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Abstract—Now ubiquitous, multicore processors provide repli-
cated compute cores that allow independent programs to run
in parallel. However, shared resources, such as last-level caches,
can cause otherwise-independent programs to interfere with one
another, leading to significant and unpredictable effects on their
execution time. Indeed, prior work has shown that specially
crafted enemy programs can cause software systems of interest to
experience orders-of-magnitude slowdowns when both are run in
parallel on a multicore processor. This undermines the suitability
of these processors for tasks that have real-time constraints.

In this work, we explore the design and evaluation of tech-
niques for empirically testing interference using enemy programs,
with an eye towards reliability (how reproducible the interference
results are) and portability (how interference testing can be
effective across chips). We first show that different methods
of measurement yield significantly different magnitudes of, and
variation in, observed interference effects when applied to an
enemy process that was shown to be particularly effective in
prior work. We propose a method of measurement based on
percentiles and confidence intervals, and show that it provides
both competitive and reproducible observations. The reliability of
our measurements allows us to explore auto-tuning, where enemy
programs are further specialised per architecture. We evaluate
three different tuning approaches (random search, simulated
annealing, and Bayesian optimisation) on five different multicore
chips, spanning x86 and ARM architectures. To show that our
tuned enemy programs generalise to applications, we evaluate
the slowdowns caused by our approach on the AutoBench and
CoreMark benchmark suites. Our method achieves a statistically
larger slowdown compared to prior work in 35 out of 105
benchmark/chip combinations, with a maximum difference of
3.8×. We envision that empirical approaches, such as ours, will
be valuable for ‘first pass’ evaluations when investigating which
multicore processors are suitable for real-time tasks.

I. INTRODUCTION

Multicore processors have become thoroughly mainstream,
and are now routinely used even in safety-critical settings [31].
Yet, in a real-time domain, the greatest asset and defining
feature of multicore architectures – that they allow work
to be distributed among multiple processing cores working
simultaneously – begets a significant weakness: interference
between cores.

This interference arises from contention between cores for
shared resources (e.g. caches, buses, and main memory), and
it can have a significant and unpredictable effect on the
worst-case execution time (WCET) of programs [24]. This
undermines the suitability of multicore processors in scenarios
that involve real-time constraints.

This paper is concerned with empirical techniques for
estimating upper bounds on how much interference a program
running on a multicore processor could be subjected to.
Although empirical techniques cannot promise to identify the
absolute worst case, they are nonetheless valuable for making
rapid comparisons between candidate processors. The key idea
is to design enemy programs that access shared resources in
just the right way to maximise the contention with a program
running on another core [24], [21], [12]. Prior work has
designed several enemy programs, demonstrating substantial
slowdowns on commercial off-the-shelf (COTS) processors of
more than 300× [3].

The first contribution of this paper is a method for reliably
estimating how much interference these enemy programs re-
ally cause. We propose a two-pronged measurement strategy
that directly mitigates against factors that can be controlled
(e.g. frequency throttling and thread migration) and uses
statistical methods to mitigate against factors that are more
difficult to control. We apply our measurement strategy to
enemy programs proposed in prior work, and show that while
there is no doubt that very large slowdowns are possible, it
is difficult to reproduce the same magnitudes of slowdown
once the various potentially-confounding factors are taken into
account.

Thus, armed with a method for reliably measuring multicore
interference, our second contribution is to investigate the
extent to which auto-tuning techniques can be effective at gen-
erating better enemy programs. To this end, we have designed
and implemented an open source tool that automatically tunes
the parameters of a set of ANSI-C enemy programs, aiming to
maximise the interference they cause on shared resources. Our
tool supports three different auto-tuning strategies – random
search, simulated annealing and Bayesian optimisation – and
we compare the effectiveness of each. We have applied our
tool to create enemy programs for five different chips, listed
in Table I.

We evaluate our approach using benchmarks from the
CoreMark [6] and AutoBench [2] real-time application suites.
Our auto-tuning framework is able to create enemies that cause
slowdowns up to 3.8× larger than the slowdowns caused by
enemies studied in prior work that were hand-tuned by experts.
More generally, our results show that auto-tuning for about
10 hours can lead to statistically significant improvements in



TABLE I: Development boards used to evaluate our approach

Name Short name SoC Arch Cores

Raspberry Pi 3 B Pi3 BCM2837 Arm A53 4
DragonBoard 410c 410c Adreno306 Arm A53 4
Intel Joule 570X 570x Atom 4
Nano-PC T3 T3 S5P6818 Arm A53 8
BananaPi M3 M3 A837 A7 8

observed slowdowns for 35 out of the 105 benchmark/board
combinations that we tried. We attribute the effectiveness
of auto-tuning here to its ability to uncover parameters that
exploit architectural features that are not immediately obvious
and are thus unlikely to be discovered even by experts. A
system developer can use these enemies with instrumentation
and measurement tools (e.g. performance counters), to gain
more insights into the system. An added benefit of our
methodology over expert-tuned enemies is that it is portable:
it can be used to automatically tune effective enemies across
multiple, distinct architectures. We emphasise that auto-tuning
is only enabled once our reliable measurement methodology
is in place. Without this, the slowdowns associated with dif-
ferent enemy program configurations cannot be meaningfully
compared.

In summary, our main contributions are:
• a set of principles for how enemy programs can be

rigorously evaluated, with emphasis on reproducibility
(Section II),

• an auto-tuning framework that can automatically config-
ure enemy programs to maximise interference without the
need for expert knowledge (Section III), and

• an experimental study instantiating our auto-tuning
framework with our reliable measurement method and
using it to tune enemy programs that have been proposed
in prior work, obtaining enemies that can be up to
3.8× more effective at provoking interference in real-time
applications (Section IV).

Our tool is open source and available online.1

II. MEASURING INTERFERENCE RELIABLY

We first present our approach for measuring the interference
caused by an enemy program in a reliable manner, which
underpins our practical instantiation in Section IV of the auto-
tuning approach that we present in Section III.

As in prior work [24], [3], we are interested in evaluat-
ing commodity hardware using a regular (i.e. non-real-time)
operating system, as this is a realistic usage scenario for
early evaluation of COTS processors. But unlike this prior
work, which pays little-to-no explicit attention to measurement
reliability (i.e. variance and uncontrolled interference), we go
to great lengths to stabilise the system environment. This
significantly lowers the amount of measurement variance,
which in turn allows us to produce results that have high
statistical confidence. To this end, we rely on two principles:

1https://github.com/mc-imperial/multicore-test-harness

(1) controlling as many sources of interference as possible,
and (2) acknowledging that not everything can be controlled
and using statistics to account for any remaining interference.

