
1

Interactive Computer Graphics

Lecture 12: Ray tracing (cont.)

Some slides adopted from
H. Pfister, Harvard

Ray tracing - Summary

Ray tracing - Summary

trace ray
Intersect all objects
color = ambient term
For every light
 cast shadow ray
 col += local shading term
If mirror
 col += k_refl * trace reflected ray
If transparent
 col += k_trans * trace transmitted ray

Ray tracing - Summary

trace ray
Intersect all objects
color = ambient term
For every light
 cast shadow ray
 col += local shading term
If mirror
 col += k_refl * trace reflected ray
If transparent
 col += k_trans * trace transmitted ray

2

Graphics Lecture 10: Slide 5

Ray tracing - Summary

secondary rays

primary ray

primary ray

Intersection calculations

•  For each ray we must calculate all possible intersections with each
object inside the viewing volume

•  For each ray we must find the nearest intersection point
•  We can define our scene using

–  Solid models
•  sphere
•  cylinder

–  Surface models
•  plane
•  triangle
•  polygon

Rays

• Rays are parametric lines
• Rays can be defined an

– origin p0

– direction d
• Equation of ray:

dpp µµ += 0)(

d

0p

Ray tracing: Intersection calculations

• The coordinates of any point along each primary ray are
given by:

– p0 is the current pixel on the viewing plane.
– d is the direction vector and can be obtained from the position of

the pixel on the viewing plane p0 and the viewpoint pv:

dpp µ+= 0

v

v

pp
ppd

−

−
=

0

0

3

Ray tracing: Intersection calculations

• The viewing ray can be parameterized by µ:
– µ > 0 denotes the part of the ray behind the viewing plane
– µ < 0 denotes the part of the ray in front of the viewing plane
– For any visible intersection point µ > 0

d

vp

µ < 0 µ > 0

p0

Intersection calculations: Spheres

For any point on the surface of the sphere

where r is the radius of the sphere

022
=−− rspq

dµ

0p

sp

q

Intersection calculations: Spheres

• To test whether a ray intersects a surface we can substitute
for q using the ray equation:

•  Setting and expanding the dot product
produces the following quadratic equation:

022
0 =−−+ rspdp µ

sppp −=Δ 0

0)(2 222 =−Δ+Δ⋅+ rppdµµ

Intersection calculations: Spheres

•  The quadratic equation has the following solution:

•  Solutions:
–  if the quadratic equation has no solution, the ray does not intersect the sphere
–  if the quadratic equation has two solutions (µ1 < µ2):

•  µ1 corresponds to the point at which the rays enters the sphere
•  µ2 corresponds to the point at which the rays leaves the sphere

22)(r+Δ−Δ⋅±Δ⋅−= ppdpd 2µ

4

Precision Problems

•  In ray tracing, the origin of (secondary) rays is often on the
surface of objects

– Theoretically, µ = 0 for these rays
– Practically, calculation imprecision creeps in, and the origin of

the new ray is slightly beneath the surface

• Result: the surface area is shadowing itself

ε to the rescue ...

• Check if t is within some epsilon tolerance:
–  if abs(µ) < ε

•  point is on the sphere
– else

•  point is inside/outside
– Choose the ε tolerance empirically

• Move the intersection point by epsilon along the surface
normal so it is outside of the object

• Check if point is inside/outside surface by checking the
sign of the implicit (sphere etc.) equation

Problem Time

• Given:
–  the viewpoint is at pv = (0, 0, -10)
–  the ray passes through viewing plane at pi = (0, 0, 0).

•  Spheres:
– Sphere A with center ps = (0, 0, 8) and radius r = 5
– Sphere B with center ps = (0, 0, 9) and radius r = 3
– Sphere C with center ps = (0, -3, 8) and radius r = 2

• Calculate the intersections of the ray with the spheres
above.

Solution

• The direction vector is d = (0, 0, 10) / 10 = (0, 0, 1)
– Sphere A:

 Δp = (0, 0, 8), so µ = 8 ± sqrt(64 – 64 + 25) = 8 ± 5
 As the result, the ray enters A sphere at (0, 0, 3) and exits the
sphere at (0, 0, 13)).

– Sphere B:
 Δp = (0, 0, 9), so µ = 9 ± sqrt(81 – 81 + 9) = 9 ± 3
 As the result, the ray enters B sphere at (0, 0, 6) and exits the
sphere at (0, 0, 12)).

– Sphere C has no intersections with ray.

