Tutorial 6: Spline Curves and Surfaces

1. A four knot, two dimensional Bezier curve is defined by the following table

	(x, y)
\mathbf{P}_{0}	$(0,0)$
\mathbf{P}_{1}	$(2,3)$
\mathbf{P}_{2}	$(3,-1)$
\mathbf{P}_{3}	$(0,0)$

a. Use de Casteljau's construction to sketch the curve.
b. Calculate the coefficients $\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3} of the corresponding cubic spline patch:

$$
\mathbf{P}(\mu)=\mathbf{a}_{3} \mu^{3}+\mathbf{a}_{2} \mu^{2}+\mathbf{a}_{1} \mu+\mathbf{a}_{0}
$$

c. Differentiate the spline patch equation to find $\mathbf{P}^{\prime}(\mu)$ and hence show that the gradient at \mathbf{P}_{3}
is the same as the gradient of the line joining \mathbf{P}_{3} to \mathbf{P}_{2}.
2. A Coons surface patch is to be drawn using the following array of points:

		μ			
		0	1	2	
v	-1	$(0,0,0)$	$(0,10,5)$	$(0,20,10)$	$(0,30,20)$
	0	$(10,0,5)$	$(10,10,20)$	$(10,25,30)$	$(15,35,40)$
	1	$(20,0,10)$	$(20,12,40)$	$(20,30,50)$	$(25,40,30)$
	2	$(30,0,5)$	$(35,15,30)$	$(40,35,40)$	$(50,50,20)$

We are interested in the patch constructed on the centre knots, $\mathbf{P}(0,0), \mathbf{P}(0,1), \mathbf{P}(1,0)$ and $\mathbf{P}(1,1)$.
a. Find the equations of the four cubic spline patches that bound the Coons Patch:

$$
\mathbf{P}(\mu, 0), \mathbf{P}(\mu, 1), \mathbf{P}(0, v), \mathbf{P}(1, v)
$$

These are each parametric cubic splines of the form:

$$
\mathbf{P}=\mathbf{a}_{3} \mu^{3}+\mathbf{a}_{2} \mu^{2}+\mathbf{a}_{1} \mu+\mathbf{a}_{0} \quad \text { or } \mathbf{P}=\mathbf{a}_{3} v^{3}+\mathbf{a}_{2} v^{2}+\mathbf{a}_{1} v+\mathbf{a}_{0}
$$

The parameters for either form can be found using:

$$
\left(\begin{array}{l}
\mathbf{a}_{0} \\
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\mathbf{a}_{3}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & -2 & 3 & -1 \\
2 & 1 & -2 & 1
\end{array}\right)\left(\begin{array}{c}
\mathbf{P}_{i} \\
\mathbf{P}_{i}^{\prime} \\
\mathbf{P}_{i+1} \\
\mathbf{P}_{i+1}^{\prime}
\end{array}\right)
$$

b. Find the point at the centre of the patch using the equation:

$$
\begin{aligned}
\mathbf{P}(\mu, v) & =\mathbf{P}(\mu, 0)(1-v)+\mathbf{P}(\mu, 1) v+\mathbf{P}(0, v)(1-\mu)+\mathbf{P}(1, v) \mu \\
& -\mathbf{P}(0,0)(1-\mu)(1-v)-\mathbf{P}(0,1)(1-\mu) v-\mathbf{P}(1,0) \mu(1-v)-\mathbf{P}(1,1) \mu v
\end{aligned}
$$

NB: This numerical calculation is rather tedious unless you use a programmable calculator, spreadsheet or software such as MatLab (which is available on the lab machines).