Section II-A describes our unsuccessful attempt to reliably
replicate prior work in an uncontrolled environment. Sec-
tions II-B and II-C then show how these results can be made
more reproducible by following our first principle, and our first
and second principles, respectively. The net effect of applying
our approach is to “tame” the slowdowns achieved by the
enemy programs of prior work so that they yield smaller, but
still impressive, slowdowns that can be reliably reproduced,
and that are thus more likely to be genuinely attributable to
the interference effects of enemy programs.

We attempted to reproduce the highest slowdowns reported
in recent interference work by Bechtel and Yun [3]: namely,
that their BwWrite enemy program can cause a slowdown
of more than 300× on a synthetic memory-intensive piece
of software (on a Raspberry Pi 3 B chip). The architectural
intuition behind these results is that the BwWrite program
exploits the internal structure of non-blocking shared caches
by filling the miss-status holding register and write-back
buffer.

The section is structured around a discussion of Figure 1,
which has six bars, (a) through (f). Bar (a) shows the results
for the BwWrite enemy program reported by Bechtel and
Yun in [3]. Bars (b) through (f) show results for our efforts
to reproduce their results under successively more controlled
conditions, with (b) using an uncontrolled environment at
one extreme, and (f) a controlled environment combined with
statistical techniques.

A. Uncontrolled environment

The experiment described in [3] was performed on the
Pi3 developer board, with one core executing the synthetic
memory-intensive software and the other cores executing
instances of the BwWrite enemy program. For simplicity, we
shall henceforth refer to a setting where a program under
test is running on one core and the other cores are executing
instances of the BwWrite enemy program as the Bechtel and
Yun Environment (BYE).

The exact operating system used in [3] is not specified, so
we installed a clean version of Raspbian Buster Lite on the
Pi3– the minimal install available for this development board.
Since Bechtel and Yun [3] do not discuss efforts to control the
environment, we also did nothing in this regard at this stage.

We are interested in configurations that produce high inter-
ference only under specific timing conditions, and thus might
produce such high interference only rarely. Because of this, we
need to measure the same configuration multiple times. Bar (a)
of Figure 1 shows the slowdown reported in [3], while bar (b)
shows the results we obtained trying to replicate this result in
our freshly installed (uncontrolled) environment. We ran each
experiment 20 times, taking 25 measurements each time and
recording the maximum value. The error bars represent the
variation of this maximum across the 20 runs. We were able
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Fig. 1: Slowdowns obtained using the BwWrite enemy pro-
gram on the Pi3: (a) as reported by Bechtel and Yun [3], and
then reproduced by ourselves (b) in an uncontrolled environ-
ment, (c) in an environment where just frequency throttling is
accounted for, (d) in an environment with controlled frequency
throttling and frequency scaling, (e) in a fully controlled
environment, and (f) using our statistical approach. The graph
uses a logarithmic scale. Error bars for (b) to (e) show the
range of maximum values observed. Error bars for (f) show
the confidence interval around the percentile.

to obtain results that are similar to those reported in [3], but
with very high variance.

Under the hypothesis that the environment in which ex-
periments are performed can significantly affect performance
measurements, we proceed to incrementally clean up (i.e.
reduce interference) from the environment.

B. Controlled environment

Taking inspiration from previous work that measures mi-
croarchitectural details through microbenchmarking [10] (but
not in the context of real-time systems), we first consider
mitigation of factors related to the hardware and operating
system that might cause us to wrongfully conclude that ob-
served slowdowns are due to the effects of enemy programs.

1) Hardware: Hardware mechanisms are generally de-
signed to be transparent to the user and can be unpredictable.
We take into account two factors here: frequency throttling
and cache warmth.

a) Frequency throttling: When the temperature of a
processor increases beyond a certain limit, the processor can
throttle its clock frequency to reduce the temperature. As
an example, Figure 2 shows how frequency is affected by
temperature on the Pi3. The data was gathered for a run of
a cache-intensive workload (though in our experience, similar
results can be obtained using any computationally-intensive
workload) using the vcgencmd tool. The figure demonstrates
that frequency throttling can cause serious fluctuations in
performance measurements. To mitigate the risk of mistaking
throttling effects for enemy-induced interference, we measure
temperature reported by the operating system at the end
of each experiment and discard the result if the reported
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Fig. 2: Frequency variation due to temperature on the Pi3.
As the execution temperature increases, frequency throttling
is activated, slowing down the core and making it difficult to
determine the cause of the slowdown in execution time.

temperature is above 80 degrees Celsius. We empirically found
that using this temperature threshold works well on all the
processors used in our experiments.

Bar (c) of Figure 1 shows results for the BwWrite example
when we control for frequency throttling only. This decreases
variation by 56%, but has a small and not statistically signifi-
cant effect on the maximum slowdown factor (the confidence
intervals associated with bars (b) and (c) overlap).

b) Cache warmth: We flush the cache at the beginning
of each experiment to guard against the possibility that data
left over from one experiment might affect the execution time
of the next experiment.

2) Operating System: Another source of unreliability in
execution time is the preemption mechanisms of modern
operating systems. A preempted victim may have a longer
execution time due to the interrupted time, as well as potential
cache pollution by the interrupting task. This interference
should not be attributed to the enemy processes.

To maximally mitigate against measurement error due to
preemption we would have to run experiments in a “bare-
metal” fashion or via a proven real-time operating system.
However, this would destroy the portability of our approach,
and the manual effort required per processor would defeat
the main intended use of our work as a early-stage method
to help in the selection of COTS processors for real-time
systems. We thus run experiments under Linux, taking account
of: thread migration, preemption, scaling governance, and
ensuring parallel execution.

a) Scaling governance: We ensure that the operating
system does not adjust the processor clock frequency by using
the “powersave” non-dynamic governor.

Bar (d) of Figure 1 shows results associated with the
BwWrite enemy program when the governor is set to “pow-
ersave“. Comparing bars (c) and (d) we see that this more
steady frequency management setting decreases the maximum
detected slowdown by 33%.

b) Thread migration: To guard against the operating
system migrating threads between cores, we pin the program
under test (PUT) and enemy programs to specific cores using
the taskset Linux command.

c) PUT preemption: We run the PUT at the highest
available priority level to reduce the risk that our measure-
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Fig. 3: The effect of context switches on the execution time
on the Pi3

ments are affected by the cost of context switching. We now
discuss an empirical investigation into the impact of, and
our approach to reduce the number of, context switches. We
use the getrusage command, which returns the number of
context switches a process had during execution.

