Tutorial 7: Ray Tracing

A solid modelling system uses the following primitives:

Cylinder $: C_1, C_2, r$ Sphere : C, r

Box : A, e_1, e_2, e_3

The system is to draw the scene in <u>orthographic</u> projection. The viewing direction is parallel to the z axis: (0,0,1).

- 1. Assuming a ray starts from a pixel with location (x_{pix}, y_{pix}) , devise a test for each primitive to identify simple cases when the ray cannot intersect it.
- 2. Use your tests to decide if the following rays:

	(x_{pix}, y_{pix})		
Ray 1	(32, 52)		
Ray 2	(32, 58)		

can be ruled out from intersecting the following objects:

	C_1	$\mathbf{C_2}$	r
Cylinder 1	(20, 50, 50)	(50, 50, 50)	10
Cylinder 2	(35, 55, 40)	(35, 55, 60)	5

	C	r
Sphere 1	(20, 50, 50)	10

	\mathbf{A}	$\mathbf{e_1}$	$\mathbf{e_2}$	e_3
Box 1	(35, 45, 40)	(15, 0, 0)	(0, 15, 0)	(0, 0, 20)
Box 2	(30, 55, 40)	(5,0,0)	(0, -5, 0)	(0, 0, 20)

- 3. For rays that intersect in Q2, what is the surface normal at the point of intersection?
- 4. Devise a suitable general test for use in perspective projection.