
An Image Processing VLIW Architecture for
Real-Time Depth Detection

Dan Iorga†, Razvan Nane†, Yi Lu∗, Edwin Van Dalen∗, Koen Bertels †
† Computer Engineering Research Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

Email: {D.Iorga, R.Nane, K.L.M.Bertels}@tudelft.nl
∗Intel Benelux B.V., High Tech Campus 83, Eindhoven, 5656 AG, The Netherlands

Email: {edwin.van.dalen, yi1.lu}@intel.com

Abstract—Numerous applications for mobile devices require
3D vision capabilities, which in turn require depth detection
since this enables the evaluation of an object’s distance,
position and shape. Despite the increasing popularity of depth
detection algorithms, available solutions need expensive hardware
and/or additional ASICs, which are not suitable for low-cost
commodity hardware devices. In this paper, we propose a
low-cost and low-power embedded solution to provide high
speed depth detection. We extend an existing off-the-shelf VLIW
image processor and perform algorithmic and architectural
optimizations in order to achieve the requested real-time
performance speed. Experimental results show that by adding
different functional units and adjusting the algorithm to take full
advantage of them, a 640x480 image pair with 64 disparities1 can
be processed at 36.75 fps on a single processor instance, which
is an improvement of 23% compared to the best state-of-the-art
image processor.

I. INTRODUCTION

The depth at which objects are located can be estimated by

using two or more cameras and finding corresponding pixels

in each image. Driven by the rapid advance of technology,

the price of video cameras is continuously decreasing making

the addition of multiple cameras to entry-level hardware

devices affordable, cost-effective. As a result, the gathering

of depth information, which is used for advanced applications

such as gesture control [1] or 3D reconstruction[2], becomes

economically feasible. However, algorithms that extract depth

information from video stereo camera systems have a high

computational load. Therefore, in order to process captured

images in real-time (i.e. 30 frames per second (fps)), they

require expensive high-end platforms that are not suitable for

low-cost and low-energy commodity hardware systems such

as tablets.

There is a large number of articles that provide solutions

based on Field-Programmable Gate Array (FPGA)s, Graphical

Processing Unit (GPU)s, and Application-Specific Integrated

Circuit (ASIC)s that can achieve high frame rates and excellent

image quality. However, each of these devices have their

limitations: FPGAs require substantial implementation time

and are expensive, embedded GPUs, such as the NVIDIA

Tegra K1 [3], require higher power consumption than most

mobile devices can offer, while ASICs have a long and

1Disparity is defined as the distance between a pixel value from the left
image and the corresponding pixel value in the right image.

complex design process and therefore can not be easily

modified. For example, Intel utilizes a high-performance

ASIC [4] alongside their Image Processor Unit (IPU) in

their Merrifield (Atom Z3460/Z3480) and Moorefield (Atom

Z3560/Z3580) products. However, its high-cost and power

consumption does not make it suitable for entry-level mobile

devices. Very Long Instruction Word (VLIW) processors

can be very efficient for multimedia applications [5].

Consequently, our aim is to port the algorithm utilised in the

ASIC on the VLIW found inside the IPU. This would lead to

a considerable reduction in terms of bill of material, excluding

the cost of on-chip custom hardware integration and additional

Printed Circuit Board (PCB) area that is required for the ASIC

implementation.

In this paper, we propose an embedded VLIW architecture

for real-time depth detection that will be used in future

Intel IPUs. In order to reach a high frame rate, the

reference algorithm used in the ASIC implementation needs

to be adapted to the possibilities of the VLIW core while

maintaining the same image quality. To this purpose, we

propose architectural modifications to the VLIW core found

on existing Intel IPUs.

Experimental results obtained after all the modifications

have been performed show that a 640x480 image pair with 64

disparities can be processed at 36.75 fps on a single processor

instance. The specific contributions of the paper are:

• We propose algorithmic modifications to the reference

DeepSea algorithm [4], i.e., a recalculation scheme for

the hamming distance with the usage of an appropriate

census transform mask.