First, we determine if context switches have a statistically
significant impact on execution time. To do this, we measured
the context switches for the experiment in Figure 1. We plotted
the samples using the number of context switches as the x-
axis and the execution time as the y-axis. Visually we can
see a clear correlation, and this can be statistically confirmed
using the Spearman’s rank-order correlation test which shows
a strong positive correlation.

Next, we investigate whether setting the scheduling of the
PUT has a statistically significant effect on reducing the
number of context switches. We ran the same experiment as
the previous paragraph, however, this time the priority of the
PUT is set to the maximum allowed value. To determine if this
scheduling scheme meaningfully affects the number of context
switches, we compare the results using the Wilcoxon rank-sum
method [20], a non-parametric test to determine if one set is
stochastically larger than another set. The test confirms that the
number of context switches is significantly reduced, returning
a p-value of less than .05. Concretely, the median number of
context switches observed per PUT execution without priority
scheduling is 88, and it decreases to 75 when the maximum
priority is set.

At the end of this subsection, we will return to Figure 1 and
show that while context switching (and other environmental
factors, discussed next) do correlate with execution time, their
overall impact on slowdowns (and variance) is small compared
to the previously discussed frequency throttling and power
governance.

d) Ensuring parallel execution: Our measurements will
be meaningless if the enemies do not actually run in parallel
with the PUT, so we need to take care with respect to the pro-

cess startup latency. To evaluate the maximum startup latency
on each platform, we used a latency evaluation framework [32]
and discovered that the maximum startup latency is generally
below 1 ms. Thus, we conservatively allow 10ms between
launching enemy programs and launching the PUT.

Bar (e) in Figure 1 shows the slowdown obtained when the
environment is controlled as described above. We can see that
smaller slowdowns are obtained, but that there is less variation
between measurements. The values reported in prior work [3]
are between the ones obtained in the uncontrolled environment
and the controlled environment. This highlights how difficult
it is to reproduce an experiment without knowing the exact
configuration in which it was run.

To summarise the findings in this section, frequency throt-
tling and scaling are the key factors that influence the degree
of slowdowns and the variation. While the other environmental
factors, such as scheduling priority, do have a correlation to
the PUT execution time, they are not statistically significant
when compared to frequency throttling and scaling, as can be
seen in Figure 1, bars (b)-(f).

We have presented an accessible approach, e.g. that can
be straightforwardly applied to COTS systems, for controlling
the execution environment. However, as we note, we cannot
account for all possible sources of interference, e.g. context
switches, and they do correlate with execution time, e.g. see
Figure 3. Our efforts to control such factors are impactful (see
Figure 1), however, we still observe a high variance. Thus,
we next present a statistical approach that aims to decrease
the variance, i.e. increase measurement precision, even in the
presence of uncontrollable environment factors inherent in
COTS systems.

C. Statistical approach

If the remaining variance in experimental measurement
illustrated by the bar (e) of Figure 1 was entirely due to
the interference induced by the enemy programs, then taking
the maximum of the interference measurements would be
appropriate, as prior works have done.

However, despite the stringent efforts described in Sec-
tion II-B, it is not possible to fully eliminate nondeterministic
aspects of the environment that might interfere with our
measurements. For example, without extreme manual effort
it is not practical to ensure that system daemons have been
completely disabled.

We thus need a statistical analysis over multiple measure-
ments that does a reasonable job of estimating the maximum
interference caused by enemy programs, ignoring outliers
arising due to external system events that we have not been
able to control.

Figure 4 illustrates how outliers can affect the measurement
of interference caused by enemy programs. The figure shows
the execution speed of a vector addition program executing
on the 410c (see Table I), running alongside various random
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Fig. 4: Each point shows the execution time of a simple vector
addition running alongside various enemies on the 410c.
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Fig. 5: The 95% confidence interval for each percentile after
1000 measurements on the Pi3, when causing interference to
a vector addition program.

enemy program configurations.2

We ran the vector addition program 20 times in the presence
of each enemy program configuration a through u. The 20
points above each configuration in Figure 4 show, for each
run, the execution time that was observed. The two unusually
high execution times associated with enemy configuration k
are clearly suspicious. While it is possible that these high times
really are due to rare, timing-related interference between
enemy configuration k and the program under test, it is prudent
to assume that these outliers are blips caused by uncontrolled
external factors. If we would measure interference as the max-
imum slowdown observed over all runs, we would certainly
select configuration k as the most effective of the enemy pro-
gram configurations in Figure 4, discarding the more readily-
reproducible results associated with e.g. configuration o.

To account for such outliers, we aim to measure interference
with respect to a percentile that is as close to the 100th

percentile as possible, but such that the effects of rogue outliers
are eliminated. The qth percentile of a data set is defined as
the value where q% of the data is below that value. We take
inspiration here from prior work on comparing latency and
end-to-end times of Linux schedulers [7].

To choose a reasonable value for the percentile, we ran a
pilot experiment consisting of the previously mentioned vector
addition application alongside three enemy programs. We
measured the execution time 1000 times and calculate the 95%

2These configurations were produced by the random search auto-tuning
strategy that we discuss in Section IV-B, but for the purposes of the present
discussion all that matters is that each represents a distinct configuration of
enemy programs whose interference effects we are interested in measuring.

confidence interval for the 75th to 100th range of percentiles.
The confidence interval gives an estimated range of values
which is likely to include the true value, the estimated range
being calculated from a given set of sample data. The results
of this experiment are highlighted in Figure 5 where we can
observe that as we increase the percentile, we also have to
tolerate a wider confidence interval. At this point, we have
to make a trade-off between wanting to be confident in the
accuracy of our measurements and wanting not to ignore
interesting cases. We ran the same experiment on the other
boards at our disposal and have chosen the 90th percentile as
a reasonable trade-off.

Returning to the BYE, bar (f) in Figure 1 shows the results
obtained after introducing our statistical approach. Comparing
bars (e) and (f), the slowdown reported when outliers are
removed is slightly more modest, but the confidence interval
is substantially smaller. Such small confidence intervals allow
us to reliably compare multiple enemy processes in terms of
interference caused on a program under test.

