
Slow and Steady
Measuring and Tuning Multicore Interference

1

Dan Iorga, Tyler Sorensen, John Wickerson, Alastair F. Donaldson



Motivation
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Real-time:

● Needs timing predictability
● Can benefit from multicore 

processors

Our work:

● Reproducible measurements
● Uncovering aggressive 

configurations

https://github.com/mc-imperial/multicore-test-harness

Image taken from Wikipedia



Motivation
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10 second deadline
1 second execution time with no interference 



Measuring interference
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*Bechtel and Yun. RTAS 2019



Motivation
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Image taken from Wikipedia

10 second deadline
300 seconds delay with interference



Comparing enemies
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Comparing enemies
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Outline
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Reproducible 
Measurements

Uncovering aggressive 
configurations

Results



Slowdowns
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Effect of temperature
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• Frequency throttling 
significantly impacts 
measurements

• Discard all measurements taken 
at more than 80 ºC  



Slowdowns
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Hardware:

● Flush caches between runs

Other mitigations
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Compiler:

● Disable compiler optimisation for 
enemy processes

Operating system:

● Disallow thread migration
● Run PUT at max priority
● Ensure parallel execution
● Remove unnecessary 

software



Slowdowns
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Impact of context switches
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• Context switches still affect 
the execution time

• There is a linear correlation 
between execution time and 
the number of context 
switches



Statistical approach
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• The maximum observed value is 
often unreliable

• We choose the 90th percentile 
instead



Slowdowns
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Outline

19

Reproducible 
Measurements

Uncovering aggressive 
configurations

Results



Enemy
Enemy
EnemyGPS Program
EnemyGPS Program

Interference

20

.

.

.

Set 1

Set 2

4-way set associative cache

Set 3
GOAL:
Make this miss!!!

ACCESS_PATTERN (st,ld,st)

STRIDE
SCRATH_SIZE



Enemy tuning

● Template enemies for each shared resource
● Victim programs for each enemy
● We tune the enemy programs to cause maximum interference
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Enemy template

P1 P2 P3

Victim program

Concrete Enemy

25 14 32

Tuning



Enemy tuning
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Enemy template

P1 P2 P3

Concrete Enemy 0

512 64 SL

Concrete Enemy X
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Selecting optimal configuration
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Enemy templates

1. #define ACCESS_PATTERN(*scratch_addr) ...
2. volatile int8_t *scratch = (int8_t*) malloc(SCRATCH_SIZE);
3. for (HEADER)  
4.   for (int i = 0; i += STRIDE; i < SCRATCH_SIZE)    
5. ACCESS_PATTERN(&(scratch[i]));
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Parameter Enemy range Cache victim Memory victim

SCRATCH_SIZE 1-5120KB LLC 10 x LLC

STRIDE 1-20 cache line size Cache line size

ACCESS_PATTERN 1-5 read/writes read, write read, write



Outline
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Experimental setup
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Name SoC Arch Cores

Raspberry Pi 3 B BCM2837 ARM A53 4

DragonBoard 410c Adreno306 ARM A53 4

Intel Joule 570x 570x Atom x86 4

Nano-PC T3 S5P6818 Arm A53 8

BananaPi M3 A837 ARM A7 8

● We experiment on both ARM and Intel architectures
● We use as benchmarks coremark and autobench



Hostile environments
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Board
Most aggressive hostile environment, per resource

Cache Main Overall

Raspberry Pi 3 B VCCC VMMM VMMM

DragonBoard 410c VMCM VCMM VCMM

Intel Joule 570x VMMC VMMC VMMC

Nano-PC T3 VMCM MCMM VMCC CMCM CMCM MCMM

BananaPi M3 VCCC CMCC VCMC MCMC VCCC CMCC



Results Visualization

28Previous approach slowdown

O
ur

 a
pp

ro
ac

h 
sl

ow
do

w
n

above y = x: We achieve a higher slowdown

touching y = x: No clear winner

under y = x: Prior work has higher 
slowdowns



Results
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Graveyard of enemies 
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Shared resource targeted Operation performed

Bus Transfers between the CPU and RAM

Memory thrashing Random writes to RAM

Pipeline Arithmetic operations

System I/O operations



Conclusions
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● Reproducible measurements can be obtained using a two-pronged approach: 
system interference mitigation and a percentile-based metric

● Enemy programs can be precisely compared, and thus tuned using our 
reproducible metrics

● Tuning can uncover higher slowdowns - achieves a statistically larger slowdown 
compared to prior work in 35 out of 105 benchmark/chip combinations

Try it out!
https://github.com/mc-imperial/multicore-test-harness

Dan Iorga, 
Imperial College London

Funded in part by DSTL grant R1000115750


