
Mixed-Integer Convex Nonlinear Optimization with
Gradient-Boosted Trees Embedded

Miten Mistry

Dimitrios Letsios
Imperial College London, South Kensington, SW7 2AZ, UK.

Gerhard Krennrich

Robert M. Lee
BASF SE, Ludwigshafen am Rhein, Germany.

Ruth Misener
Imperial College London, South Kensington, SW7 2AZ, UK.

Decision trees usefully represent sparse, high dimensional and noisy data. Having learned a function from this

data, we may want to thereafter integrate the function into a larger decision-making problem, e.g., for picking

the best chemical process catalyst. We study a large-scale, industrially-relevant mixed-integer nonlinear

nonconvex optimization problem involving both gradient-boosted trees and penalty functions mitigating

risk. This mixed-integer optimization problem with convex penalty terms broadly applies to optimizing

pre-trained regression tree models. Decision makers may wish to optimize discrete models to repurpose legacy

predictive models, or they may wish to optimize a discrete model that particularly well-represents a data set.

We develop several heuristic methods to find feasible solutions, and an exact, branch-and-bound algorithm

leveraging structural properties of the gradient-boosted trees and penalty functions. We computationally test

our methods on concrete mixture design instance and a chemical catalysis industrial instance.

Key words : Gradient-boosted trees, branch-and-bound

1. Introduction

Consider integrating an unknown function into an optimization problem, i.e., without a

closed-form formula, but with a data set representing evaluations over a box-constrained

feasibility domain. Optimization in the machine learning literature usually refers to the

training procedure, e.g., model accuracy maximization (Sra et al. 2012, Snoek et al. 2012).

This paper investigates optimization problems after the training procedure, where the

trained predictive model is embedded in the optimization problem. We consider optimization

methods for problems with gradient-boosted tree (GBT) models embedded (Friedman 2001,

Hastie et al. 2009). Advantages of GBTs are myriad (Chen and Guestrin 2016, Ke et al.

2017), e.g., they are robust to scale differences in the training data features, handle both

1

2 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

categorical and numerical variables, and can minimize arbitrary, differentiable loss functions.

GBTs are interpretable models, i.e., humans can understand their enclosed information.

After developing a machine learning model, we may wish to embed the model into a

larger decision-making problem. The resulting optimization models may be addressed using

local (Nocedal and Wright 2006) or deterministic global (Schweidtmann and Mitsos 2018)

methods. The value of global optimization is known in engineering (Boukouvala et al.

2016), e.g., local minima can lead to infeasible parameter estimation (Singer et al. 2006) or

misinterpreted data (Bollas et al. 2009). For applications where global optimization is less

relevant, we still wish to develop optimization methods for discrete and non-smooth machine

learning models, e.g., regression trees. Discrete optimization methods allow repurposing a

legacy model, originally built for prediction, into an optimization framework.

Our optimization problem incorporates an additional convex penalty term in the objec-

tive, accounting for risky predicted values in parts of the feasibility domain where the

machine learning model is not well trained due to missing data. For instance, consider his-

torical data from a manufacturing process for quality maximization. The data may exhibit

correlation between two process parameters, e.g., the temperature and the concentration

of a chemical additive. A machine learned model of the system assigns weights to these

parameters for future predictions. Lacking additional information, numerical optimization

may produce candidate solutions with temperature and concentration combinations that

(possibly incorrectly) suggest temperature is responsible for an observed effect. The convex

penalty term helps control the optimizer’s adventurousness by penalizing deviation from the

training data subspace and is parameterized using principal component analysis (Vaswani

et al. 2018). Large values of this risk control term generate conservative solutions. Smaller

penalty values explore regions with greater possible rewards but also additional risk.

This paper considers a mixed-integer nonlinear optimization problem with convex non-

linearities (convex MINLP). The objective sums a discrete GBT-trained function and a

continuous convex penalty function. We design exact methods computing either globally

optimal solutions, or solutions within a quantified distance from the global optimum. The

convex MINLP formulation enables us to solve industrial instances with commercial solvers.

