
Graphics Lecture 14: Slide 1

Interactive Computer Graphics

 Lecture 14: Radiosity - Computational Issues

Graphics Lecture 14: Slide 2

Graphics Lecture 14: Slide 3

The story so far

 Every polygon in a graphics scene radiates light.

 The light energy it radiates per unit area is called the
RADIOSITY and denoted by letter B

Graphics Lecture 14: Slide 4

Lambertian Surfaces

 A lambertian surface is one that obeys Lambert’s
Cosine law. Its reflected energy is the same in all
directions.

We can only calculate Radiosity for Lambertian
Surfaces

Incident
Light

Perfectly Matt surface
The reflected intensity is the same in all directions

Graphics Lecture 14: Slide 5

The Radiosity Equation

 For patch i Bi = Ei + Ri  Bj Fij

 Ei is the light emitted by the patch (usually zero)

 Ri  Bj Fij is the Reflectance*Light energy arriving
from all other patches

 Fij is the proportion of energy leaving patch j that
reaches patch i

Graphics Lecture 14: Slide 6

Form Factors Fij

 Fij = cos icos j Area(Aj) /  r2

Big form
factor
perhaps 0.5

Further away thus
smaller form factor
perhaps 0.25

Not facing each other thus
even smaller form factor
perhaps 0.1

Graphics Lecture 14: Slide 7

Computing the Form Factors

 Direct Computation
 - 60,000 polygons (or patches)
 - 3,600,000,000 form factors

 Computation takes forever - most of the results will
be zero.

 Hemicube method
 Pre-compute the form factors on a hemicube
 For each patch ray trace through the hemicube

Graphics Lecture 14: Slide 8

The whole solution

 All that remains to be done is to solve the matrix
equation:

1 -R1F12 -R1F13 . . -R1F1n B1 E1

-R2F21 1 -R2F23 . . -R2F2n B2 E2

-R3F31 -R3F32 1 . . -R3F3n B3 = E3

.
-RnFn1 -RnFn2 -RnFn3 . . 1 Bn En

Graphics Lecture 14: Slide 9

Summary of the Radiosity Method

 1. Divide the graphics world into discrete patches
 Meshing strategies, meshing errors

 2. Compute form factors by the hemicube method
 Alias errors

 3. Solve the matrix equation for the radiosity of each patch.
 Computational strategies

 4. Average the radiosity values at the corners of each patch
 Interpolation approximations

 5. Compute a texture map of each point or render directly

 Now read on . . .

Graphics Lecture 14: Slide 10

Alias Errors

 Computation of the form factors will involve alias
errors.

 This is equivalent to errors in texture mapping, due to
discrete sampling of a continuous environment.

 However, as the alias errors are averaged over a large
number of pixels the errors will not be significant.

Graphics Lecture 14: Slide 11

Form Factor reciprocity

 Form factors have a reciprocal relationship:

 Fij = cos icos j Area(Aj) /  r2

 Fji = cos icos j Area(Ai) /  r2

 Fji = Fij*Area(Ai) /Area(Aj)

 Thus form factors for only half the patches need be
computed.

Graphics Lecture 14: Slide 12

The number of form factors

 There will be a large number of form factors:

 for 60,000 patches, there are 3,600,000,000 form
factors. We only need store half of these (reciprocity),
but we will need four bytes for each, hence 7 Gbytes
are needed.

 As many of them are zero we can save space by using
an indexing scheme. (eg use one bit per form factor,
bit = 0 implies form factor zero and not stored)

Graphics Lecture 14: Slide 13

Inverting the matrix

 Inverting the matrix can be done by the Gauss Siedel
method:

 Each row of the matrix provides an equation of the
form

 Bi = Ei + Ri  Bj Fij

 1 -R1F12 -R1F13 . . -R1F1n B1 E1
-R2F21 1 -R2F23 . . -R2F2n B2 E2
-R3F31 -R3F32 1 . . -R3F3n B3 = E3
.

-RnFn1 -RnFn2 -RnFn3 . . 1 Bn En

Graphics Lecture 14: Slide 14

Inverting the matrix

 Gauss Siedel formulates an iterative method using the
equation of each row

Given:

 Bi = Ei + Ri  Bj Fij

 We use the iteration:

 Bi
k = Ei + Ri  Bj

k-1 Fij

 The initial values Bi
0 may be set to zero

Graphics Lecture 14: Slide 15

Gauss-Siedel method for solving equations

 Given a scene with three patches:

 B0  E0 + R0 (F01 B1 + F02 B2)

 B1  E1 + R1 (F10 B0 + F12 B2)

 B2  E2 + R2 (F20 B0 + F21 B1)

 and suppose we have numeric values

 B'0  0 + 0.5 (0.2 B1 + 0.1 B2) = 0.1 B1 + 0.05 B2

 B'1  5 + 0.5 (0.2 B0 + 0.3 B2) = 5 + 0.1 B0 + 0.15 B2

 B'2  0 + 0.2 (0.1 B0 + 0.3 B1) = 0.02 B0 + 0.06 B1

Graphics Lecture 14: Slide 16

Gauss-Siedel example - continued

 B0  0.1 B1 + 0.05 B2

 B1  5 + 0.1 B0 + 0.15 B2

 B2  0.02 B0 + 0.06 B1

 Substitute first estimate B0=0; B1=0; B2=0 in RHS

 Compute next estimate B0=0; B1=5; B2=0

 Substitute estimate B0=0; B1=5; B2=0 in RHS

 Compute next estimate B0=0.5; B1=5; B2=0.3

Graphics Lecture 14: Slide 17

Gauss-Siedel example - concluded

 B0 = 0.1 B1 + 0.05 B2

 B1 = 5 + 0.1 B0 + 0.15 B2

 B2 = 0.02 B0 + 0.06 B1

 Substitute estimate B0=0.5; B1=5; B2=0.3 in RHS

 Compute next estimate B0=0.515; B1=5.095; B2=0.31

 The process eventually converges in this case

Graphics Lecture 14: Slide 18

Inverting the Matrix

 The Gauss Siedel inversion is stable and converges
fast since the Ei terms are constant and correct at
every iteration, and all Bi values are positive.

