Tutorial 6: Spline Curves and Surfaces - Solutions

Q1.
a. The de Casteljau construction is illustrated below with choices for the parameter taken at $0.25,0.5$ and 0.75 .

b. To find the patch coefficients, note that the Bezier Curve equation is

$$
\mathbf{P}(\mu)=\mathbf{P}_{0}(1-\mu)^{3}+3 \mathbf{P}_{1} \mu(1-\mu)^{2}+3 \mathbf{P}_{2} \mu^{2}(1-\mu)+\mathbf{P}_{3} \mu^{3}
$$

if we multiply out we get:

$$
\mathbf{P}(\mu)=\mathbf{a}_{3} \mu^{3}+\mathbf{a}_{2} \mu^{2}+\mathbf{a}_{1} \mu+\mathbf{a}_{0}
$$

where

$$
\begin{aligned}
& \mathbf{a}_{3}=\mathbf{P}_{3}-3 \mathbf{P}_{2}+3 \mathbf{P}_{1}-\mathbf{P}_{0} \\
& \mathbf{a}_{2}=3 \mathbf{P}_{2}-6 \mathbf{P}_{1}+3 \mathbf{P}_{0} \\
& \mathbf{a}_{1}=3 \mathbf{P}_{1}-3 \mathbf{P}_{0} \\
& \mathbf{a}_{0}=\mathbf{P}_{0}
\end{aligned}
$$

We know the coordinates of $\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}$ and \mathbf{P}_{3} so we can substitute these in the above to obtain

$$
\mathbf{a}_{\mathbf{0}}=(0,0), \mathbf{a}_{\mathbf{1}}=(6,9) \mathbf{a}_{\mathbf{2}}=(-3,-21) \text { and } \mathbf{a}_{3}=(-3,12)
$$

c. Differentiating the spline gives

$$
\mathbf{P}^{\prime}(\mu)=3 \mathbf{a}_{3} \mu^{2}+2 \mathbf{a}_{2} \mu+\mathbf{a}_{1}
$$

and at \mathbf{P}_{3} we have $\mu=1$, therefore we have

$$
\mathbf{P}^{\prime}(1)=3 \mathbf{a}_{3}+2 \mathbf{a}_{2}+\mathbf{a}_{1}=(-9,3)
$$

We also have

$$
\mathbf{P}_{3}-\mathbf{P}_{2}=(-3,1) \Rightarrow 3 \times\left(\mathbf{P}_{3}-\mathbf{P}_{2}\right)=(-9,3)=\mathbf{P}^{\prime}(1)
$$

So $\mathbf{P}^{\prime}(1)$ is in the same direction as $\mathbf{P}_{3}-\mathbf{P}_{2}$

Q2.
a. The array of points given in the question is

		μ			
		-1	0	1	2
v	-1	$(0,0,0)$	$(0,10,5)$	$(0,20,10)$	$(0,30,20)$
	0	$(10,0,5)$	$(10,10,20)$	$(10,25,30)$	$(15,35,40)$
	1	$(20,0,10)$	$(20,12,40)$	$(20,30,50)$	$(25,40,30)$
	2	$(30,0,5)$	$(35,15,30)$	$(40,35,40)$	$(50,50,20)$

Considering $\mathbf{P}(\mu, 0)$ for now, we need to identify the points \mathbf{P}_{i} and \mathbf{P}_{i+1} and the directions $\mathbf{P}_{i}{ }_{i}$ and $\mathbf{P}^{\prime}{ }_{i+1}$. Reading along the row $v=0$, the points \mathbf{P}_{i} and \mathbf{P}_{i+1} can be taken directly:

$$
\mathbf{P}_{i}=(10,10,20) \text { and } \mathbf{P}_{i+1}(10,25,30)
$$

Using central differences, we can estimate $\mathbf{P}_{i}{ }_{i}$ and $\mathbf{P}^{\prime}{ }_{i+1}$ as follows:

$$
\begin{aligned}
& \mathbf{P}_{i}^{\prime}=\frac{1}{2}\left(\mathbf{P}_{i+1}-\mathbf{P}_{i-1}\right) \text { and } \mathbf{P}_{i+1}^{\prime}=\frac{1}{2}\left(\mathbf{P}_{i+2}-\mathbf{P}_{i}\right) \\
& \Rightarrow \mathbf{P}_{i}^{\prime}=\frac{(10,25,30)-(10,0,5)}{2}=(0,12.5,12.5) \\
& \text { and } \quad \mathbf{P}_{i+1}^{\prime}=\frac{(15,35,40)-(10,10,20)}{2}=(2.5,12.5,10)
\end{aligned}
$$

Repeating this process for the other bounding curves gives the following point and direction values