• We propose architectural extensions for the standard

VLIW core found on the Intel IPU. These extensions are

a specific Instruction Set Architecture (ISA) instruction,

exploiting an optimized hamming distance unit, and a

dedicated accelerator for performing region aggregation.

The paper is structured as follows. In section II we

provide a brief overview of related work, with a focus on

VLIW processors. Section III describes the VLIW core, the

algorithm, and the development tools used in this work. Then,

in section IV we iteratively optimize both the algorithm

and the VLIW architecture by performing architectural and

algorithmic optimizations. Finally, section V presents the

2016 IEEE 28th International Symposium on Computer Architecture and High Performance Computing

/16 $31.00 © 2016 IEEE

DOI 10.1109/SBAC-PAD.2016.28

158

2016 IEEE 28th International Symposium on Computer Architecture and High Performance Computing

978-1-5090-6108-2/16 $31.00 © 2016 IEEE

DOI 10.1109/SBAC-PAD.2016.28

158

experimental results while section VI concludes the paper.

II. RELATED WORK

Many ASIC, FPGA, and GPU implementations are able to

produce excellent performance both in terms of speed and

quality [6]. These are usually orders of magnitude faster than

any Central Processing Unit (CPU)-based design; however, the

high cost of such implementations makes it unattractive for

embedded general-purpose applications. Therefore, in order

to remain within the small power budget for embedded

hardware devices, a CPU-based implementation is required.

However, current CPU-based solutions are slow and cannot

achieve real-time performance levels. Off-the-shelf processors

provide low speed even if the algorithm is partitioned on

multiple cores [7], [8], [9]. To improve on these results, more

efficient solutions were proposed that are based on VLIW

processors [10]. Finally, extending VLIW cores with custom

ISA instructions can be considered the best approach as proven

by [11] and [12]. This paper follows the last approach. In [6],

an extensive survey of existing solutions can be found.

We observe that authors either use the rank transform
together with Semi-Global Matching (SGM) [13] or the

census transform with fixed Region Aggregation (fRA) [14].

Unfortunately, there is no information regarding the quality

of the resulting images in the above papers, and as such, it

is difficult to make an evaluation between the SGM-based

implementations and the fRA-based implementations in terms

of achieved accuracy. Therefore, in this work we assume a

target quality of service of 85% correctly detected pixels. This

requirement is derived from the solution offered by Woodfill

et. al [4]. This ASIC is the reference point for our VLIW

alternative design for which we require the same image quality.

III. PLATFORM AND ALGORITHM OVERVIEW

In this section, we provide background information

regarding the hardware platform used. Furthermore, we

describe the computational pipeline of the depth detection

algorithm that was the starting point for our implementation.

A. Hardware Platform

The Intel IPU is responsible for processing images in

commercially available systems such as the Merrifield and

Moorefield range of processors. The VLIW core can be

programmed to do tasks for which no dedicated block

exists. Because the core is responsible for performing

computationally intensive image processing tasks, it contains

multiple issue slots designed for either vector processing or

scalar processing. Figure 1 shows a high-level overview of

the VLIW architecture. The vector issue slots can process 32

elements of 16 bits at a time, resulting in a vector element

of 512 bits. The core includes separate data memory for the

scalar issue slots and separate data memory for the vector issue

slots (VMEM). The VMEM supports only aligned loads.

The architecture of the processor can be modified using the

in-house architecture description languages. This process can

be observed in figure 2, where a core based on the template

Program memory

Scalar memory

Scalar processing Vector processing

VMEM

VLIW processor

Vector memory

Load/store Load/store

VLIW instructionProgram counter

Fig. 1. The Architecture of the VLIW Core.

Fig. 2. The Process of Generating the Processor.

from 1 is generated using already implemented hardware

blocks. This enables rapid experimentation with different

configurations.

