Tutorial 5: Texture Mapping

Solutions

Q1. Using the notation in the notes and writing vectors as columns, we have the following edge vectors for three of the quadrilateral's edges:

$$
\mathbf{a}=\mathbf{P}_{4}-\mathbf{P}_{1}=\binom{35}{5} \quad \mathbf{b}=\mathbf{P}_{2}-\mathbf{P}_{1}=\binom{10}{25} \quad \mathbf{c}=\mathbf{P}_{3}-\mathbf{P}_{4}=\binom{10}{40} \quad \mathbf{p}=\mathbf{P}_{t}-\mathbf{P}_{1}=\binom{25}{25}
$$

The vector equation $\mathbf{p}=\alpha \beta(\mathbf{c}-\mathbf{b})+\alpha \mathbf{a}+\beta \mathbf{b}$ can therefore be written:

$$
\binom{25}{25}=\alpha \beta\binom{10-10}{40-25}+\alpha\binom{35}{5}+\beta\binom{10}{25}
$$

Simplifying and separating the components, we obtain two equations

$$
\begin{aligned}
& 25=0 \alpha \beta+35 \alpha+10 \beta \\
& 25=15 \alpha \beta+5 \alpha+25 \beta
\end{aligned}
$$

Which can be simplified to

$$
\begin{gathered}
7 \alpha+2 \beta=5 \\
3 \alpha \beta+\alpha+5 \beta=5
\end{gathered}
$$

The first equation gives $\beta=\frac{5-7 \alpha}{2}$ which can be substituted into the second to obtain

$$
\begin{aligned}
& 3 \alpha\left(\frac{5-7 \alpha}{2}\right)+\alpha+5\left(\frac{5-7 \alpha}{2}\right)=5 \\
& \Rightarrow 21 \alpha^{2}+18 \alpha-15=0 \\
& \Rightarrow 7 \alpha^{2}+6 \alpha-5=0 \\
& \Rightarrow \alpha \approx 0.52 \text { or }-1.38
\end{aligned}
$$

Ignoring the negative value of α, we have $\alpha \approx 0.52$ and $\beta \approx 0.68=0.5 \times(5-7 \times 0.52)$.
The intensity value to be given to the pixel should therefore be

$$
I \approx \frac{(0.52+0.68)}{2} I_{\max }=0.6 I_{\max }
$$

Q2. The differentials of α and β along the for lines are as follows:

Start	End	x-change	y-change	No. Of pixels	$\Delta \alpha$	$\Delta \beta$
\mathbf{P}_{1}	\mathbf{P}_{2}	10	25	26	0	$1 / 25$
\mathbf{P}_{2}	\mathbf{P}_{3}	35	20	36	$1 / 35$	0
\mathbf{P}_{1}	\mathbf{P}_{4}	35	5	36	$1 / 35$	0
\mathbf{P}_{4}	\mathbf{P}_{3}	10	40	41	0	$1 / 40$

Q3. The horizontal line through \mathbf{P}_{t} intersects the quadrilateral at two locations. One intersection is at the point $(15,30)$ which is the vertex \mathbf{P}_{2}, and has $\alpha=0, \beta=1$. The other intersection is half way along the line from \mathbf{P}_{4} to \mathbf{P}_{3} and has $\alpha=1, \beta=0.5$.

Since the pixel coordinate of the second intersection is $(45,30)$, the horizontal line has 31 pixels.
The differentials of α and β along the horizontal line are therefore:

$$
\Delta \alpha=\frac{1-0}{30}=1 / 30 \quad \Delta \beta=\frac{0.5-1}{30}=-1 / 60
$$

Q4. The pixel at \mathbf{P}_{t} is the $16^{\text {th }}$ along the horizontal line. Its α and β values are therefore given by:

$$
\alpha=0+15 \Delta \alpha=0.5 \quad \beta=1+15 \Delta \beta=0.75
$$

The intensity given to the pixel based on these texture coordinates is therefore

$$
I \approx \frac{(0.5+0.75)}{2} I_{\max }=0.625 I_{\max }
$$

Q5. To compute the values of α and β along the sides of the quadrilateral the differential method uses linear interpolation, and since in every case one or other of the texture coordinates is a constant along each edge, the bi-linear interpolation equation reduces to a linear equation. Hence these values on the edges given by the differential method and the bi-linear interpolation method are the same.

However, along the horizontal line, both α and β vary and y is fixed. Thus the $\alpha \beta$ term in the interpolation equation remains, giving a $2^{\text {nd }}$ order relationship of the form:

$$
x=K_{1} \alpha^{2}+K_{2} \alpha+K_{3} \text { and } x=L_{1} \beta^{2}+L_{2} \beta+L_{3}
$$

Hence, linear interpolation will not give the same result along the line. In practice, the differences will be small if the edge vectors \mathbf{b} and \mathbf{c} are similar.