We develop a new branch-and-bound method exploiting both the GBTs combinatorial

structure and the penalty function convexity. Numerical results substantiate our approach.

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 3

Paper organization Section 3 introduces the optimization problem and Section 4 formulates

it as a convex MINLP. Section 5 describes our branch-and-bound method. Section 6 defines

the convex penalty term. Section 7 presents numerical results. Finally, Section 8 concludes.

2. Background

This section describes gradient-boosted trees (GBTs) (Friedman 2001, 2002). In this work,

GBTs are embedded into the Section 3 optimization problem. GBTs are a subclass of

boosting methods (Freund 1995). Boosting methods train several weak learners iteratively

that collectively produce a strong learner, where a weak learner is at least better than

random guessing. Each boosting iteration trains a new weak learner against the residual of

the previously trained learners by minimizing a loss function. For GBTs, the weak learners

are classification and regression trees (Breiman et al. 1984).

This paper restricts its analysis to regression GBTs without categorical input variables.

A trained GBT function is a collection of binary trees and each of these trees provides its

own independent contribution when evaluating at x.

Definition 1. A trained GBT function is defined by sets (T ,Vt,Lt) and values

(i(t, s), v(t, s), Ft,l). Set T indexes the trees. For a given tree t∈ T , Vt and Lt index the split

and leaf nodes, respectively. At split node t∈ T , s∈ Vt, i(t, s) and v(t, s) return the split

variable and value, respectively. At leaf node t∈ T , l ∈Lt, Ft,l is its contribution.

Tree t∈ T evaluates at x by following a root-to-leaf path. Beginning at the root node of

t, each encountered split node s∈ Vt assesses whether xi(t,s) < v(t, s) or xi(t,s) ≥ v(t, s) and

follows the left or right child, respectively. The leaf l ∈Lt corresponding to x returns t’s

contribution Ft,l. Figure 1 shows how a single gradient-boosted tree recursively partitions

the domain. The overall output, illustrated in Figure 2, sums all individual tree evaluations:

GBT(x) =
∑
t∈T

GBTt(x).

Example 1. Consider a trained GBT that approximates a two-dimensional function

with T = {t1, . . . , t|T |}. To evaluate GBT(x) where x= (4.2,2.8)>, let t1 be the tree given

by Figure 1, the highlighted path corresponds to evaluating at x. The root split node

query of x1 < 2 is false, since x1 = 4.2, so we follow the right branch. Following this branch

encounters another split node. The next query of x2 < 4 is true, since x2 = 2.8, so we

follow the left branch. The final branch reaches a leaf with value 4.3, hence GBTt1(x) = 4.3.

The remaining trees also return a value after making similar queries on x. This results in

GBT(x) =
∑|T |

i=1 GBTti(x) = 4.3 +
∑|T |

i=2 GBTti(x).

4 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

(x1,2)

(x2,4)

(x1,6.2)

1(x1,4)

53

(x2,1)

4.3−2

(x2,3)

75

v1,0 = 0 v1,1 = 2 v1,2 = 4 v1,3 = 6.2 v1,4 = 8

v2,0 = 0

v2,1 = 1

v2,2 = 3

v2,3 = 4

v2,4 = 6

z1 = 5

z2 = 7

z3 =−2

z4 = 4.3

z5 = 3 z6 = 5 z7 = 1

x1

x2

Figure 1 Gradient boosted tree, see Definition 1, trained in two dimensions. Left: gradient boosted tree. Right:

recursive domain partition defined by tree on left. The highlighted path and region corresponds to the

result of evaluating at x = (4.2,2.8)> as in Example (1).

1 tree, depth 2

3 trees, depth 3

Figure 2 GBT approximations to the dashed function: 1 tree of depth 2 (top) and 3 trees of depth 3 (bottom).

3. Optimization Problem

This paper considers box-constrained optimization Problem (1) summing two objective

components: a convex nonlinear function and a GBT-trained function. Problem (1) is

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 5

Table 1 Mixed-integer convex programming model sets, parameters and
variables.