The number of issue slots, registers or memory blocks

can be modified, or new dedicated functional units can be

added to target specific applications. These functional units

have to be previously expressed in a hardware description

language such as VHDL or the in-house language known as

CHDL. The interconnects between these elements needs to be

clearly described such that the input/output ports receive the

corresponding data.

The algorithm is compiled for the resulting architecture

and simulated using the generated binary executable to obtain

performance cycles and accuracy numbers. Furthermore, the

generated processor hardware description files are synthesized

to get the clock frequency.

B. Algorithm Description

There is an abundance of approaches that can be used to

calculate the disparity map; however, most algorithms have a

common structure that has been identified by Scharstein and

Szeliski [15]. This methodology of structuring depth detection

algorithms has been adopted by the majority of computer

vision publications and consists of the following steps:

1) Preprocessing and matching cost computation (census &

hamming distance)

2) Cost (support) aggregation (region aggregation)

3) Disparity computation & optimization (WTA)

4) Disparity refinement (postprocessing)

159159

Census

Census

Hamming
distance

Region
aggregation WTA

9,600

9,600

614,400 614,400

0.62%

0.62%

23.77% 61.91% 12.01%

Fig. 3. Computational Pipeline Profile: Red represents Computational (% nrs.
shown on boxes) or Data (data vector nrs. shown on edges) Intensive Elements,
Yellow represents Medium, and Green represents Lightweight Elements.

The DeepSea3 ASIC [4] follows the previously described

steps and runs at 200 frames per second for 512x480

images. It has been used successfully in many applications

such as robotics. To obtain a real-time performance of this

algorithm on the IPU’s VLIW, we first create an equivalent

straightforward implementation. However, profiling for an

640x480 image with 64 disparities on the standard configured

VLIW processor revealed modest performance results (i.e.,

2.04 fps).

Figure 3 shows the computational pipeline of the algorithm

along with the computational and data intensive parts. The

percentage of the total computational time is shown on

top of each kernel and the number of 512 bits vector

elements transmitted is shown on the arrows. The first step,

preprocessing, is done using the census transform in order to

reduce radiometric differences between the images. This is a

form of non-parametric local transform, which relies on the

relative ordering of pixels in the image. It maps the intensity

values of pixels within a square window to a bit string, thereby

capturing the structure of the image.

A cost of matching individual pixels is defined with the goal

of attributing similar pixels a lower penalty in the matching

process. Since the output of the previous kernel is a bit string,

the hamming distance is used to establish a cost between the

reference image and all possible candidates from the target

image. As a result, a large amount of data is created at

this step, proportional to the number of matching candidates.

Therefore, this step makes the creation of an efficient pipeline

difficult.

Pixels in proximity will likely have the same disparity

because they belong to the same object. For more robust

matching, window-based correlation is employed, which

requires the sum of the hamming distances. The size of the

window has been analysed in works such as [16] and based on

this we have selected a window of size 7x7. The large amount

of data created by the previous step needs to be processed in

the region aggregation step. Our profile suggests that this is

the most computational intensive kernel, requiring more than

60% of the total execution time.

Finally the best candidate is chosen by simply selecting

the pixel with the smallest matching cost. When there is no

clear ”winner”, matching can be considered unreliable and

different techniques can be used for refinement. Incorrectly

detected pixels can be replaced by using information from

reliable matches. Because our target accuracy has already been

reached, this step is not required.

IV. DEPTH DETECTION OPTIMIZATIONS

In this section, we describe the optimizations performed to

obtain real-time depth detection speed. Our starting point is

the implementation of the method proposed by Woodfill et

al. [4], which we refer to as the original DeapSea3 algorithm.

We perform both algorithmic and architectural optimizations

to achieve the required performance. We start by improving

the performance of each kernel and then optimize the code to

reduce data transfers and increase parallelism.

