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Interactive Computer Graphics

 Lecture 14:  Radiosity - Computational Issues
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The story so far

 Every polygon in a graphics scene radiates light.

 The light energy it radiates per unit area is called the 
RADIOSITY and denoted by letter B
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Lambertian Surfaces

 A lambertian surface is one that obeys Lambert’s 
Cosine law. Its reflected energy is the same in all 
directions.

We can only calculate Radiosity for Lambertian 
Surfaces

Incident 
Light

Perfectly Matt surface
The reflected intensity is the same in all directions
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The Radiosity Equation

 For patch i     Bi = Ei + Ri  Bj Fij 

 Ei is the light emitted by the patch (usually zero) 

 Ri  Bj Fij is the Reflectance*Light energy arriving 
from all other patches

 Fij is the proportion of energy leaving patch j that 
reaches patch i
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Form Factors Fij

 Fij = cos icos j Area(Aj) /  r2

Big form 
factor
perhaps 0.5

Further away thus
smaller form factor
perhaps 0.25

Not facing each other thus 
even smaller form factor
perhaps 0.1
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Computing the Form Factors

 Direct Computation 
 - 60,000 polygons (or patches)
 - 3,600,000,000 form factors

 Computation takes forever - most of the results will 
be zero.

 Hemicube method
 Pre-compute the form factors on a hemicube 
 For each patch ray trace through the hemicube
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The whole solution

 All that remains to be done is to solve the matrix 
equation:

                                            

1 -R1F12 -R1F13 .     . -R1F1n B1 E1

-R2F21 1 -R2F23 .     . -R2F2n B2 E2

-R3F31 -R3F32 1 .     . -R3F3n B3 = E3

.     . .     . .     . .     . .     . .     . .     .
-RnFn1 -RnFn2 -RnFn3 .     . 1 Bn En
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Summary of the Radiosity Method

 1. Divide the graphics world into discrete patches
 Meshing strategies, meshing errors

 2. Compute form factors by the hemicube method
 Alias errors

 3. Solve the matrix equation for the radiosity of each patch.
 Computational strategies

 4. Average the radiosity values at the corners of each patch 
 Interpolation approximations

 5. Compute a texture map of each point or render directly

 Now read on . . .
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Alias Errors

 Computation of the form factors will involve alias 
errors.

 This is equivalent to errors in texture mapping, due to 
discrete sampling of a continuous environment.

 However, as the alias errors are averaged over a large 
number of pixels the errors will not be significant.
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Form Factor reciprocity

 Form factors have a reciprocal relationship:

    Fij = cos icos j Area(Aj) /  r2

    Fji = cos icos j Area(Ai) /  r2

    Fji = Fij*Area(Ai) /Area(Aj)

 Thus form factors for only half the patches need be 
computed.
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The number of form factors

 There will be a large number of form factors:

 for 60,000 patches, there are 3,600,000,000 form 
factors. We only need store half of these (reciprocity), 
but we will need four bytes for each, hence 7 Gbytes 
are needed. 

 As many of them are zero we can save space by using 
an indexing scheme. (eg use one bit per form factor, 
bit = 0 implies form factor zero and not stored)
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Inverting the matrix

 Inverting the matrix can be done by the Gauss Siedel 
method:

 Each row of the matrix provides an equation of the 
form

       Bi = Ei + Ri  Bj Fij

 1 -R1F12 -R1F13 .     . -R1F1n B1  E1 
-R2F21 1 -R2F23 .     . -R2F2n B2  E2 
-R3F31 -R3F32 1 .     . -R3F3n B3 = E3 
.     . .     . .     . .     . .     . .     .  .     . 

-RnFn1 -RnFn2 -RnFn3 .     . 1 Bn  En 
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Inverting the matrix

 Gauss Siedel formulates an iterative method using the 
equation of each row

Given:

       Bi = Ei + Ri  Bj Fij

 We use the iteration:

       Bi
k = Ei + Ri  Bj

k-1 Fij

 The initial values Bi
0 may be set to zero
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Gauss-Siedel method for solving equations

 Given a scene with three patches:

 B0  E0 + R0 (F01 B1 + F02 B2)

 B1  E1 + R1 (F10 B0 + F12 B2)

 B2  E2 + R2 (F20 B0 + F21 B1)

 and suppose we have numeric values

 B'0  0 + 0.5 (0.2 B1 + 0.1 B2) = 0.1 B1 + 0.05 B2

 B'1  5 + 0.5 (0.2 B0 + 0.3 B2) = 5 + 0.1 B0 + 0.15 B2

 B'2  0 + 0.2 (0.1 B0 + 0.3 B1) =  0.02 B0 + 0.06 B1
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Gauss-Siedel example - continued

 B0  0.1 B1 + 0.05 B2

 B1  5 + 0.1 B0 + 0.15 B2

 B2  0.02 B0 + 0.06 B1

 Substitute first estimate B0=0; B1=0; B2=0 in RHS

 Compute next estimate B0=0; B1=5; B2=0

 Substitute estimate B0=0; B1=5; B2=0 in RHS

 Compute next estimate B0=0.5; B1=5; B2=0.3
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Gauss-Siedel example - concluded

 B0 = 0.1 B1 + 0.05 B2

 B1 =  5 + 0.1 B0 + 0.15 B2

 B2 =  0.02 B0 + 0.06 B1

 Substitute estimate B0=0.5; B1=5; B2=0.3 in RHS

 Compute next estimate B0=0.515; B1=5.095; B2=0.31

 The process eventually converges in this case
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Inverting the Matrix

 The Gauss Siedel inversion is stable and converges 
fast since the Ei terms are constant and correct at 
every iteration, and all Bi values are positive.

