Tutorial 5: Texture Mapping

This tutorial concerns texture mapping onto polygons. We will consider the case of a terminal in which individual pixels can be set to any intensity in the range $[0, I_{\text{max}}]$.

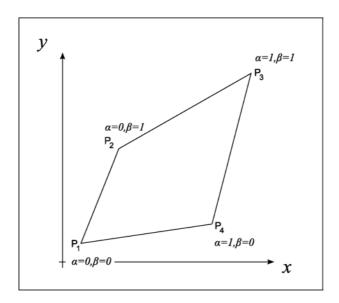
Suppose that the following function is used to transform texture coordinates (α, β) into an intensity value:

$$I = \frac{(\alpha + \beta)}{2} I_{\text{max}}$$

I is therefore the intensity given to a pixel which corresponds to position (α, β) in texture space.

A quadrilateral is projected onto the screen. The screen coordinates and texture coordinates of its vertices are as follows:

Vertex	Screen coordinates (x, y)	Texture coordinates (α, β)
\mathbf{P}_1	(5,5)	(0,0)
\mathbf{P}_2	(15,30)	(0, 1)
\mathbf{P}_3	(50,50)	(1,1)
\mathbf{P}_4	(40,10)	(1, 0)



- 1. Let \mathbf{P}_t be the point with screen coordinates (30, 30). Calculate the texture coordinates (α , β) corresponding to \mathbf{P}_t and find the intensity to be applied to \mathbf{P}_t .
- N.B. Use bi-linear interpolation to find the texture coordinates, i.e. solve for (α, β) the equation:

$$\mathbf{p} = \alpha \beta (\mathbf{c} - \mathbf{b}) + \alpha \mathbf{a} + \beta \mathbf{b}$$

Where

$$p = P_1 - P_1$$
 $a = P_4 - P_1$ $b = P_2 - P_1$ $c = P_3 - P_4$

Computing texture coordinates for every pixel by using bi-linear interpolation is very time consuming, since the solution of a quadratic is required. By doing the calculations differentially, much computation time can be saved.

For example, consider the line from P_1 to P_2 : At P_1 $\beta = 0$ and at P_2 $\beta = 1$ and there are 26 pixels on the line (the biggest change in the screen coordinates is along the y-component, from 5 to 30, which gives 26 pixels including the end-points).

Moving along the line from P_1 to P_2 , the differential change in β from one pixel to the next is $\frac{1}{25}$ because 26 pixels (including end-points) have 25 spaces between them.

Thus, we can estimate the values of β at each pixel along the line simply by adding the differential as we move from one pixel to its neighbour.

- 2. What are the differentials in α and β for the four lines bounding the quadrilateral?
- 3. Now consider the horizontal line through the point (30, 30). Using the differential method above, find the values of α and β at the points where it intersects the sides of the quadrilateral, and hence find the differentials in α and β along the line.
- 4. Use these differential values to compute α and β at the point (30, 30). Find also the corresponding intensity to be given to the pixel. Compare your results with the values obtained in part 1.
- 5. Can you suggest why the methods in parts 1 and 3 do not give exactly the same result?

Notice that with the differential method, calculating α and β for most of the pixels in the quadrilateral requires only two additions, and hence is much faster.