A. Architectural Extensions

One of the main sources to improve the performance is

to look at application kernels that occupy a large percentage

of the computational pipeline. Based on profiling data shown

in Figure 3, we identify region aggregation and hamming
distance as candidates for acceleration. Software solutions are

preferred due to the fact that they do not require any extra area.

However, hardware solutions are used when no such option is

available.

a) Region Aggregation: The region aggregation kernel

receives a large amount of data that needs to be processed,

making it the most computational intensive part of the

algorithm. Software optimizations are based on box-filtering

techniques [17] or on integral images techniques [18] and

provide a significant speedup by taking advantage of already

calculated partial sums. Despite their effectiveness, these

techniques prove difficult to implement on an SIMD processor

due to the irregular way in which data is processed. This

motivates the addition of a dedicated hardware accelerator to

the core. Using the previously described in-house architecture

description languages, an existing bilateral filtering accelerator

is added. This accelerator uses a sliding window technique by

moving a square window across the image and performing

calculations at each position. Internally, this filter uses a

pipeline to process the data. Similar approaches have been

used by Cadence in the Tensilica processor, where they also

identify the potential of a bilateral filter unit for 3D depth

filtering [19].

Figure 4 illustrates the input/output of the accelerator. Since

the algorithm is based on a 7x7 window, a larger block of the

image is required to provide information about the neighbours.

This can be supplied by 6 vectors of size 4x8, where the last

two lines of the block are not used. Spatial weight coefficients

and intensity weight coefficients can be provided to preserve

the sharpness of the image and not blur corners. As output,

the filter returns the sum of pixels and the weight information,

which can be multiplied to obtain the final result.

The 22% increase of the size of the core is compensated by

the possibility of using this accelerator in other applications.

Most noticeably, this can be used for de-noising or

de-mosaicking [20].

b) Hamming distance: The number of operations

required to perform the hamming distance operation depends

on the size of the census mask. Since the core works with

vector elements of 16 bits, the sparse census transform defined

160160

BFA

512

512

512

512

512

512

512

512

512

512

Image block

Spatial weight coefficients

Intensity weight coefficients

Sum of pixels

Sum of coeficients

512
Target pixels

Fig. 4. The bilateral filter unit used to accelerate the region aggregation kernel. As input the accelerator takes the target pixels that need to be processed, an
image block of size 16x10 for neighbouring information and the spatial and intensity weights chosen. As output, the accelerator returns the sum of pixels and
the sum of coefficients for the target pixels.

C

0123456

C

0123456

C

0123456

15.2 15.3

Pa
te

rn
Ba

d
pi

xe
ls

15.1

Fig. 5. Different census transform patterns and their effect on image quality.
The middle one [16] and the right one [21], use a 16-bit pattern instead of
24. However, these do not increase the #bad pixels in the final image.

in [16] and refined in [21] are considered. As shown in

figure 5, the 16-bit census transform patterns, using fewer

comparison points does not degrade the quality of the resulting

image. All tests for this have been made by implementing

the algorithm in Matlab and submitting the result to the

Middlebury test framework [22]. The results from figure 5

show us that we can use any of the census patterns without

any loss of quality and because the middle and right options

require fewer comparisons, we prefer one of these options.

At this point, the output can be stored efficiently in vector

data elements. However, to obtain the hamming distance,

a series of operations have to be performed. Since these

are simple operations that are repeated multiple times, we

can obtain further performance increase by merging them.

Therefore, the second optimization performed for this kernel

is to create a hamming distance instruction as shown in

figure 6. The new instruction performs a XOR on two vectors

and then counts the number of ones in the result using an (m,k)

counter [23]. The final number is clipped so that unreliable

matches are discarded. This peephole optimization technique

allows the replacement of a bundle of instructions with a single

instruction.

Vector
XOR

(m,k)
counter

Vector
clipping

512512

512

Clip size

Census
left

Census
right

Fig. 6. The New Hamming Instruction

Since the operation requires unaligned loads from memory,

a memory system capable of performing such operations is

used. To this purpose, the block access memory described

in [24] is added to the core.