 At the first iteration the emitted light energy is 
distributed to those patches that are illuminated, in the 
next cycle, those patches illuminate others and so on.

 The image will start dark and progressively illuminate 
as the iteration proceeds
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Progressive Refinement

 The nature of the Gauss Siedel allows a partial 
solution to be rendered as the computation proceeds.

 Without altering the method we could render the 
image after each iteration, allowing the designer to 
stop the process and make corrections quickly.

 This may be particularly important if the scene is so 
large that we need to re-calculate the form factors 
every time we need them.
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Inverting the matrix

 The Gauss Siedel inversion can be modified to make 
it faster by making use of the fact that it is essentially 
distributing energy around the scene. 

 The method is based on the idea of “shooting and 
gathering”, and also provides visual enhancement of 
the partial solution.
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Gathering Patches

 Evaluation of one B value using one line of the 
matrix:

             Bi
k = Ei + Ri  Bj

k-1 Fij

 is the process of gathering. 

Gathering patch
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Shooting Patches

 Suppose in an iteration Bi changes by Bi. The 
change to every other patch can be found using:

             Bj
k = Bj

k-1 + Rj Fji Bi
k-1

 This is the process of shooting, and is evaluating the 
matrix column wise.

Shooting patch
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Evaluation Order

 The use of shooting allows us to choose an evaluation 
order that ensures fastest convergence.

 The patches with the largest change B (called the 
unshot radiosiy) are evaluated first. 

 The process starts by initialising all unshot radiosity 
to zero except emitting patches where Bi = Ei
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Processing Unshot Radiosity

 Choose patch with largest unshot 
radiosity Bi

 Shoot the radiosity, ie for all 

other patches calculate Rj Fji Bi 
and add to the radiosity and 
unshot radiosity

 Set Bi = 0 and iterate 

Unshot

Radiosity

Patch

BnBn

B2B2

B1B1

B0B0
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Interpolation Strategies

 Visual artefacts do occur with interpolation strategies, 
but may not be significant for small patches

Patch 1 Patch 3Patch 2

True Radiosity

Computed Radiosity

Linear Interpolation (Gouraud)

Cubic Interpolation
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Meshing

 Meshing is the process of dividing the scene into 
patches.

 Meshing artifacts are scene dependent.

 The most obvious are called D0 artifacts, caused by 
discontinuities in the radiosity function
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Do Artefacts

 Discontinuities in the radiosity are exacerbated by bad 
patching

Polygon

Patches
Shadow 
Boundary

Computed radiosity

Patches incorrectly rendered 
(even after interpolation)
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Discontinuity Meshing (a priori)

 The idea is to compute discontinuities in advance:
 eg
        Object Boundaries 
        Albedo discontinuities (in texture)
        Shadows (requires pre-processing by ray tracing)
        etc
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Adaptive Meshing (a posteriori)

 The idea is to re-compute the mesh as part of the 
radiosity calculation:

 eg If two adjacent patches have a strong discontinuity 
in radiosity value, we:

 (i) put more patches (elements) into that area, or
 (ii) move the mesh boundary to coincide with the greatest 

change
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Subdivision of Patches (h refinement)

 Compute the radiosity 
at the vertices of the 
coarse grid.

 Subdivide into elements 
if the discontinuities 
exceed a threshold

Original coarse patches

h-refinement elements
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Computational issues of h-refinement

 When a patch is divided into elements each element 
radiosity is computed using the original radiosity 
solution for all other patches.

 The assumptions are that 
 (i) the radiosity of a patch is equal to the sum of the 

radiosity of its elements, and, 

 (ii) the distribution of radiosities among elements of a 
patch do not affect the global solution significantly
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Patch Refinement (r refinement)

 Compute the radiosity 
at the vertices of the 
coarse grid.

 Move the patch 
boundaries closer 
together if they have 
high radiosity 
changes

Original patches

Refined patches
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Patch refinement

 Unlike the other solution it would be necessary to re-
compute the entire radiosity solution each refinement.

 However the method should make more efficient use 
of patches by shaping them correctly. Hence a smaller 
number of patches could be used.
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Adding Specularities

 We noted that specularities (being viewpoint 
dependent) cannot be calculated by the standard 
radiosity method.

 However, they could be added later by ray tracing.

 The complete ray tracing solution is not required, just 
the specular component in the viewpoint direction
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