Summary: To recap again what Figure 1 shows with
respect to the slowdowns reported by Bechtel and Yun [3]
for their BwWrite enemy program: bars (a) and (b) indicate
that we can sometimes reproduce the same order-of-magnitude
slowdown, but with extremely high variance; bars (c), (d)
and (e) show how we progressively improved the control
of our environment; finally, bar (f) shows that, by using
statistical methods to prune outliers, these more modest, yet
still impressive, slowdowns can be observed with much lower
variance.

Armed with this rigorous method for measuring slowdowns,
we now propose an automated technique for tuning enemy
programs to maximise interference.

III. TUNING HOSTILE ENVIRONMENTS

We now describe our method for tuning a hostile en-
vironment—a set of enemy programs, each of which will
run on its own distinct core in parallel with a PUT—with
the aim of developing a hostile environment that interferes
maximally with the PUT. In this section we describe our
approach in general terms, abstracting away specifics such
as the shared resource with which interference is associated
and the search strategy used to guide the tuning process. We
provide a concrete instance of this framework, with detailed
experimental results, in Section IV.

Section III-A details the two-stage nature of our tuning
approach. In the first stage, we use auto-tuning to search for
enemy template parameters per resource. In the second stage,
a more generic hostile environment is constructed from the
previously-tuned enemy programs. In Section III-B we discuss
the tractability of single- and multi-stage tuning strategies and
various assumptions we have made.

A. Our Two-Stage Tuning Methodology

A user of our approach must first decide on the interference
paths they wish to investigate, i.e. shared resources for which
multicore contention might cause slowdowns. For each one
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of these paths they must create: (1) a parameterised enemy
template that will run in an infinite loop and stress the resource
and (2) a victim program that performs a fixed amount of
synthetic work, making heavy use of the resource. This is
the main manual task associated with using the method we
present, and the results obtained by our framework will only
be meaningful if the user provides suitable enemy and victim
programs. We detail example enemy and victim programs that
we have found to work well for a number of shared resources
in Section IV and others that did not work equally well in
Appendix A.

Our tuning methodology has two stages. In Stage 1 we
automatically tune the parameters of each enemy template with
the objective of maximising the effect of the enemy on its
corresponding victim program. Our framework is parametric
with respect to both the search strategy used and the specific
notion of “effect” that determines the objective function. We
discuss practical choices of search strategy in Section IV-B,
and use the statistically-rigorous measurement approach of
Section II-C as the objective function in practice. Because
the victim program is vulnerable to interference on the target
resource, the degree to which it is affected serves as a proxy
for measuring interference on the associated interference path.

Alternatively, the real PUT can be used as a tuning victim.
However, this would only be practical if the PUT is (a) known
in advance, and (b) sufficiently fast-running to be executed a
large number of times during the tuning phase. In Section IV-D
we present results for experiments that explore the trade-offs
associated with PUT tuning.

Stage 2 combines the resource-specific tuned enemy pro-
grams found in Stage 1 to construct a hostile environment
that aims to be effective across all considered resources. That
is, because we aim to interfere with an arbitrary PUT, which
may utilise multiple shared resources in complex ways, we
search for a combination of tuned enemy programs that is
effective across all victim programs. Rather than tune enemy
program parameters across multiple victim programs (we
argue in Section III-B that this is not tractable for large search
spaces), we instead exhaustively search for a Pareto-optimal
combination of individually-tuned enemy programs.

1) Stage 1: Tuning Enemy Programs per Resource: We now
rigorously describe how, for a given chip, the parameters for
an enemy template are tuned to maximise interference with
the corresponding victim program.

In what follows, let R denote the set of resources to be
targeted. For every r ∈ R, a victim program (Vr) and enemy
template (Tr) must be provided. We note that while R can
contain arbitrary sets of resources, it is up to the user to
design these judiciously. When tuning for memory hierarchy
interference as in this paper, we use R = {cache,memory}.

A template Tr takes a set of parameters drawn from a
parameter set Pr. For a given parameter valuation p ∈ Pr,
let Tr(p) denote the concrete enemy program obtained by
instantiating Tr with p.

Let us define an environment as a set of programs, each
of which can be assigned to a core. If these programs are

enemy programs, we say that the environment is hostile. For a
victim program Vr and environment e, let perf(Vr, e) denote
the performance associated with executing Vr on core 0, in
parallel with e running across the remaining cores. For the sake
of generality, we leave the specific definition of perf abstract
here. In practice, it could measure wall-clock execution time,
readings obtained from performance counters, or consumption
of some other resource, e.g. energy.

For a template Tr and parameter valuation p ∈ Pr, let
itf(Vr, Tr(p)) denote a numeric metric value for the interfer-
ence associated with (1) executing Vr in isolation on core 0
(with all other cores unoccupied), compared with (2) executing
Vr on core 0, in parallel with an instance of Tr(p) on every
other available core. That is:

itf(Vr, Tr(p)) =
perf(Vr, Tr(p))

perf(Vr, nop)

where nop denotes the absence of an enemy process. The aim
in the first stage is to determine the parameters that maximise
interference to the victim program as follows:

arg max
p∈Pr

itf(Vr, Tr(p)) (1)

Because Pr is too large to search exhaustively, search strate-
gies can be used to approximate the maximum. In Section IV-B
we evaluate several natural choices: random search, simulated
annealing, and Bayesian optimisation.

Let ptunedr denote the best parameter setting that was found
via search using the chosen strategy. We refer to the set
{Tr(p

tuned
r ) | r ∈ R} as the set of resource-tuned enemies.

2) Stage 2: Tuning a Generic Hostile Environment: Stage
1 considers the same enemy running on every available core
other than that occupied by the PUT. We now aim to devise
a deployment of enemy programs that is effective at inducing
interference across all resource types since we do not know
the resource usage profile of the PUT a priori. We determine
the best configuration of enemy programs by using a strategy
similar to the one described by Sorensen et al. [27]. In
particular, for an n-core processor where the PUT executes
on core 0, we seek a hostile environment that maps each core
i ∈ {1, . . . , n− 1} to a resource-tuned enemy.3

We now describe our strategy for choosing a suitable
hostile environment from the set of |R|n−1 possibilities.
First, for each resource r ∈ R, we rank all possible hostile
environments according to the extent to which they cause
interference with Vr, i.e. according to itf(Vr, e), with the
environment that induces the largest interference ranked first.
Let RankedEnvironments(r) denote this ranking.

