

 y = a2x2 + a1x + a0

 given three points we can calculate a2 a1 and a0

Interactive Graphics Lecture 9: Slide 7

A non parametric (parabolic spline)

P0

P1

P2

y = a2x2 + a1x + a0

 There is no control using non parametric splines.

 Only one curve (a parabola) fits the data.

Interactive Graphics Lecture 9: Slide 8

Parametric Splines

 If we write our spline in a vector form we get:

 P = a22 + a1 + a0

 which has a parameter 

 by convention, as  ranges from 0 to 1 the point P
traces out a curve.

Interactive Graphics Lecture 9: Slide 9

Calculating simple parametric splines

 We can now solve for the vector constants a0 a1 and a2
as follows.

 Suppose we want the curve to start at point P0

 P0 = a22 + a1 + a0

 we have =0 at the start so

 P0 = a0

Interactive Graphics Lecture 9: Slide 10

Calculating simple parametric splines

 Suppose we want the spline to end at P2

 we have that at the end  = 1

 thus P2 = a22 + a1 + a0

 = a2
 + a1 + a0

 = a2
 + a1 + P0

Interactive Graphics Lecture 9: Slide 11

Calculating simple parametric splines

 and in the middle (say = 1/2) we want it to pass
through P1

 P1 = a22 + a1 + a0

 = a2 + a1 + P0

 We have enough equations to solve for a1 and a2.

 Notice that this formulation is the same in 2 and 3
dimensions.

Interactive Graphics Lecture 9: Slide 12

Possibilities using parametric splines

P0

P1

P2

P0

P1

P2

P = a22 + a1 + a0 P0

P1

P2

P0

P1

P2

Interactive Graphics Lecture 9: Slide 13

Higher order parametric splines

 Parametric polynomial splines must have an order to
match the number of knots.

 3 knots - quadratic polynomial
 4 knots - cubic polynomial
 etc.

 Higher order polynomials are undesirable since they
tend to oscillate

Interactive Graphics Lecture 9: Slide 14

Spline Patches

 To get round the problem, we can piece together a
number of patches, each patch being a parametric
spline.

Patch 1 Patch 3

Patch 2

Interactive Graphics Lecture 9: Slide 15

Cubic Spline Patches

 The simplest, and most effective way to calculate
parametric spline patches is to use a cubic
polynomial.

 P = a33 + a22 + a1 + a0

 This allows us to join the patches together smoothly

Interactive Graphics Lecture 9: Slide 16

Choosing the gradients

P = a33 + a22 + a1 + a0

P0

P3

P1

P2

Gradient P1' = (P2 - P0)/2

P2' = (P3 - P1)/2

Interactive Graphics Lecture 9: Slide 17

Calculating a Cubic Spline Patch

 P = a33 + a22 + a1 + a0

 for a patch joining points Pi and Pi+1 we have =0 at Pi
and =1 at Pi+1

 Substituting these values we get

 Pi = a0

 Pi+1 = a3 + a2 + a1 + a0

Interactive Graphics Lecture 9: Slide 18

Calculating a Cubic Spline Patch

 differentiating P = a33 + a22 + a1 + a0 we get

 P’ = 3a32 + 2a2 + a1

 substituting for =0 at Pi and =1 at Pi+1 we get

 P'i = a1

 P'i+1 = 3a3 + 2a2 + a1

Interactive Graphics Lecture 9: Slide 19

Calculating a Cubic Spline Patch

 Putting these four equations into matrix form we get:

Interactive Graphics Lecture 9: Slide 20

Calculating a Cubic Spline Patch

 Finally, inverting the matrix gives us the result we
want. Notice that the matrix is the same for every
patch

Interactive Graphics Lecture 9: Slide 21

Bezier Curves

 Bezier curves were developed as a method for CAD
design. They give very predictable results for small
sets of knots, and so are useful as spline patches.

 The main characteristics of Bezier curves are

 They interpolate the end points

 The slope at an end is the same as the line joining the end
point to its neighbour

Interactive Graphics Lecture 9: Slide 22

A typical Bezier Curve

P0
P3

P2

P1

Interactive Graphics Lecture 9: Slide 23

Casteljau’s Algorithm

 Bezier curves may be computed and visualised using
a geometric construction due to Paul de Casteljau.

 Like a cubic patch, we need a parameter  which is to
be 0 at the start of the curve, and 1 at the end.

 A construction can be made for any value of 

Interactive Graphics Lecture 9: Slide 24

P0,0

P0,3

P0,2

P0,1

P3,0
P2,0

P2,1

P1,0

P1,1

P1,2

Casteljau’s Construction  = 0.25

Interactive Graphics Lecture 9: Slide 25

Casteljau’s Construction  = 0.5

P0,0

P0,3

P0,2

P0,1

P3,0P2,0

P2,1

P1,0

P1,1

P1,2

Interactive Graphics Lecture 9: Slide 26

P0,0

P0,3

P0,2

P0,1

P3,0

P2,0

P2,1

P1,0

P1,1

P1,2

Casteljau’s Construction  = 0.75

Interactive Graphics Lecture 9: Slide 27

Bernstein Blending Function

 Splines (including Bezier curves) can be formulated
as a blend of the knots.

 Consider the vector line equation

 P = (1-)P0 +  P1

 It is a linear ‘blend’ of two points, and could also be
considered the 2 point Bezier curve!

Interactive Graphics Lecture 9: Slide 28

Blending Equation

 Any point on the spline is simply a blend of all the
other points. For N+1 knots we have:

 where W is the Bernstein blending function

Interactive Graphics Lecture 9: Slide 29

Expanded Bezier Equations

 2 Point: P0(1-) + P1

 3 Point: P0(1-)+ 2P1(1-) + P2

 4 Point: P0(1-)+ 3P1(1-)+ 3P2(1-) + P3

 etc

Interactive Graphics Lecture 9: Slide 30

Bezier Curves lack local control

 Since all the knots of the Bezier curve all appear in the
blend they cannot be used for curves with fine detail.

 However they are very effective as spline patches.

Interactive Graphics Lecture 9: Slide 31

Four point Bezier Curves and Cubic Patches

 Four point Bezier curves are equivalent to cubic
patches going through the first and last knot (P0 and
P3)

 It is possible to show their equivalence in two ways:

 Expanding the iterative blending equation
 Reversing the de Casteljau algorithm

Interactive Graphics Lecture 9: Slide 32

Expanding the blending equation

 For the case of four knots we can expand the Bernstein
blending function to get a polynomial in :

 This can be multiplied out to give an equation of the
form:

 where:

Interactive Graphics Lecture 9: Slide 33

Casteljau’s algorithm gives the same result

P0,0
P0,3

P0,2

P0,1

P3,0P2,0

P2,1
P1,0

P1,1

P1,2

We start from point P
3,0

and express it in terms
of its construction line.
Then the process is
continued.

Interactive Graphics Lecture 9: Slide 34

Continuing expanding

 We can drop the first subscript (which indicates the
recursion level) to get:

 which is the same as before

Interactive Graphics Lecture 9: Slide 35

Control Points

 We can summarise the four point Bezier Curve by
saying that it has two points that are interpolated and
two control points.

 The curve starts at P0 and ends at P3 and its shape can
be determined by moving control points (P1 and P2).

 This could be done interactively using a mouse.

Interactive Graphics Lecture 9: Slide 36

In summary

 The simplest and most effective way to draw a
smooth curve through a set of points is to use a cubic
patch.

 If no interaction is needed setting the gradients by the
central difference (Pi+1 - Pi-1)/2 is effective.

 If the user wants to interactively adjust the shape the
four point Bezier formulation is ideal

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

