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Interactive Computer Graphics 

Lecture 12:  Ray tracing (cont.) 

Some slides adopted from  
H. Pfister, Harvard 

Ray tracing - Summary 

Ray tracing - Summary 

trace ray 
Intersect all objects 
color = ambient term 
For every light 
 cast shadow ray 
 col += local shading term
If mirror 
 col += k_refl * trace reflected ray 
If transparent 
 col += k_trans * trace transmitted ray
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Graphics Lecture 10:  Slide 5 

Ray tracing - Summary 

secondary rays 

primary ray 

primary ray 

Intersection calculations 

•  For each ray we must calculate all possible intersections with each 
object inside the viewing volume 

•  For each ray we must find the nearest intersection point 
•  We can define our scene using 

–  Solid models 
•  sphere 
•  cylinder 

–  Surface models 
•  plane 
•  triangle 
•  polygon 

Rays 

• Rays are parametric lines 
• Rays can be defined an 

– origin p0 

– direction d 
• Equation of ray: 

dpp µµ += 0)(

d
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Ray tracing: Intersection calculations  

• The coordinates of any point along each primary ray are 
given by: 

– p0 is the current pixel on the viewing plane. 
– d is the direction vector and can be obtained from the position of 

the pixel on the viewing plane p0 and the viewpoint pv: 
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Ray tracing: Intersection calculations 

• The viewing ray can be parameterized by µ: 
– µ > 0 denotes the part of the ray behind the viewing plane 
– µ < 0 denotes the part of the ray in front of the viewing plane 
– For any visible intersection point µ > 0 

d

vp

µ < 0 µ > 0 

p0 

Intersection calculations: Spheres 

For any point on the surface of the sphere 

where r is the radius of the sphere 
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=−− rspq
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Intersection calculations: Spheres 

• To test whether a ray intersects a surface we can substitute 
for q using the ray equation: 

•  Setting                       and expanding the dot product 
produces the following quadratic equation: 

022
0 =−−+ rspdp µ
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Intersection calculations: Spheres 

•  The quadratic equation has the following solution: 

•  Solutions: 
–  if the quadratic equation has no solution, the ray does not intersect the sphere 
–  if the quadratic equation has two solutions (µ1 < µ2): 

•  µ1 corresponds to the point at which the rays enters the sphere 
•  µ2 corresponds to the point at which the rays leaves the sphere 

22)( r+Δ−Δ⋅±Δ⋅−= ppdpd 2µ
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Precision Problems 

•  In ray tracing, the origin of (secondary) rays is often on the 
surface of objects 

– Theoretically, µ = 0 for these rays 
– Practically, calculation imprecision creeps in, and the origin of 

the new ray is slightly beneath the surface 

• Result: the surface area is shadowing itself 

ε to the rescue ...  

• Check if t is within some epsilon tolerance:  
–  if abs(µ) < ε 

•  point is on the sphere 
– else 

•  point is inside/outside 
– Choose the ε tolerance empirically 

• Move the intersection point by epsilon along the surface 
normal so it is outside of the object 

• Check if point is inside/outside surface by checking the 
sign of the implicit (sphere etc.) equation  

Problem Time 

• Given: 
–  the viewpoint is at pv = (0, 0, -10) 
–  the ray passes through viewing plane at pi = (0, 0, 0).  

•  Spheres: 
– Sphere A with center ps = (0, 0, 8) and radius r = 5 
– Sphere B with center ps = (0, 0, 9) and radius r = 3 
– Sphere C with center ps = (0, -3, 8) and radius r = 2  

• Calculate the intersections of the ray with the spheres 
above. 

Solution 

• The direction vector is d = (0, 0, 10) / 10 = (0, 0, 1) 
– Sphere A: 

 Δp = (0, 0, 8), so µ = 8 ± sqrt(64 – 64 + 25) = 8 ± 5 
 As the result, the ray enters A sphere at (0, 0, 3) and exits the 
sphere at (0, 0, 13)). 

– Sphere B: 
 Δp = (0, 0, 9), so µ = 9 ± sqrt(81 – 81 + 9) = 9 ± 3 
 As the result, the ray enters B sphere at (0, 0, 6) and exits the 
sphere at (0, 0, 12)). 