While the number of possible hostile environments grows
exponentially with the number of cores, for three resources
it is feasible to exhaustively search the space of 8 and 128
candidate environments associated with 4- and 8-core chips,

3We also considered leaving cores unoccupied to account for the possibility
that multiple enemies might interfere with each other, in which case interfer-
ence might not always be maximised by filling up all cores. However, this
does not seem to be the case in practice.
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respectively. We discuss the use of approximations to scale to
larger core counts in Section III-B.

We then select a Pareto-optimal hostile environment. This
is an environment e for which there does not exist an en-
vironment e′ 6= e such that for all r ∈ R, e′ is ranked
more highly than e in RankedEnvironments(r). Being Pareto-
optimal, e may not be unique. In such cases, we break ties by
selecting the environment that is ranked better in all but one
of the RankedEnvironments(r). In our experimental results,
there were no ties after this step.

B. Assumptions and Tractability

We now describe several assumptions the above tuning
methodology makes about multicore interference and comment
on some aspects of the tractability of the approach.

1) Multi- vs. Single-Stage Tuning: We have described a
two-stage process, in which enemies are first tuned to cause
slowdowns in their corresponding victims, and second, a
Pareto-optimal combination is found across all victim pro-
grams. It is possible to formulate these stages into a single
bilevel optimisation problem where the combination of enemy
programs is the outer optimisation task, and individual enemy
template parameters are the inner optimisation task.

While such a formulation is mathematically elegant, the
parameter space quickly becomes very large. Additionally, as
shown in Section IV-B, the search space in this domain is
often unstructured, thus more intelligent searching techniques
are not more effective than simple random sampling. Indeed,
our pilot experiments using this approach failed to provide
meaningful slowdowns after many hours of tuning.

The two-stage tuning approach allows more precise explo-
ration into individual interference paths, which are interesting
even by themselves, before being merged into a generally
effective hostile environment.

2) Tuning With All Cores Occupied: In the first stage of
tuning, we assign n − 1 enemy programs, all with the same
parameters, across all cores except one (which is used to run
the victim program). However, in the second stage, we select a
mapping where the enemy programs that were tuned on n−1
cores may execute on fewer cores. Thus, it is natural to wonder
whether enemies tuned on n− 1 cores remain effective when
run on fewer cores.

Our decision to tune on n−1 cores is based on three factors.
First, considering every possible core count for every resource
during tuning would lead to a blow-up of the already very
large parameter-tuning space associated with one core count.
Second, hostile environments are noisy, making it challenging
to measure interference reliably (as discussed in depth in
Section II). As a result, we can reason more confidently
about our measurements in cases where interference is most
pronounced, i.e. when all available cores are occupied. Third,
we have found that the following monotonicity property tends
to hold in practice, where r ∈ R is a resource, p, p′ ∈ Pr

are parameter valuations, and itf(Vr, Tr(p),m) is the same as
itf(Vr, Tr(p)) except that Tr(p) is executed on m < n cores:

(itf(Vr, Tr(p)) > itf(Vr, Tr(p
′)) ∧ 0 < m < n)

=⇒ itf(Vr, Tr(p),m) > itf(Vr, Tr(p
′),m)

(2)

That is, if parameter valuation p beats p′ when enemies are
run on all available cores then p tends to also beat p′ when
enemies are run on fewer cores. We tested this property over
a subset of possible configurations by sampling the parameter
space of a cache enemy program (described in Section IV) for
one hour on the Pi3, and found the statement to hold true for
93% of runs.

3) Scalability: Stage 2 exhaustively searches combinations
of core-to-enemies mappings. This is tractable for the 4- and
8-core chips examined in this work, core counts that we
understand to be typical for processors being considered for
use in real-time systems. Stage 2 could be straightforwardly
adapted to larger core counts by approximating a Pareto-
optimal hostile environment using a search strategy, similar to
the way search strategies are used to approximate the global
maximum when tuning enemies per resource in Stage 1.

IV. AN INSTANCE OF OUR AUTO-TUNING FRAMEWORK

We now describe how we have combined the auto-tuning
methodology of Section III with the rigorous measurement
approach of Section II to automate the process of creating
a hostile environment that provokes interference on shared
memory resources.

In Section IV-A we explain how we have generalized the
enemy programs used in prior work by Bechtel and Yun [3]
to create a parameterized enemy template suitable for auto-
tuning, with an associated victim. We outline several natural
choices for the search strategy that can be used to guide
auto-tuning in Section IV-B. In Section IV-C we present
experimental results related to creating a hostile environment
with respect to synthetic victim programs, comparing the
effectiveness of different search strategies for this purpose.

Having found a hostile environment that is particularly
effective for each board, we evaluate the extent to which
tuning with respect to synthetic victim programs translates to
slowdowns on real-world benchmarks and compare to previous
work in Section IV-D. Finally, in Section IV-E, we delve
deeper into reasons for the effectiveness of our enemy pro-
grams by presenting data obtained via hardware performance
monitor counters. Appendix A briefly details alternative enemy
programs that we experimented with, that either proved to
be less effective than our generalisation of the BYE or were
targeting resources that we ultimately considered beyond the
scope of this paper.

A. Creating enemy templates

For our instantiation, we focus on the cache and the main
memory as the interference paths. Previous work has shown
how different configurations can be used to affect these
paths [3], [28], [24]. The size of the memory being accessed
as well as the operations performed on that memory are all
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TABLE II: The enemy/victim code, the tunable parameters and their corresponding ranges. HEADER is “;;” for enemy
programs and “int i=0;i<LIMIT;i++” for victims. LLC denotes the size of last-level cache for the processor under test.

#define ACCESS_PATTERN(*scratch_addr) ...
volatile int8_t *scratch =

(int8_t*) malloc(SCRATCH_SIZE);
for (HEADER)
for (int i = 0; i += STRIDE;

i < SCRATCH_SIZE)
ACCESS_PATTERN(&(scratch[i]));

Parameter cache value memory value Enemy range

SCRATCH_SIZE LLC 10×LLC 1–5120KB
STRIDE cache line size cache line size 1–20
ACCESS_PATTERN read,write read,write 1–5 read/writes

parameters that impact the effect of the enemy process. There-
fore we create a single enemy template by parameterising a
concrete enemy program from previous work [3], and use this
template to tune two distinct enemy programs: a cache enemy,
tuned with respect to a cache victim, and a memory enemy,
tuned with respect to a memory victim.

