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Tutorial 6: Spline Curves and Surfaces - Solutions 
 

Q1.  

 

a.   The de Casteljau construction is illustrated below with choices for the parameter taken at 0.25, 0.5 and 0.75. 

 

 
 

b.   To find the patch coefficients, note that the Bezier Curve equation is  
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if we multiply out we get: 
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We know the coordinates of P0, P1, P2 and P3 so we can substitute these in the above to obtain  

a0 = (0, 0),  a1 = (6, 9)  a2 = (-3, -21) and a3 = (-3, 12) 

 

c.   Differentiating the spline gives 
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and at P3 we have µ = 1, therefore we have  
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We also have  
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So )1('P is in the same direction as 23 PP −  
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Q2.  

 

a.   The array of points given in the question is 

 

 µ 

-1 0 1 2 

ν 

-1 (0, 0, 0) (0, 10, 5) (0, 20, 10) (0, 30, 20) 

0 (10, 0, 5) (10, 10, 20) (10, 25, 30) (15, 35, 40) 

1 (20, 0, 10) (20, 12, 40) (20, 30, 50) (25, 40, 30) 

2 (30, 0, 5) (35, 15, 30) (40, 35, 40) (50, 50, 20) 

 

Considering P(µ,0) for now, we need to identify the points Pi and Pi+1 and the directions P’i and P’i+1.  Reading along 

the row ν = 0, the points Pi and Pi+1 can be taken directly: 

 

Pi = (10, 10, 20) and Pi+1 (10, 25, 30) 

 

Using central differences, we can estimate P’i and P’i+1 as follows: 
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Repeating this process for the other bounding curves gives the following point and direction values 

 

 Pi P’i Pi +1 P’i +1 

P(µ,0) (10, 10, 20) (0, 12.5, 12.5) (10, 25, 30) (2.5, 12.5, 10) 

P(µ,1) (20, 12, 40) (0, 15, 20) (20, 30, 50) (2.5, 14, -5) 

P(0,ν) (10, 10, 20) (10, 1, 17.5) (20, 12, 40) (12.5, 2.5, 5) 

P(1,ν) (10, 25, 30) (10, 5, 20) (20, 30, 50) (15, 5, 5) 

 

Now we need to find the constant vectors a0, a1, a2, a3.  Consider again, the bounding curve P(µ,0).  The constants for 

this curve can be found using the equation: 
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Where the expressions that appear as column vectors are in fact matrices obtained by writing in the row form 

expressions of Pi , P’i , Pi+1 , P’i+1 and a0, a1, a2, a3.  Using the information in the above table for P(µ,0) gives 
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where the rows of the final matrix give the vectors a0, a1, a2, a3. 

 

 

Contd. 
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Repeating this for all four bounding curves, we can obtain the constant vectors for each one.  

These are shown in the table below: 

 

 a0 a1 a2 a3 

P(µ,0) (10, 10, 20) (0, 12.5, 12.5) (-2.5, 7.5, -5) (2.5, -5, 2.5) 

P(µ,1) (20, 12, 40) (0, 15, 20) (-2.5, 10, -5) (2.5, -7, -5) 

P(0,ν) (10, 10, 20) (10, 1, 17.5) (-2.5, 1.5, 20) (2.5, -0.5, -17.5) 

P(1,ν) (10, 25, 30) (10, 5, 20) (-5, 0, 15) (5, 0, -15) 

 

 

b.    At the mid-point µ = ν = 1/2, and each bounding curve evaluates to an expression of the form 
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Where the values of a0, a1, a2, a3 vary according to which bounding curve is chosen.  Evaluating 

each bounding curve gives: 
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The formula  
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