– Sphere C has no intersections with ray. 
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Intersection calculations: Cylinders 

• A cylinder can be described by 
– a position vector p1 describing the first end point of the long axis 

of the cylinder 
– a position vector p2 describing the second end point of the long 

axis of the cylinder 
– a radius r 

• The axis of the cylinder can be written as                     and 
can be parameterized by 0 ≤ α ≤ 1 

21 ppp −=Δ

Intersection calculations: Cylinders 

• To calculate the intersection 
of the cylinder with the ray: 

•  Since                     we can 
write 

dpqpp1 µα +=+Δ+ 0
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Intersection calculations: Cylinders 

•  Solving for α yields: 

•  Substituting we obtain: 
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Intersection calculations: Cylinders 

• Using the fact that                  we can use the same 
approach as before to the quadratic equation for µ: 

–  If the quadratic equation has no solution: 
➨  no intersection 

–  If the quadratic equation has two solutions: 
➨  intersection 
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Intersection calculations: Cylinders 

•  Assuming that µ1 ≤ µ2 we can determine two solutions: 

•  If the value of α1 is between 0 and 1 the intersection is on the 
outside surface of the cylinder 

•  If the value of α2 is between 0 and 1 the intersection is on the inside 
surface of the cylinder 

Intersection calculations: Plane 

• Objects are often described by geometric primitives such 
as 

–  triangles 
– planar quads 
– planar polygons 

• To test intersections of the ray with these primitives we 
must whether the ray will intersect the plane defined by 
the primitive 

Intersection calculations: Plane 

• The intersection of a ray with a 
plane is given by 

   where p1 is a point in the plane. 
Subtracting p1  and multiplying with 
the normal of the plane n yields: 

•  Solving for µ yields: 
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Intersection calculations: Triangles 

• To calculate intersections: 
–  test whether triangle is front facing 
–  test whether plane of triangle 

intersects ray 
–  test whether intersection point is 

inside triangle 

•  If the triangle is front facing: 
0<⋅nd
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•  To test whether plane of triangle intersects ray 
–  calculate equation of the plane using 

–  calculate intersections with plane as before 

•  To test whether intersection point is  
 inside triangle: 

€ 

p2 −p1 = a
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p3 −p1 = b
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Intersection calculations: Triangles Intersection calculations: Triangles 

• A point is inside the triangle if 

• Calculate α and β by taking the dot product with a and b: € 

0 ≤α ≤1

€ 

0 ≤ β ≤1

€ 

α + β ≤1
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Ray tracing: Pros and cons 

•  Pros:  
– Easy to implement  
– Extends well to global illumination 

•  shadows  
•  reflections / refractions  
•  multiple light bounces  
•  atmospheric effects 

• Cons:  
– Speed! (seconds per frame, not frames per second) 

Speedup Techniques 

• Why is ray tracing slow? How to improve? 
– Too many objects, too many rays  
– Reduce ray-object intersection tests  
– Many techniques! 
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Acceleration of Ray Casting 

• Goal: Reduce the number of ray/primitive intersections 

Conservative Bounding Region 

•  First check for an intersection  
 with a conservative bounding region  

• Early reject 

Bounding Regions 

• What makes a good bounding region? 

Conservative Bounding Regions 
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Regular Grid Create Grid 

•  Find bounding box of 
scene 

•  Choose grid resolution 
(nx, ny, nz)  

•  gridx need not = gridy 

Insert Primitives into Grid 

•  Primitives that overlap 
multiple cells?  

•  Insert into multiple cells 
(use pointers) 

For Each Cell Along a Ray 

•  Does the cell contain 
an intersection?  

•  Yes: return closest 
intersection  

•  No: continue 
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Preventing Repeated Computation 

•  Perform the computation once, 
"mark" the object  

•  Don't re-intersect marked 
objects 

Don't Return Distant Intersections 

•  If intersection t is 
not within the cell 
range, continue 
(there may be 
something closer) 

Adaptive Grids 

•  Subdivide until each cell contains no more than n 
elements, or maximum depth d is reached 

Primitives in an Adaptive Grid 

• Can live at intermediate levels, or be pushed to lowest 
level of grid  



11 

Binary Space Partition (BSP) Tree 

• Recursively partition space by planes  
• Every cell is a convex polyhedron 

Binary Space Partition (BSP) Tree 

•  Simple recursive algorithms  
• Example: point finding  

Binary Space Partition (BSP) Tree 

• Trace rays by recursion on tree  
– BSP construction enables simple front-to-back traversal  

Grid Discussion 

•  Regular 
+  easy to construct  
+  easy to traverse 
–  may be only sparsely filled 
–  geometry may still be clumped 

•  Adaptive  
+  grid complexity matches 

geometric density  
–  more expensive to traverse 

(especially BSP tree) 