Symbol Description

vLi , vUi Lower and upper bound of variable xi

xi Continuous variable, i∈ {1, . . . , n}
t∈ T Indices of GBTs
l ∈Lt Indices of leaves for tree t
s∈ Vt Indices of split nodes for tree t
mi Number of variable xi splitting values
vi,j Variable i’s j-th breakpoint, j ∈ {1, . . . ,mi}
Ft,l Value of leaf (t, l)
yi,j Binary variable indicating whether variable xi < vi,j
zt,l Nonnegative variable that activates leaf (t, l)

relevant, for example, in cases where a GBT function has been trained to data but we may

trust an optimal solution close to regions with many training points. A convex penalty

term may penalize solutions further from training data:

min
vL≤x≤vU

cvx(x)︸ ︷︷ ︸
Convex Part

+ GBT(x)︸ ︷︷ ︸
GBT Part

, (1)

where x= (x1, . . . , xn)> is the variable vector. GBT(x) is the GBT-trained function value

at x. Table 1 defines the model sets, parameters and variables.

A given problem instance may sum independently-trained GBT functions. W.l.o.g., we

equivalently optimize a single GBT function which is the union of all original GBTs.

4. Mixed-Integer Convex Formulation

Problem (1) consists of a continuous convex function and a discrete GBT function. The

discrete nature of the GBT function arises from the left/right decisions at the split nodes. So

we consider a mixed-integer nonlinear program with convex nonlinearities (convex MINLP)

formulation. The main ingredient of the convex MINLP model is a mixed-integer linear

programming (MILP) formulation of the GBT part which merges with the convex part via

a linking constraint. The high level convex MINLP is:

min
vL≤x≤vU

cvx(x) + [GBT MILP objective] (2a)

s.t. [GBT MILP constraints], (2b)

[Variable linking constraints]. (2c)

MILP approaches for machine learning show competitive performance for important

applications (Bertsimas and Mazumder 2014, Miyashiro and Takano 2015, Bertsimas and

6 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

King 2016, Bertsimas et al. 2016, Günlük et al. 2016, Bertsimas and Dunn 2017, Fischetti

and Jo 2018). The MILP method performance arises from strong mixed-integer algorithms

and solver availability (Bixby 2012).

4.1. GBT MILP Formulation

We use a MILP formulation to leverage commercial MILP codes, alternatives to MILP

include constraint programming (Rossi et al. 2006) and satisfiability modulo theories (Mistry

et al. 2018). We form the GBT MILP using the Mǐsić (2017) approach. Figure 1 shows

how a GBT partitions the domain [vL,vU] of x. Optimizing a GBT function reduces to

optimizing the leaf selection, i.e., finding an optimal interval, opposed to a specific x value.

Aggregating over all GBT split nodes produces a vector of ordered breakpoints vi,j for

each xi variable: vLi = vi,0 < vi,1 < · · ·< vi,mi
< vi,mi+1 = vUi . Selecting a consecutive pair of

breakpoints for each xi defines an interval where the GBT function is constant. Each point

xi ∈ [vLi , v
U
i] is either on a breakpoint vi,j or in the interior of an interval. Binary variable yi,j

models whether xi < vi,j for i∈ [n] = {1, . . . , n} and j ∈ [mi] = {1, . . . ,mi}. Binary variable

zt,l is 1 if tree t∈ T evaluates at node l ∈Lt and 0 otherwise. Denote by Vt the set of split

nodes for tree t. Moreover, let Leftt,s and Rightt,s be the sets of subtree leaf nodes rooted

in the left and right children of split node s, respectively.