5

Intersection calculations: Cylinders

• A cylinder can be described by
– a position vector p1 describing the first end point of the long axis

of the cylinder
– a position vector p2 describing the second end point of the long

axis of the cylinder
– a radius r

• The axis of the cylinder can be written as and
can be parameterized by 0 ≤ α ≤ 1

21 ppp −=Δ

Intersection calculations: Cylinders

• To calculate the intersection
of the cylinder with the ray:

•  Since we can
write

dpqpp1 µα +=+Δ+ 0

pppdpppp Δ⋅−Δ⋅+Δ⋅=Δ⋅Δ 10)(µα

0=Δ⋅ pq p1

p2
Δp

q

Intersection calculations: Cylinders

•  Solving for α yields:

•  Substituting we obtain:

pp
pppdpp

Δ⋅Δ

Δ⋅−Δ⋅+Δ⋅
= 10 µ

α

p
pp

pppdpppdpq Δ

Δ⋅Δ

Δ⋅−Δ⋅+Δ⋅
−−+= 10

10
µ

µ

Intersection calculations: Cylinders

• Using the fact that we can use the same
approach as before to the quadratic equation for µ:

–  If the quadratic equation has no solution:
➨  no intersection

–  If the quadratic equation has two solutions:
➨  intersection

2r=⋅qq

2

10
10

2

Δ

Δ⋅Δ

Δ⋅−Δ⋅+Δ⋅
−−+= p

pp
pppdpppdp µ

µr

6

pp
pppdpp

Δ⋅Δ

Δ⋅−Δ⋅+Δ⋅
= 110

1
µ

α

pp
pppdpp

Δ⋅Δ

Δ⋅−Δ⋅+Δ⋅
= 120

2
µ

α

Intersection calculations: Cylinders

•  Assuming that µ1 ≤ µ2 we can determine two solutions:

•  If the value of α1 is between 0 and 1 the intersection is on the
outside surface of the cylinder

•  If the value of α2 is between 0 and 1 the intersection is on the inside
surface of the cylinder

Intersection calculations: Plane

• Objects are often described by geometric primitives such
as

–  triangles
– planar quads
– planar polygons

• To test intersections of the ray with these primitives we
must whether the ray will intersect the plane defined by
the primitive

Intersection calculations: Plane

• The intersection of a ray with a
plane is given by

 where p1 is a point in the plane.
Subtracting p1 and multiplying with
the normal of the plane n yields:

•  Solving for µ yields:

dpqp µ+=+ 01

ndnpp0nq ⋅+⋅−==⋅ µ)(10

nd
npp

⋅

⋅−
−=

)(10µ

dµ

0p 1p

q

Intersection calculations: Triangles

• To calculate intersections:
–  test whether triangle is front facing
–  test whether plane of triangle

intersects ray
–  test whether intersection point is

inside triangle

•  If the triangle is front facing:
0<⋅nd

1p

3p

2p
b

a

7

•  To test whether plane of triangle intersects ray
–  calculate equation of the plane using

–  calculate intersections with plane as before

•  To test whether intersection point is
 inside triangle:

€

p2 −p1 = a

€

p3 −p1 = b

baq βα +=

ban ×=
1p

3p

2p
b

a

Intersection calculations: Triangles Intersection calculations: Triangles

• A point is inside the triangle if

• Calculate α and β by taking the dot product with a and b: €

0 ≤α ≤1

€

0 ≤ β ≤1

€

α + β ≤1

€

α =
(b ⋅b)(q ⋅ a) − (a ⋅b)(q ⋅b)
(a ⋅ a)(b ⋅b) − (a ⋅b)2

bb
babq

⋅

⋅−⋅
=

)(α
β

Ray tracing: Pros and cons

•  Pros:
– Easy to implement
– Extends well to global illumination

•  shadows
•  reflections / refractions
•  multiple light bounces
•  atmospheric effects

• Cons:
– Speed! (seconds per frame, not frames per second)

Speedup Techniques

• Why is ray tracing slow? How to improve?
– Too many objects, too many rays
– Reduce ray-object intersection tests
– Many techniques!

8

Acceleration of Ray Casting

• Goal: Reduce the number of ray/primitive intersections

Conservative Bounding Region

•  First check for an intersection
 with a conservative bounding region

• Early reject

Bounding Regions

• What makes a good bounding region?

Conservative Bounding Regions

9

Regular Grid Create Grid

•  Find bounding box of
scene

•  Choose grid resolution
(nx, ny, nz)

•  gridx need not = gridy

Insert Primitives into Grid

•  Primitives that overlap
multiple cells?

•  Insert into multiple cells
(use pointers)

For Each Cell Along a Ray

•  Does the cell contain
an intersection?

•  Yes: return closest
intersection

•  No: continue

10

Preventing Repeated Computation

•  Perform the computation once,
"mark" the object

•  Don't re-intersect marked
objects

Don't Return Distant Intersections

•  If intersection t is
not within the cell
range, continue
(there may be
something closer)

Adaptive Grids

•  Subdivide until each cell contains no more than n
elements, or maximum depth d is reached

Primitives in an Adaptive Grid

• Can live at intermediate levels, or be pushed to lowest
level of grid

11

Binary Space Partition (BSP) Tree

• Recursively partition space by planes
• Every cell is a convex polyhedron

Binary Space Partition (BSP) Tree

•  Simple recursive algorithms
• Example: point finding

Binary Space Partition (BSP) Tree

• Trace rays by recursion on tree
– BSP construction enables simple front-to-back traversal

Grid Discussion

•  Regular
+  easy to construct
+  easy to traverse
–  may be only sparsely filled
–  geometry may still be clumped

•  Adaptive
+  grid complexity matches

geometric density
–  more expensive to traverse

(especially BSP tree)