Table II summarises the code structure of the enemies and
victims, the parameters used by the cache and memory victims
(which are fixed for a given processor under test), and the
range of parameters available for auto-tuning of enemies.

The code for victims and enemies is very similar, with the
key difference being that an enemy program runs indefinitely,
while a victim program runs for a fixed number of loop
iterations. To this end, the HEADER parameter is instantiated
in an infinite loop for the enemy and a finite loop for the
victim.

The cache and memory victims iterate through the
scratch buffer, using a stride equal to the cache line size
of the processor under test (so that a large and diverse portion
of the cache is accessed), performing a read from and a write
to each buffer element under consideration. The victims differ
only in the fixed choice of the SCRATCH_SIZE parameter.
For the cache victim, it is set to the size of the last-level cache,
denoted LLC in Table II. For the memory victim, it is set to
10 times the size of the last-level cache, denoted 10×LLC
in Table II. Intuitively, the cache victim’s working set should
remain in last-level cache when there is no interference, so that
this victim is prone to a slowdown when an enemy program
causes last-level cache evictions. In contrast, the memory
victim’s working set does not fit in last-level cache, so that this
victim will frequently access main memory and thus be prone
to a slowdown when an enemy program causes interference on
main memory. Our intent is that the cache and memory victims
serve as proxies for PUTs that make heavy use of the shared
resources of the LLC cache and main memory, respectively.

In contrast to the victims, the parameters SCRATCH_SIZE,
STRIDE and ACCESS_PATTERN are available for tuning in
the enemy template. This allows both last-level cache and main
memory to be accessed in a chaotic manner that might interfere
with the cache or memory accesses of the victim.

The framework is readily extensible with further victim and
enemy templates to stress additional shared resources with

associated tunable parameters.4

B. Search Strategies

Recall that the first stage of our tuning methodology (Sec-
tion III-A1) requires a strategy to guide the search for effective
enemy program parameters with respect to a victim. We
intuitively expect the search space of enemy program config-
urations to be discontinuous with respect to interference, e.g.
due to caches having fixed parameters that are typically powers
of two, and memory being organised in banks. Therefore we
use search strategies that do assume convexity of the cost
function and do not rely on gradient information. We evaluate
the following strategies:
Random search (RAN) This strategy repeatedly samples con-

figurations and returns the best configuration that is
observed. RAN is lightweight and provides a baseline
against which to compare more sophisticated strategies.
A weakness of RAN is that as it remembers nothing but
the best combination of parameters seen so far, it may
try the same configuration multiple times.

Simulated Annealing (SA) This strategy is a meta-heuristic
to approximate global optimisation in a large search
space [16]. SA is often used when the search space is
discrete (e.g. all tours that visit a given set of cities),
and can be a good match for problems where finding
an approximate global optimum is more important than
finding a precise local optimum in a fixed amount of time.

Bayesian Optimisation (BO) Having an unknown objective
function, the Bayesian strategy is to treat it as a random
function and place a prior over it [26]. The prior captures
beliefs about the behaviour of the function. After gather-
ing results of evaluating the function, which are treated as
data, the prior is updated to form the posterior distribution
over the objective function. The posterior distribution,
in turn, is used to construct an acquisition function that
determines what the next query point should be.

There are advantages and disadvantages to each strategy. RAN
and SA can quickly determine the next query point. SA will
concentrate its search near the best solution found towards
the end of the search which might be advantageous if the
search space does not have too many local maxima. RAN
might get lucky and find a good solution, especially when

4We considered multiple shared resources however the cache and mem-
ory enemies seems to overwhelm all the others. We further detail this in
appendix A.
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TABLE III: Comparing search strategies. The strategies are
ordered using the symbols described in Section IV-C. In each
case, the best strategy is highlighted in bold, and the maximum
slowdown obtained using that strategy is given in parentheses.

Board Cache victim Memory victim

Pi3 SA<BO.RAN (51.5) BO.RAN.SA (16.1)
410c SA.BO.RAN (2.24) RAN.SA.BO (2.65)
570X SA.RAN.BO (2.07) SA.RAN.BO (2.5)
T3 SA<RAN.BO (6.6) BO.RAN.SA (5.7)
M3 SA.BO.BO (14.1) SA<RAN<BO (21.52)

the search space has little structure. BO needs time to remodel
the objective function and the acquisition function after each
new query is made. On the other hand, it is expected that
BO will only sample points that will increase our knowledge
of the problem. In general, one would expect to prefer the
first strategies in cases where the cost function is cheap to
evaluate and BO in cases where the cost function is expensive
to evaluate. We evaluate the effectiveness of these approaches
in Section IV-C.
Stopping Criteria: For all the tuning strategies, we need a
reliable objective function. Our considerations described in
Section II allow us to obtain a reliable value if multiple
measurements are taken. For our instantiation, we measure
200 times with the same configuration and calculate the
95% confidence interval. The confidence interval is calculated
in a distribution-free manner using the technique described
by Hahn et al. [14]. If we have a minimum amount of
measurements and the relative range of values within the
interval gets small enough (we use 5%) before we finish the
200 measurements, we stop the measurements early.

C. Hostile Environment Construction

We now compare the search strategies described in Sec-
tion IV-B and determine which one is best at finding effective
parameters for our enemy template with respect to each of the
cache and memory victims; this is the first stage of our tuning
approach (see Section III-A1). We then turn to the second
stage of our tuning approach (see Section III-A2) and construct
hostile environments by combining enemies.

1) Effectiveness of Search Strategies for Tuning Enemies:
We tune the enemy templates using their corresponding victim
program as described in Section III-A1 with all three search
strategies tuning for two hours. Since all search strategies have
a certain degree of randomness and can sometimes get “lucky”
(even BO starts by randomly sampling its starting points), we
perform three runs of each search method for each shared
resource. We use the Wilcoxon rank-sum method [20] to test
whether values from one set are stochastically more likely to
be greater than values from another set. This method is non-
parametric, i.e. it does not assume any distribution of values,
and returns a p-value indicating the confidence of the result.

The results of this experiment are shown in Table III, in
which we construct an order of the effectiveness of each search
method per resource, based on the best value found. Some

TABLE IV: The most aggressive hostile environments we
found. A configuration such as ‘VMCM’ denotes that the four
cores contain (respectively) the victim, a memory enemy, a
cache enemy, and a memory enemy.

