
Slow and Steady
Measuring and Tuning Multicore Interference

1

Dan Iorga, Tyler Sorensen, John Wickerson, Alastair F. Donaldson

Motivation

2

Real-time:

● Needs timing predictability
● Can benefit from multicore

processors

Our work:

● Reproducible measurements
● Uncovering aggressive

configurations

https://github.com/mc-imperial/multicore-test-harness

Image taken from Wikipedia

Motivation

3https://github.com/mc-imperial/multicore-test-harness

10 second deadline
1 second execution time with no interference

Measuring interference

4

CPU CPU CPU CPU

LLC

L1

Main memory

L1 L1 L1

*Bechtel and Yun. RTAS 2019

Motivation

5https://github.com/mc-imperial/multicore-test-harness

Image taken from Wikipedia

10 second deadline
300 seconds delay with interference

Comparing enemies

66

CPU CPU CPU CPU

LLC

L1

Main memory

L1 L1 L1

CPU CPU CPU CPU

LLC

L1

Main memory

L1 L1 L1

Comparing enemies

7

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

EX
EC

U
TI

O
N

 T
IM

E
[S

]

MEASUREMENT

Enemy
Enemy

Are these
reliable?

8

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16 18 20

EX
EC

U
TI

O
N

 T
IM

E
[S

]

MEASUREMENT

Enemy
Enemy Is this reliable?

Comparing enemies

Outline

9

Reproducible
Measurements

Uncovering aggressive
configurations

Results

Slowdowns

10

200

250

300

350

400

450

500

Reported Uncontrolled
environment

No-throttling
1.2 Ghz

environment

No-throttling
600 Mhz

environment

Controlled
environment

Statistical
approach

Sl
ow

do
w

n

High variation of maximum
observed value

Effect of temperature

11

600

700

800

900

1000

1100

1200

76 77 78 79 80 81 82 83 84

FR
EQ

U
EN

CY
 [M

H
Z]

TEMPERATURE [ºC]

• Frequency throttling
significantly impacts
measurements

• Discard all measurements taken
at more than 80 ºC

Slowdowns

12

200

250

300

350

400

450

500

Reported Uncontrolled
environment

No-throttling 1.2
Ghz environment

No-throttling 600
Mhz environment

Controlled
environment

Statistical
approach

Sl
ow

do
w

n

Less variation

13

200

250

300

350

400

450

500

Reported Uncontrolled
environment

No-throttling 1.2
Ghz environment

No-throttling 600
Mhz environment

Controlled
environment

Statistical
approach

Sl
ow

do
w

n

Slowdowns

Less variation

Hardware:

● Flush caches between runs

Other mitigations

14

Compiler:

● Disable compiler optimisation for
enemy processes

Operating system:

● Disallow thread migration
● Run PUT at max priority
● Ensure parallel execution
● Remove unnecessary

software

Slowdowns

15

200

250

300

350

400

450

500

Reported Uncontrolled
environment

No-throttling 1.2
Ghz environment

No-throttling 600
Mhz environment

Controlled
environment

Statistical approach

Sl
ow

do
w

n

Slightly less
variation

Impact of context switches

16

1.5

2

2.5

3

0 100 200 300

EX
EC

U
TI

O
N

 T
IM

E
[S

]

CONTEXT SWITCHES

• Context switches still affect
the execution time

• There is a linear correlation
between execution time and
the number of context
switches

Statistical approach

17

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

75 80 85 90 95 100

Ex
ec

ut
io

n
tim

e
[s

]

Percentile

• The maximum observed value is
often unreliable

• We choose the 90th percentile
instead

Slowdowns

18

200

250

300

350

400

450

500

Reported Uncontrolled
environment

No-throttling 1.2
Ghz environment

No-throttling 600
Mhz environment

Controlled
environment

Statistical approach

Sl
ow

do
w

n

Reasonable
confidence

Outline

19

Reproducible
Measurements

Uncovering aggressive
configurations

Results

Enemy
Enemy
EnemyGPS Program
EnemyGPS Program

Interference

20

.

.

.

Set 1

Set 2

4-way set associative cache

Set 3
GOAL:
Make this miss!!!

ACCESS_PATTERN (st,ld,st)

STRIDE
SCRATH_SIZE

Enemy tuning

● Template enemies for each shared resource
● Victim programs for each enemy
● We tune the enemy programs to cause maximum interference

21

Enemy template

P1 P2 P3

Victim program

Concrete Enemy

25 14 32

Tuning

Enemy tuning

22

Enemy template

P1 P2 P3

Concrete Enemy 0

512 64 SL

Concrete Enemy X

20480 262 SLSSL

.

.

.

.

Slowdown: 1.14

Slowdown: 10.08

.

.

.

.

Selecting optimal configuration

23

CPU CPU CPU CPU

LLC

L1

Main memory

L1 L1 L1

… (+ 5 more)

CPU CPU CPU CPU

LLC

L1

Main memory

L1 L1 L1

CPU CPU CPU CPU

LLC

L1

Main memory

L1 L1 L1

Enemy templates

1. #define ACCESS_PATTERN(*scratch_addr) ...
2. volatile int8_t *scratch = (int8_t*) malloc(SCRATCH_SIZE);
3. for (HEADER)
4. for (int i = 0; i += STRIDE; i < SCRATCH_SIZE)
5. ACCESS_PATTERN(&(scratch[i]));

24

Parameter Enemy range Cache victim Memory victim

SCRATCH_SIZE 1-5120KB LLC 10 x LLC

STRIDE 1-20 cache line size Cache line size

ACCESS_PATTERN 1-5 read/writes read, write read, write

Outline

25

Reproducible
Measurements

Uncovering aggressive
configurations

Results

Experimental setup

26

Name SoC Arch Cores

Raspberry Pi 3 B BCM2837 ARM A53 4

DragonBoard 410c Adreno306 ARM A53 4

Intel Joule 570x 570x Atom x86 4

Nano-PC T3 S5P6818 Arm A53 8

BananaPi M3 A837 ARM A7 8

● We experiment on both ARM and Intel architectures
● We use as benchmarks coremark and autobench

Hostile environments

27

Board
Most aggressive hostile environment, per resource

Cache Main Overall

Raspberry Pi 3 B VCCC VMMM VMMM

DragonBoard 410c VMCM VCMM VCMM

Intel Joule 570x VMMC VMMC VMMC

Nano-PC T3 VMCM MCMM VMCC CMCM CMCM MCMM

BananaPi M3 VCCC CMCC VCMC MCMC VCCC CMCC

Results Visualization

28Previous approach slowdown

O
ur

 a
pp

ro
ac

h
sl

ow
do

w
n

above y = x: We achieve a higher slowdown

touching y = x: No clear winner

under y = x: Prior work has higher
slowdowns

Results

29

Raspberry Pi 3

NanoPC BananaBoard

Intel Joule Dragonboard

Graveyard of enemies

30

Shared resource targeted Operation performed

Bus Transfers between the CPU and RAM

Memory thrashing Random writes to RAM

Pipeline Arithmetic operations

System I/O operations

Conclusions

31

● Reproducible measurements can be obtained using a two-pronged approach:
system interference mitigation and a percentile-based metric

● Enemy programs can be precisely compared, and thus tuned using our
reproducible metrics

● Tuning can uncover higher slowdowns - achieves a statistically larger slowdown
compared to prior work in 35 out of 105 benchmark/chip combinations

Try it out!
https://github.com/mc-imperial/multicore-test-harness

Dan Iorga,
Imperial College London

Funded in part by DSTL grant R1000115750