B. Algorithmic Optimizations

Since the hamming distance kernel produces a large amount

of data, stores to external memory have to be performed. This

prevents the creation of an efficient pipeline. A solution is to

merge the kernels and keep the generated data in registers.

Because of the limited amount of registers available, it is

impossible to store all intermediate data. This forces us to

recalculate data whenever necessary and not to store any

intermediate results. More explicitly, this is done by merging

the loops of the hamming distance, region aggregation and

winner takes it all kernel and calculating the data for the

accelerator only when it is required. Since the accelerator is

based on a sliding window technique, neighbouring hamming

input data overlaps. To store this data would require a large

amount of registers. Figure 7 shows the dataflow of the

algorithm, where operations 2-14 will be repeated in the

following iteration, despite the fact that they create the same

data.

161161

BAMEM load

VMEM load

BAMEM load

VMEM load

BAMEM load

VMEM load

BAMEM load

VMEM load

BAMEM load

VMEM load

BAMEM load

VMEM load

BAMEM load

VMEM load

Hamming

Hamming

Hamming

Hamming

Hamming

Hamming

Hamming

BFA Cost compare

BAMEM load

BAMEM load

BAMEM store

BAMEM store

Census dataCensus data
Census data

Census data Previous best disparity

Previous best cost

New best disparity

New best cost

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Spatial weight
coefficients

Intensity weight
coefficients

Fig. 7. The dataflow of the final algorithm. ”BAMEM loads” are LOADS from the block access memory and ”VMEM loads” are LOADS from the simple
vector memory, followed by the newly hamming distance operations, and then processing in the bilateral filter accelerator.

This algorithmic modification centers the entire algorithm

around the accelerator by removing any idle clock cycles in

order to create an efficient software pipeline, without high

register pressure. Even though the block access memory has

to reload the same data, the fact that the load address are

neighbouring allows for an efficient pipeline.

To ensure that we have not introduced a new bottleneck

by using a large amount of block access memory loads, the

final improvement is to store only the target image in this

memory and to keep the reference image in the simple vector

memory. By loading data from two sources instead of one,

the speed of the algorithm is limited only by the performance

of the bilateral filter accelerator and the hamming distance

processing.

Figure 8 illustrates how memory accesses are avoided by

writing data directly into the registers corresponding to the

functional units that need the data. This data is sent on demand

to the functional units, therefore no external memory access

is required.

Hamming Aggregation WTA

Memory

Reg ReggRR

Fig. 8. Avoid Memory Writes by Recomputing Data.

V. EXPERIMENTAL RESULTS

In this section, we describe the experimental setup and

subsequently perform an evaluation to study the impact on

speed and area of the design options described in the previous

section.

A. Experimental Setup

In order to test the application, we use a simple test

environment. This consists of a host processor alongside the

VLIW core connected by a system bus. The host processor

is responsible for starting the VLIW core, sending raw image

data to the core and reading the output data. We consider this a

realistic scenario, where the VLIW core acts as a coprocessor.

Experiments with different numbers of functional units

and accelerators were made possible by using the in-house

hardware description languages. In order to measure the

execution time, a cycle accurate simulator was used. The final

version of the core was synthesized at a frequency of 500Mhz.

For all tests, an image pair from the Middlebury

test framework[15] was used. The chosen algorithm is

deterministic and its execution speed does not depend on input

data, only the resolution of the image influences it. The images

were gray-scaled and resized to 640x480 in order to easily

compare it to other implementations.

B. Performance Evaluation

In figure 9, a plot of the speedup and total area2

provides information on the significance of each element. The

accelerator increases the speed of the application by 97% and

the total size of the core by 22%.

The hamming distance instruction and the block access

memory further increase the speed of the application to 238%

but also have a significant impact on size. The hamming

distance functional unit is very small and only contributes by

0.32%. However the newly added memory for unaligned loads

is expensive and contributes with 67%.