Board Most aggressive hostile environment, per resource

Cache Main Memory Overall

Pi3 VCCC VMMM VMMM
410c VMCM VCMM VCMM
570X VMMC VMMC VMMC
T3 VMCM MCMM VMCC CMCM VMCM MCMM
M3 VCCC CMCC VCMC MCMC VCCC CMCC

orders are more confident than others: when the p-value is
low (below or equal to 0.05) we have high confidence in the
ordering, and we use the ‘<’ symbol; when the p-value is
high (above 0.05) we are not as confident in the ordering,
and we use the ‘.’ symbol. It seems that for most of the
development boards, the tuning strategy does not impact the
result that much and we cannot reliably say that one search
strategy is better than the other. This is most likely due to the
fact that the underling search space of the enemy templates is
irregular and the smarter BO can not properly model it.

To search more thoroughly for enemy program parameters
that maximise interference we tune each enemy template and
its corresponding victim program with the winning search
strategy for an extended period (10 hours). We empirically
determined that this is long enough to reach the point of
diminishing returns. Table III presents the maximum slow-
down obtained alongside the search strategy used. An astute
reader might notice that the slowdowns reported by prior work
are substantially larger than our own. This discrepancy is
due to a different metric being used. Prior work reported the
time per access, while we reported the time for the entire
synthetic application execution. Thus our reported slowdowns
are amortised by the non-memory instructions. If we do the
conversion from our metric to the time per access metric on
the Pi3 for the cache resource, we observe a similar slowdown
of 263×.

From Table I we see that the Pi3 and the 410c have the
same architecture, but implemented in different SoCs. The Pi3
is especially vulnerable to cache interference while the 410c is
much less prone to the same type of interference. It is likely
that this can be explained by microarchitectural differences
between the the two boards; however, we are not aware of the
exact mechanism that causes this difference, since low-level
details are generally not available for most commercial SoCs.

2) Constructing Hostile Environments: We now determine
the Pareto-optimal hostile environment for each of the boards
using the methodology described in Section III-A2. An exam-
ple of this approach can be seen in Table IV, where we have
listed the most aggressive environment for each development
board and for each of the resources. In every case it happens
to be either the top memory or cache enemy. Also, notice that
combinations of cache and memory enemies are more effective

9



(except for the Pi3) than just running the same enemy of each
core. It can be non-intuitive to anticipate the effects of such
combinations, motivating the need for such a technique.

D. Evaluating Hostile Environments on Benchmarks

The synthetic victim programs are designed to be espe-
cially vulnerable to shared resource interference. While these
synthetic applications show extreme cases of interference, we
are also interested in observing the effects on two industry-
standard benchmark suites that are frequently used in the
evaluation of embedded real-time systems:
EEMBC CoreMark is a standardised benchmark suite used

for evaluating processors [6]. It runs the following algo-
rithms back-to-back: list processing (find and sort), matrix
manipulation (common matrix operations), state machine
(determine if an input stream contains valid numbers),
and CRC (cyclic redundancy check).

EEMBC AutoBench consists of automotive workloads, in-
cluding: road speed calculation and finite impulse re-
sponse filters [2]. This benchmark suite is of interest for
the real-time industry and has been used in the evaluation
of other works in this domain, e.g. [12], [11].

We want to see if our approach is statistically better than the
original one that did not involve tuning. For this reason, we
calculated the 95% confidence interval of the 90th percentile
for the benchmarks running in both our hostile environment
and in the environment described by Bechtel and Yun [3]. We
are again using our reliable metric presented in Section II.
For simplicity, we shall henceforth refer our Tuned Hostile
Environment as THE.

Figure 6 shows the result of these experiments. The centre
of the ellipse is the 90th percentile. The width is the BYE
95% confidence interval and the height is our THE 95%
confidence interval. If the ellipses touch the diagonal, there
is no statistical difference between the approaches. This is
the case for the 410c and the 570X, where there seems to
be no major improvement. However, there are many cases
on the Pi3, T3 and M3 where our approach is able to cause
more interference than the manual approach. This is without
providing any extra architectural insight to the framework.

Our approach seems to be particularly effective on the T3
and the M3, the 8-core boards at our disposal. In these boards,
the cores are groups into clusters of 4 that share a cache and
there is no cache shared between all of the cores. For such a
non-trivial architecture it is more difficult to hand-craft enemy
processes that can fully exploit the shared resources

Overall, THE produced higher slowdowns in 35 appli-
cation/board pairs (33%); BYE produced higher slowdowns
in 6 application/board combinations (6%). The maximum
difference observed between BYE and THE was 3.8× on the
Pi3.

Tuning for an PUT: Our approach of tuning with respect
to victim programs that serve as proxies for how an PUT might
use a shared resource is appealing if a specific PUT of interest
is not yet available, if there are many PUTs of interest, or if
the PUT of interest cannot be executed rapidly. However, if a

single, fixed PUT of interest is available and can be execute
rapidly, our approach can be used to tune exactly for that PUT.
This would make use of our rigorous measurement approach
and our enemy process templates, but would not require our
victim templates.

Because the benchmark programs considered in this work
do execute relatively rapidly, we were able to run experiments
tuning enemy programs specialised per benchmark program.
Overall, and as expected, benchmark-tuned enemies are at
least, and sometimes more, effective than enemies tuned with
respect to victim templates. On the Pi3 the differences are quite
noticeable, leading to slowdowns of up to 11×, whereas THE
was able to cause slowdowns of up to 8×. However, on boards
such as the 570X and the 410c, the differences were not that
significant, with the slowdowns being within the confidence
interval of the slowdowns caused by the more general THE.

E. Performance Monitor Counters

To get a better understanding of why our approach is
effective, we access the performance monitor count (PMC)
registers on Pi3 where our approach was more effective and,
as such, expect the differences to be easier to analyse. We
are especially interested in cache misses, bus traffic and main
memory accesses. Unfortunately, there are no PMCs that can
give us more insight into main memory access. However,
there are PMCs for TLB accesses, which may shed light
on main memory contention. We reran the experiment from
Section IV-D but we also measured the performance counters
using the Linux tool perf. We evaluated PMC values for our
THE and the BYE one.

Figure 7 shows the results of these measurements. The two
environments can cause similar amounts of interference on
the TLB but our approach causes more LLC contentions. As
a result, there is accordingly more bus traffic. Our tuning
technique most likely has determined a more chaotic access
pattern that can cause more cache misses on the Pi3.