 At the first iteration the emitted light energy is
distributed to those patches that are illuminated, in the
next cycle, those patches illuminate others and so on.

 The image will start dark and progressively illuminate
as the iteration proceeds

Graphics Lecture 14: Slide 19

Progressive Refinement

 The nature of the Gauss Siedel allows a partial
solution to be rendered as the computation proceeds.

 Without altering the method we could render the
image after each iteration, allowing the designer to
stop the process and make corrections quickly.

 This may be particularly important if the scene is so
large that we need to re-calculate the form factors
every time we need them.

Graphics Lecture 14: Slide 20

Inverting the matrix

 The Gauss Siedel inversion can be modified to make
it faster by making use of the fact that it is essentially
distributing energy around the scene.

 The method is based on the idea of “shooting and
gathering”, and also provides visual enhancement of
the partial solution.

Graphics Lecture 14: Slide 21

Gathering Patches

 Evaluation of one B value using one line of the
matrix:

 Bi
k = Ei + Ri  Bj

k-1 Fij

 is the process of gathering.

Gathering patch

Graphics Lecture 14: Slide 22

Shooting Patches

 Suppose in an iteration Bi changes by Bi. The
change to every other patch can be found using:

 Bj
k = Bj

k-1 + Rj Fji Bi
k-1

 This is the process of shooting, and is evaluating the
matrix column wise.

Shooting patch

Graphics Lecture 14: Slide 23

Evaluation Order

 The use of shooting allows us to choose an evaluation
order that ensures fastest convergence.

 The patches with the largest change B (called the
unshot radiosiy) are evaluated first.

 The process starts by initialising all unshot radiosity
to zero except emitting patches where Bi = Ei

Graphics Lecture 14: Slide 24

Processing Unshot Radiosity

 Choose patch with largest unshot
radiosity Bi

 Shoot the radiosity, ie for all

other patches calculate Rj Fji Bi
and add to the radiosity and
unshot radiosity

 Set Bi = 0 and iterate

Unshot

Radiosity

Patch

BnBn

B2B2

B1B1

B0B0

Graphics Lecture 14: Slide 25

Interpolation Strategies

 Visual artefacts do occur with interpolation strategies,
but may not be significant for small patches

Patch 1 Patch 3Patch 2

True Radiosity

Computed Radiosity

Linear Interpolation (Gouraud)

Cubic Interpolation

Graphics Lecture 14: Slide 26

Meshing

 Meshing is the process of dividing the scene into
patches.

 Meshing artifacts are scene dependent.

 The most obvious are called D0 artifacts, caused by
discontinuities in the radiosity function

Graphics Lecture 14: Slide 27

Do Artefacts

 Discontinuities in the radiosity are exacerbated by bad
patching

Polygon

Patches
Shadow
Boundary

Computed radiosity

Patches incorrectly rendered
(even after interpolation)

Graphics Lecture 14: Slide 28

Discontinuity Meshing (a priori)

 The idea is to compute discontinuities in advance:
 eg
 Object Boundaries
 Albedo discontinuities (in texture)
 Shadows (requires pre-processing by ray tracing)
 etc

Graphics Lecture 14: Slide 29

Graphics Lecture 14: Slide 30

Adaptive Meshing (a posteriori)

 The idea is to re-compute the mesh as part of the
radiosity calculation:

 eg If two adjacent patches have a strong discontinuity
in radiosity value, we:

 (i) put more patches (elements) into that area, or
 (ii) move the mesh boundary to coincide with the greatest

change

Graphics Lecture 14: Slide 31

Subdivision of Patches (h refinement)

 Compute the radiosity
at the vertices of the
coarse grid.

 Subdivide into elements
if the discontinuities
exceed a threshold

Original coarse patches

h-refinement elements

Graphics Lecture 14: Slide 32

Computational issues of h-refinement

 When a patch is divided into elements each element
radiosity is computed using the original radiosity
solution for all other patches.

 The assumptions are that
 (i) the radiosity of a patch is equal to the sum of the

radiosity of its elements, and,

 (ii) the distribution of radiosities among elements of a
patch do not affect the global solution significantly

Graphics Lecture 14: Slide 33

Patch Refinement (r refinement)

 Compute the radiosity
at the vertices of the
coarse grid.

 Move the patch
boundaries closer
together if they have
high radiosity
changes

Original patches

Refined patches

Graphics Lecture 14: Slide 34

Patch refinement

 Unlike the other solution it would be necessary to re-
compute the entire radiosity solution each refinement.

 However the method should make more efficient use
of patches by shaping them correctly. Hence a smaller
number of patches could be used.

Graphics Lecture 14: Slide 35

Adding Specularities

 We noted that specularities (being viewpoint
dependent) cannot be calculated by the standard
radiosity method.

 However, they could be added later by ray tracing.

 The complete ray tracing solution is not required, just
the specular component in the viewpoint direction

Graphics Lecture 12: Slide 36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

