

Intersection calculations

- For each ray we must calculate all possible intersections with each object inside the viewing volume
- For each ray we must find the nearest intersection point
- We can define our scene using
 - Solid models
 - sphere
 - cylinder
 - Surface models
 - plane triangle
 - polygon

Ray tracing: Intersection calculations • The coordinates of any point along each primary ray are given by: $\mathbf{p} = \mathbf{p}_0 + \mu \mathbf{d}$ • \mathbf{p}_0 is the current pixel on the viewing plane. • \mathbf{d} is the direction vector and can be obtained from the position of the pixel on the viewing plane \mathbf{p}_0 and the viewpoint \mathbf{p}_v : $\mathbf{d} = \frac{\mathbf{p}_0 - \mathbf{p}_v}{|\mathbf{p}_0 - \mathbf{p}_v|}$

Intersection calculations: Spheres

• To test whether a ray intersects a surface we can substitute for **q** using the ray equation:

$$\left|\mathbf{p}_{0}+\boldsymbol{\mu}\mathbf{d}-\mathbf{p}_{s}\right|^{2}-r^{2}=0$$

• Setting $\Delta \mathbf{p} = \mathbf{p}_0 - \mathbf{p}_s$ and expanding the dot product produces the following quadratic equation:

$$\mu^{2} + 2\mu(\mathbf{d} \cdot \Delta \mathbf{p}) + |\Delta \mathbf{p}|^{2} - r^{2} = 0$$

Intersection calculations: Spheres

• The quadratic equation has the following solution:

$$\mu = -\mathbf{d} \cdot \Delta \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \Delta \mathbf{p})^2 - |\Delta \mathbf{p}|^2 + r^2}$$

• Solutions:

- if the quadratic equation has no solution, the ray does not intersect the sphere
- if the quadratic equation has two solutions ($\mu_1 < \mu_2$):
 - μ_1 corresponds to the point at which the rays enters the sphere
 - μ_2 corresponds to the point at which the rays leaves the sphere

Precision Problems

- In ray tracing, the origin of (secondary) rays is often on the surface of objects
 - Theoretically, $\mu = 0$ for these rays
 - Practically, calculation imprecision creeps in, and the origin of the new ray is slightly beneath the surface
- Result: the surface area is shadowing itself

ε to the rescue ...

- Check if t is within some epsilon tolerance:
 - if $abs(\mu) < \epsilon$
 - point is on the sphere
 - else
 - point is inside/outside
 - Choose the $\boldsymbol{\epsilon}$ tolerance empirically
- Move the intersection point by epsilon along the surface normal so it is outside of the object
- Check if point is inside/outside surface by checking the sign of the implicit (sphere etc.) equation

Problem Time

- Given:
 - the viewpoint is at $\mathbf{p}_{\mathbf{v}} = (0, 0, -10)$
 - the ray passes through viewing plane at $\mathbf{p}_i = (0, 0, 0)$.
- Spheres:
 - Sphere A with center $\mathbf{p}_s = (0, 0, 8)$ and radius r = 5
 - Sphere B with center $\mathbf{p}_{s} = (0, 0, 9)$ and radius r = 3
 - Sphere C with center $\mathbf{p}_s = (0, -3, 8)$ and radius r = 2
- Calculate the intersections of the ray with the spheres above.

Solution

- The direction vector is $\mathbf{d} = (0, 0, 10) / 10 = (0, 0, 1)$
 - Sphere A:
 - $\Delta p = (0, 0, 8)$, so $\mu = 8 \pm sqrt(64 64 + 25) = 8 \pm 5$
 - As the result, the ray enters A sphere at (0, 0, 3) and exits the sphere at (0, 0, 13)).
 - Sphere B:
 - $\Delta p = (0, 0, 9)$, so $\mu = 9 \pm sqrt(81 81 + 9) = 9 \pm 3$
 - As the result, the ray enters B sphere at (0, 0, 6) and exits the sphere at (0, 0, 12)).
 - Sphere C has no intersections with ray.

Intersection calculations: Cylinders
• Solving for
$$\alpha$$
 yields:

$$\alpha = \frac{\mathbf{p}_0 \cdot \Delta \mathbf{p} + \mu \mathbf{d} \cdot \Delta \mathbf{p} - \mathbf{p}_1 \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}$$
• Substituting we obtain:

$$\mathbf{q} = \mathbf{p}_0 + \mu \mathbf{d} - \mathbf{p}_1 - \left(\frac{\mathbf{p}_0 \cdot \Delta \mathbf{p} + \mu \mathbf{d} \cdot \Delta \mathbf{p} - \mathbf{p}_1 \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}\right) \Delta \mathbf{p}$$

Intersection calculations: Cylinders • Using the fact that $\mathbf{q} \cdot \mathbf{q} = r^2$ we can use the same approach as before to the quadratic equation for μ : $r^2 = \left(\mathbf{p}_0 + \mu \mathbf{d} - \mathbf{p}_1 - \left(\frac{\mathbf{p}_0 \cdot \Delta \mathbf{p} + \mu \mathbf{d} \cdot \Delta \mathbf{p} - \mathbf{p}_1 \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}\right) \Delta \mathbf{p}\right)^2$ - If the quadratic equation has no solution: \Rightarrow no intersection - If the quadratic equation has two solutions: \Rightarrow intersection

• Assuming that $\mu 1 \le \mu 2$ we can determine two solutions:

$$\alpha_{1} = \frac{\mathbf{p}_{0} \cdot \Delta \mathbf{p} + \mu_{1} \mathbf{d} \cdot \Delta \mathbf{p} - \mathbf{p}_{1} \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}$$
$$\alpha_{2} = \frac{\mathbf{p}_{0} \cdot \Delta \mathbf{p} + \mu_{2} \mathbf{d} \cdot \Delta \mathbf{p} - \mathbf{p}_{1} \cdot \Delta \mathbf{p}}{\Delta \mathbf{p} \cdot \Delta \mathbf{p}}$$

- If the value of $\alpha 1$ is between 0 and 1 the intersection is on the outside surface of the cylinder
- If the value of $\alpha 2$ is between 0 and 1 the intersection is on the inside surface of the cylinder

Intersection calculations: Plane

- Objects are often described by geometric primitives such as
 - triangles
 - planar quads
 - planar polygons
- To test intersections of the ray with these primitives we must whether the ray will intersect the plane defined by the primitive

Ray tracing: Pros and cons

• Pros:

- Easy to implement
- Extends well to global illumination
 - shadows
 - reflections / refractions
 - · multiple light bounces
 - atmospheric effects

• Cons:

- Speed! (seconds per frame, not frames per second)

Speedup Techniques

- Why is ray tracing slow? How to improve?
 - Too many objects, too many rays
 - Reduce ray-object intersection tests
 - Many techniques!

• What makes a good bounding region?