It is easy to imagine that future work might tap into such
performance counters as an objective function for tuning,
providing higher confidence that tuned enemy programs more
directly target their interference path.

V. RELATED WORK

Multicore Interference: In most approaches, developers
tune each resource-stressing benchmark for each specific SoC
to detect interference patterns that are specific to the under-
lying microarchitecture of the system. Radojkovic et al. [24]
were the first to utilise such techniques by deploying assembly
code to measure multicore interference on real application
workloads. They propose and evaluate a framework for quan-
tifying the slowdown obtained during simultaneous execution
by stressing a single shared resource at a time.

Nowotsch et al. [21] perform a similar experiment on a
PowerPC-based processor platform and focus specifically on
the memory system. The platform allows for different memory
configurations and provides several methods for interference
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Fig. 6: Comparing the slowdowns from the Bechtel and Yun environment (BYE) [3] with the ones from our Tuned Hostile
Environment (THE). Each ellipse represents one benchmark program. The width and height of each ellipse represent 95%
confidence intervals in the slowdown measurements. Ellipses above the diagonal represent benchmarks where our method
leads to larger slowdowns. The axis use a log scale. In the lower right corner we note the total number of cases when one
method was statistically better than the other.

mitigation. Fernandez et al. [12] evaluate a multicore LEON-
based processor and run experiments both with Linux and with
RTEMS. Surprisingly, there are cases when the slowdown is
even worse using the real-time OS.

While these approaches can yield impressive results, they
require detailed knowledge of the underlying architecture.
Fine-tuning requires significant engineering work and cannot
be used to quickly eliminate unreliable contenders. In con-
trast, our black-box approach assumes only basic architectural
knowledge and can be used to estimate interference quickly
and automatically.

Multicore Timing Anomalies: Shah et al. [25] study
timing anomalies in multicore processors and show how more
aggressive co-existing applications can actually lead to faster
execution times. Fernandez et al. [11] show how resource-
stressing benchmarks may fail to produce safe bounds. Under
heavy contention, arbitration policies for shared resources,
such as round robin and first-in-first-out, can lead a PUT to

suffer a delay that is not as severe as the potential worst
case. This emphasises the difficulty of hand-crafting enemy
programs and highlights the need for automatic methods such
as ours.

Interference Mitigation: Several mitigation techniques
for multicore interference have been proposed. First, prior
works have examined potential possible interference paths,
where contention for shared resources might impact program
execution time [15], [22], [23], [4], [5]. Techniques have then
been proposed for limiting this interference, either through
hardware support (e.g. cache partitioning [19]) or invasive soft-
ware modifications (e.g. bank-aware memory allocation and
bandwidth reservation [34], [33]). However, even with these
schemes, interference can still be substantial [29]. Therefore,
a technique to validate, and probe the limits of, the mitigation
method is still needed.

Limitations, Tuning and Microbenchmarks: Trying to
derive empirically the worst-case multicore interference for a
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Fig. 7: Average relative increase in PMC value over all
benchmarks on the Pi3.

task is arguably impossible. The work by Diaz et al. [17] has
resulted in the use of contention models of specific processor
resources based on information gathered from PMCs. These
models can be used to compose delays due to contention. Grif-
fin et al. [13] train a neural network to learn the relationship
between interference and the effect of the PUT execution time.
This approach is used to calculate an interference multiplier
that can be applied to a previously calculated WCET without
interference. Our work is complementary and can be used to
cross-validate the results obtained using these approaches.

Tuning strategies have been used to optimise different
computational aspects, with Ansel et al. [1] showing how
such an approach can be used for a variety of domain-specific
issues. Wegner et al. [30] use genetic algorithms to find the
inputs that cause the longest or shortest execution time. Law
et al. [18] use simulated annealing on a single-core processor
to maximise code coverage and therefore obtain an estimate
of the WCET. However, such automatic approaches have not
been applied to multicore processors until now.

Microbenchmarks, with functionality similar to the enemy
programs, have been successfully used for other purposes.
Eklov et al. [9], [8] deploy such enemies to measure the
latency and bandwidth sensitivity of a given application.
Fang et al. [10] use a type of microbenchmark to determine
microarchitectural details of a processor.

VI. CONCLUSIONS

We have presented (1) a reliable methodology to mea-
sure empirical multi-core interference, and (2) an auto-tuning
framework, enabled by our reliable measurement approach, for
finding effective parameters for enemy processes. We evalu-
ated this method across a wide range of processors, both Arm
and x86, using industry-standard benchmarks. Comparing the
slowdowns caused by our auto-tuned enemies with hand-tuned
enemies from prior work, we showed that our slowdowns
are often (35 out of 105) more pronounced, and up to 3.8×
larger. Thus, we have shown that this approach provides a

TABLE V: Other enemy templates considered.

Shared resource targeted Operation performed

Bus Transfers between the CPU and RAM
Memory Thrashing Random writes to main memory
Pipeline Arithmetic operations
System I/O operations

straightforward, effective, and reliable technique for initial
evaluations of multicore processors for tasks with real-time
constraints.
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APPENDIX

A. Graveyard of enemies

Our approach depends on the quality of the enemy programs
that we have chosen. Table V highlights other enemy templates
that we have considered.

The bus and memory thrashing enemy programs were meant
to similarly stress elements of the memory hierarchy. However,
these were completely overshadowed by the memory enemy
(shown in Table II) in terms of interference caused. For this
reason, the second stage of our tuning process would always
eliminate them. We therefore can see the strength of our tuning
strategy to help us eliminate inefficient templates.

The pipeline enemy programs was inspired by previous
work [24] but such an enemy is most likely effective when us-
ing a multi-threaded architecture with multiple virtual threads
sharing the same physical core. Since we only focused on
small embedded devices, which typically do not run many
tasks simultaneously, this proved not to be the case. We
decided to leave this exploration of this type of interference
to future work.

The final enemy we considered was meant to stress the
operating system by causing a significant number of opera-
tions on files. It created significant interference, considerably
slowing down other processes. We felt that this was beyond the
scope of the paper, since the interference caused was heavily
influenced by the choice of operating system. Nevertheless,
such an enemy would be interesting to study if we wished to
evaluate the robustness of embedded operating systems.

It is up to the user to choose good enemy/victim pairs, and
we have provided two such pairs in this paper. If they write a
poor enemy or a poor victim then the technique will not find
useful interference. The enemy/victim examples we present
here are based on best efforts from prior work [3] that we
have found to work well in practice.
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