The biggest improvement is obtained by taking advantage

of the parallel nature of the VLIW core and avoiding memory

accesses when computing the distances. Recalculating the

hamming distance is faster than storing and loading it. The

issue slots that have been freed by using the accelerator

2Due to confidentiality reasons we can not report the exact area of the core

162162

can be used for these calculations. Since the accelerator

and the functional unit capable of performing the hamming

distance operation are the critical resources for the algorithm,

experiments are made with different numbers of such elements

to determine their effect on performance.

C. Image quality

To test the quality of the resulting depth map, the framework

proposed in [15] is used. This average percentage of bad pixels

is measured by comparing the result of four test images to the

ground truth; this has become a standard for determining the

accuracy of stereo vision algorithms.

Percentage of bad pixels:

B =
1

N

∑

(x,y)

(‖dc(x, y)− dt(x, y))‖ > δd),

where δd is a disparity tolerance error

Table I shows the average number of badly corrected pixels

is 14.9%. Although the quality of the image is not high

compared to other algorithms, it is more than enough for a

low-power, low-cost embedded solution. The average quality

of the resulting disparity map can be explained by the fixed

region aggregation used in our implementation. The quality

of the algorithm can be increased but at a cost of a reduced

number of frames per second.

Tsukuba Venus Teddy Cones Average
Errors (%) 12.5 5.8 20.5 16.2 14.9

TABLE I
QUALITY METRICS OF OUR ALGORITHM

D. Area-Performance Trade-off Exploration

Due to the previously added (separate) vector memories,

we are able to load multiple data at the same time. As a

result, incorporating more processing elements on the core

is meaningful because these will be able to access new data

and perform different operations in parallel. To understand

the potential of adding more functional units, we explore the

area-performance trade-off. Concretely, the region aggregation

accelerator and the hamming distance functional units are

the critical resources, and as such these resources can be

increased for more processing power. This has no impact

on the quality of the resulting image since the retargetable

compilation flow (shown in figure 2) can automatically adapt

to the new hardware architecture. The experimental results

related to this design space exploration are shown in figure 10.

It is clear that configurations with more than one hamming

distance function unit are Pareto optimal and are the ones that

should be considered.

We have shown that using more than two accelerators does

not have a considerable impact on the performance of the

application. By checking the schedule of the system, we notice

that the memory system is not able to provide data fast enough

for the accelerators to work at full capacity. Therefore, using

only two accelerators and two hamming distance functional

units seem to be the best configuration.

To further increase the speed of the application,

another memory can be added to the system for more

parallel loads. This configuration already satisfies the target

real-time requirements and adding additional memory would

unnecessarily increase the cost. By using this configuration

and synthesizing the core at 500Mhz, a frame rate of 36.75

can be obtained for VGA images with 64 disparities.

In order to compare different depth detection solutions,

we use a metric based on the image size and the number

of disparities performed. This metric was proposed in

[6] and defines the millions of disparity evaluations per

0

2

4

6

8

10

12

14

16

18

0%

20%

40%

60%

80%

100%

120%

Original Added accelerator Hamming
instruction

Added BAMEM Software pipeline Read from both
memories

2 accelerators, 2
hamming

Sp
ee

du
p

Ar
ea

 in
cr

ea
se

Improvement

Speedup and Area

Area Kernel acceleration Data recalculation Area-Performance Trade-off Exploration

Fig. 9. The Speedup and Area after each Modification.