\mathbf{P}_{i}	\mathbf{P}_{i}	\mathbf{P}_{i+1}	$\mathbf{P}_{i+1}{ }_{i+1}$	
$\mathbf{P}(\mu, 0)$	$(10,10,20)$	$(0,12.5,12.5)$	$(10,25,30)$	$(2.5,12.5,10)$
$\mathbf{P}(\mu, 1)$	$(20,12,40)$	$(0,15,20)$	$(20,30,50)$	$(2.5,14,-5)$
$\mathbf{P}(0, v)$	$(10,10,20)$	$(10,1,17.5)$	$(20,12,40)$	$(12.5,2.5,5)$
$\mathbf{P}(1, v)$	$(10,25,30)$	$(10,5,20)$	$(20,30,50)$	$(15,5,5)$

Now we need to find the constant vectors $\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$. Consider again, the bounding curve $\mathbf{P}(\mu, 0)$. The constants for this curve can be found using the equation:

$$
\left(\begin{array}{l}
\mathbf{a}_{0} \\
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\mathbf{a}_{3}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & -2 & 3 & -1 \\
2 & 1 & -2 & 1
\end{array}\right)\left(\begin{array}{c}
\mathbf{P}_{i} \\
\mathbf{P}_{i}^{\prime} \\
\mathbf{P}_{i+1} \\
\mathbf{P}_{i+1}^{\prime}
\end{array}\right)
$$

Where the expressions that appear as column vectors are in fact matrices obtained by writing in the row form expressions of $\mathbf{P}_{i}, \mathbf{P}_{i}^{\prime}, \mathbf{P}_{i+1}, \mathbf{P}_{i+1}^{\prime}$ and $\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$. Using the information in the above table for $\mathbf{P}(\mu, 0)$ gives

$$
\left(\begin{array}{l}
\mathbf{a}_{0} \\
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\mathbf{a}_{3}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 & -2 & 3 & -1 \\
2 & 1 & -2 & 1
\end{array}\right)\left(\begin{array}{ccc}
10 & 10 & 20 \\
0 & 12.5 & 12.5 \\
10 & 25 & 30 \\
2.5 & 12.5 & 10
\end{array}\right)=\left(\begin{array}{ccc}
10 & 10 & 20 \\
0 & 12.5 & 12.5 \\
-2.5 & 7.5 & -5 \\
2.5 & -5 & 2.5
\end{array}\right)
$$

where the rows of the final matrix give the vectors $\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$.

Contd.

Repeating this for all four bounding curves, we can obtain the constant vectors for each one.
These are shown in the table below:

\mathbf{a}_{0}	\mathbf{a}_{1}	\mathbf{a}_{2}	\mathbf{a}_{3}	
$\mathbf{P}(\mu, 0)$	$(10,10,20)$	$(0,12.5,12.5)$	$(-2.5,7.5,-5)$	$(2.5,-5,2.5)$
$\mathbf{P}(\mu, 1)$	$(20,12,40)$	$(0,15,20)$	$(-2.5,10,-5)$	$(2.5,-7,-5)$
$\mathbf{P}(0, v)$	$(10,10,20)$	$(10,1,17.5)$	$(-2.5,1.5,20)$	$(2.5,-0.5,-17.5)$
$\mathbf{P}(1, v)$	$(10,25,30)$	$(10,5,20)$	$(-5,0,15)$	$(5,0,-15)$

b. At the mid-point $\mu=\nu=1 / 2$, and each bounding curve evaluates to an expression of the form

$$
\mathbf{P}=\frac{1}{8} \mathbf{a}_{3}+\frac{1}{4} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{1}+\mathbf{a}_{0}
$$

Where the values of $\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ vary according to which bounding curve is chosen. Evaluating each bounding curve gives:

$$
\begin{aligned}
& \mathbf{P}(0.5,0)=\frac{1}{8}(77.5,140,202) \\
& \mathbf{P}(0.5,1)=\frac{1}{8}(157,169,385) \\
& \mathbf{P}(0,0.5)=\frac{1}{8}(117.5,86.5,287.5) \\
& \mathbf{P}(1,0.5)=\frac{1}{8}(115,220,335)
\end{aligned}
$$

The formula

$$
\begin{aligned}
& \mathbf{P}(\mu, v)=\mathbf{P}(\mu, 0)(1-v)+\mathbf{P}(\mu, 1) v+\mathbf{P}(0, v)(1-\mu)+\mathbf{P}(1, v) \mu \\
&-\mathbf{P}(0,0)(1-\mu)(1-v)-\mathbf{P}(0,1)(1-\mu) v-\mathbf{P}(1,0) \mu(1-v)-\mathbf{P}(1,1) \mu v
\end{aligned}
$$

then becomes

$$
\begin{array}{r}
\mathbf{P}(0.5,0.5)=0.5 \times[\mathbf{P}(0.5,0)+\mathbf{P}(0.5,1)+\mathbf{P}(0,0.5)+\mathbf{P}(1,0.5)] \\
-0.25 \times[\mathbf{P}(0,0)+\mathbf{P}(0,1)+\mathbf{P}(1,0)+\mathbf{P}(1,1)] \\
\Rightarrow \mathbf{P}(0.5,0.5) \approx(29.22,38.47,75.63)-(15,19.25,35) \approx(14.2,19.2,40.6)
\end{array}
$$