163163

1 accelerator
1 hamming

1 accelerator,
2 hamming

1 accelerator,
3 hamming

2 accelerators,
1 hamming

2 accelerators,
2 hamming

2 accelerators,
3 hamming

3 accelerators,
1 hamming

3 accelerators,
2 hamming

3 accelerators,
3 hamming

4 accerators,
1 hamming

4 accelerators,
2 hamming

4 accelerators,
3 hamming

60%

80%

100%

120%

140%

160%

180%

9 1 4 1 9 2 4 2 9

AR
EA

 IN
CR

EA
SE

CLOCK CYCLES

MILLIONS

Hardware Configuration Options

Fig. 10. Hardware Configurations based on Critical Resources.

second (Mde/s):

Mde/s =
W ×H ×D

t
× 1

1, 000, 000
,

where W denotes image width, H denotes image height, D

denotes the number of disparities, and t denotes the total

execution time in seconds.

Table II lists the available CPU-based implementations

found in literature alongside their performance results.

Multi-core off-the-shelf processors provide modest

speed results regardless of the algorithm that they use.

Modified VLIW cores are able to achieve the highest

performance [12], [11] by using dedicated instructions and

enhancing the memory system. Compared to other available

implementations, our solution is able to obtain the highest

Mde/s.

Platform Resolution fps Mde/s Algorithm
Freescale P4080 [7] 640x480 (91) 1.5 42 Rank + SGM
Intel Pentium IV [8] 320x240 (32) 21 51 Cens + fRA
AMD Opteron [7] 225x187 (32) 26 79 Rank + SGM
Core 2 Duo [9] 320x240 (30) 42 96 Cens + fRA
TI C6416 [10] 640x480 (50) 3.8 58 Cens + fRA
Tensilica LX2 [12] 640x480 (64) 20 393 Rank + SGM
Generic VLIW [11] 640x480 (64) 30 589 Rank + SGM
Intel IPU’s VLIW 640x480 (64) 36.75 722 Cens + fRA

TABLE II
AVAILABLE GENERAL PURPOSE PROCESSOR IMPLEMENTATIONS

A comparison with FPGAs and GPUs can also be made

but since our goal is to target only low-power solutions, we

have not included it. Our solution requires less than 1W of

power (due to confidentiality reasons we can not report the

exact number) while embedded GPUs such as the NVIDIA

Tegra require orders of magnitude more than that. The work

described in [12], involving the Tensilica LX2 core does not

offer exact numbers but based on [25] we can expect that their

power consumption is also under 1W.

VI. CONCLUSION

In this paper, we presented both algorithmic and

architectural changes to provide a low-power low-cost

extension of the existing IPU’s VLIW core. These

modifications will lead to a considerable reduction in terms of

bill of material, excluding the cost of on-chip custom hardware

integration and additional PCB area that is required for the

ASIC implementation.

We proposed the use of a dedicated bilateral filter

accelerator in order to perform region aggregation as well

as a fast hamming distance instruction. The changes in the

algorithm consist of using a newer version of the census mask

and recalculating the hamming distance information in order to

avoid expensive memory operations. These methods allowed

us to obtain significant speedup compared to other available

solutions. After all enhancements, a real-time speed of 36.75

fps was achieved at the cost of a 114.05% increase in processor

area, which is only a fraction of the entire SoC.

164164

REFERENCES

[1] Intel. Intel real sense. [Online].
Available: http://www.intel.com/content/www/us/en
/architecture-and-technology/realsense-overview.html

[2] G.-T. Michailidis, R. Pajarola, and I. Andreadis, “High performance
stereo system for dense 3-d reconstruction,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 24, no. 6, pp. 929–941,
June 2014.

[3] NVIDIA. Nvidia tegra k1. [Online]. Available:
http://www.nvidia.com/object/tegra-k1-processor.html

[4] J. Woodfill, G. Gordon, D. Jurasek, T. Brown, and R. Buck, “The
tyzx deepsea g2 vision system, ataskable, embedded stereo camera,”
in Computer Vision and Pattern Recognition Workshop, 2006. CVPRW
’06. Conference on, June 2006, pp. 126–126.

[5] G. Paya-Vaya, J. Martin-Langerwerf, P. Taptimthong, and P. Pirsch,
“Design space exploration of media processors: A parameterized
scheduler,” 2007.

[6] B. Tippetts, D. Lee, K. Lillywhite, and J. Archibald, “Review of stereo
vision algorithms and their suitability for resource-limited systems,”
Journal of Real-Time Image Processing, pp. 1–21, 2013.

[7] O. Arndt, D. Becker, C. Banz, and H. Blume, “Parallel implementation
of real-time semi-global matching on embedded multi-core
architectures,” in Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIII), 2013 International Conference
on, July 2013, pp. 56–63.

[8] Y. K. Baik, J. H. Jo, and K. M. Lee, “Fast census transform-based
stereo algorithm using SSE2,” The 12th Korea-Japan Joint Workshop
on Frontiers of Computer Vision, pp. 305 – 309, 2006.

[9] C. Zinner, M. Humenberger, K. Ambrosch, and W. Kubinger, “An
optimized software-based implementation of a census-based stereo
matching algorithm,” 2008.

[10] M. Humenberger, C. Zinner, and W. Kubinger, “Performance evaluation
of a census-based stereo matching algorithm on embedded and
multi-core hardware,” 2009.

[11] G. Paya-Vaya, J. Martin-Langerwerf, C. Banz, F. Giesemann, P. Pirsch,
and H. Blume, “Vliw architecture optimization for an efficient
computation of stereoscopic video applications,” 2010.

[12] C. Banz, C. Dolar, F. Cholewa, and H. Blume, “Instruction set extension
for high throughput disparity estimation in stereo image processing,”

in Application-Specific Systems, Architectures and Processors (ASAP),
2011 IEEE International Conference on, Sept 2011, pp. 169–175.

[13] H. Hirschmuller, “Stereo processing by semiglobal matching and
mutual information,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 30, no. 2, pp. 328–341, Feb 2008.

[14] R. Zabih and J. Woodfill, “Non-parametric local transforms for
computing visual correspondence,” in Proceedings of the Third
European Conference on Computer Vision (Vol. II), ser. ECCV ’94.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1994, pp. 151–158.

[15] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” Int. J. Comput. Vision,
vol. 47, no. 1-3, pp. 7–42, Apr. 2002.

[16] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze, “A
fast stereo matching algorithm suitable for embedded real-time systems,”
Computer Vision and Image Understanding, vol. 114, no. 11, pp. 1180
– 1202, 2010, special issue on Embedded Vision.

[17] M. McDonnell, “Box-filtering techniques,” Computer Graphics and
Image Processing, vol. 17, no. 1, pp. 65 – 70, 1981.

[18] F. C. Crow, “Summed-area tables for texture mapping,” in Proceedings
of the 11th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’84. New York, NY, USA: ACM, 1984,
pp. 207–212.

[19] Cadence. Tensilica image vision processing. [Online]. Available:
http://ip.cadence.com/ipportfolio/tensilica-ip/image-vision-processing

[20] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Computer Vision, 1998. Sixth International Conference on,
Jan 1998, pp. 839–846.

[21] W. Fife and J. Archibald, “Improved census transforms for
resource-optimized stereo vision,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 23, no. 1, pp. 60–73, Jan 2013.

[22] Middlebury university. Stereo video benckmark. [Online]. Available:
http://vision.middlebury.edu/stereo/

[23] O. Spaniol, Computer Arithmetic: Logic and Design, 28th ed. New
York, NY, USA: John Wiley & Sons, Inc., 1981.

[24] R. Jakovljevi, A. Beri, E. van Dalen, and D. Miliev, “New access
modes of parallel memory subsystem for sub-pixel motion estimation,”
Journal of Real-Time Image Processing, pp. 1–18, 2014. [Online].
Available: http://dx.doi.org/10.1007/s11554-014-0481-3

[25] Cadence. Tensilica power consumption. [Online]. Available: http :
//ip.cadence.com/uploads/pdf/xtensa LX2 April07.pdf

165165