MILP Problem (3) formulates the GBT (Mǐsić 2017). Equation (3a) minimizes the total

value of the active leaves. Equation (3b) selects exactly one leaf per tree. Equations (3c)

and (3d) activates a leaf only if all corresponding splits occur. Equation (3e) ensures that if

xi ≤ vi,j−1, then xi ≤ vi,j. W.l.o.g, we drop the zt,l integrality constraint because any feasible

assignment of y specifies one leaf, i.e., a single region in Figure 1. The MILP formulation

recalls the state-of-the-art in modeling piecewise linear functions (Misener et al. 2009,

Misener and Floudas 2010, Vielma et al. 2010).

min
∑
t∈T

∑
l∈Lt

Ft,lzt,l (3a)

s.t.
∑
l∈Lt

zt,l = 1, ∀t∈ T , (3b)

∑
l∈Leftt,s

zt,l ≤ yi(s),j(s), ∀t∈ T , s∈ Vt, (3c)

∑
l∈Rightt,s

zt,l ≤ 1− yi(s),j(s), ∀t∈ T , s∈ Vt, (3d)

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 7

yi,j ≤ yi,j+1, ∀i∈ [n], j ∈ [mi− 1], (3e)

yi,j ∈ {0,1}, ∀i∈ [n], j ∈ [mi], (3f)

zt,l ≥ 0, ∀t∈ T , l ∈Lt. (3g)

4.2. Linking Constraints

Equations (4a) and (4b) relate the continuous xi variables, from the original Problem (1)

definition, to the binary yi,j variables:

xi ≥ vi,0 +

mi∑
j=1

(vi,j − vi,j−1)(1− yi,j), (4a)

xi ≤ vi,mi+1 +

mi∑
j=1

(vi,j − vi,j+1)yi,j, (4b)

for all i ∈ [n]. We express the linking constraints using non-strict inequalities to avoid

computational issues when optimizing with strict inequalities. Combining Equations (2)

to (4) defines the mixed-integer nonlinear program with convex nonlinearities (convex

MINLP) formulation to Problem (1). Appendix A lists the complete formulation.

4.3. Worst Case Analysis

The difficulty of Problem (1) is primarily justified by the fact that optimizing a GBT-trained

function, i.e., Problem (3), is an NP-hard problem (Mǐsić 2017). This section shows that the

number of continuous variable splits and tree depth affect complete enumeration methods.

These parameters motivate the branching scheme in our branch-and-bound algorithm.

In a GBT ensemble, each continuous variable xi is associated with mi+1 intervals (splits).

Picking one interval j ∈ {1, . . . ,mi + 1} for each xi sums to a total of
∏n

i=1(mi + 1) distinct

combinations. A GBT-trained function evaluation selects a leaf from each tree. But not

all leaf combinations are valid evaluations. In a feasible leaf combination where one leaf

enforces xi < v1 and another enforces xi ≥ v2, it must be that v2 < v1. Let d be the maximum

tree depth in T . Then, the number of leaf combinations is upper bounded by 2d|T |. Since

the number of feasibility checks for a single combination is 1
2
|T |(|T |−1), an upper bound

on the total number of feasibility checks is 2d|T |−1|T |(|T |−1). This observation implies that

the worst case performance of an exact method improves as the number of trees decreases.

8 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

5. Branch-and-Bound Algorithm

This section designs an exact branch-and-bound (B&B) approach. Using a divide-and-

conquer principle, B&B forms a tree of subproblems and searches the domain of feasible

solutions. Key aspects of B&B are: (i) rigorous lower (upper) bounding methods for

minimization (maximization) subproblems, (ii) branch variable and value selection, and

(iii) feasible solution generation. In the worst case, B&B enumerates all solutions, but

generally it avoids complete enumeration by pruning subproblems, i.e., removing infeasible

subproblems or nodes with lower bound exceeding the best found feasible solution (Morrison

et al. 2016). This section exploits spatial branching that splits on continuous variables

(Belotti et al. 2013). Table 5 in Appendix E defines the symbols in this section.

5.1. Overview

B&B Algorithm 1 spatially branches over the [vL,vU] domain. It selects a variable xi, a

point v and splits interval [vLi , v
U
i] into intervals [vLi , v] and [v, vUi]. Each interval corresponds

to an independent subproblem and a new B&B node. To avoid redundant branches, all GBT

splits define the B&B branching points. At a given node, denote the reduced node domain by

S = [L,U]. Algorithm 1 solves Problem (1) by relaxing the Equation (4) linking constraints

and thereby separating the convex and GBT parts. Using this separation, Algorithm 1

computes corresponding bounds bcvx,S and bGBT,S,P independently, where the latter bound

requires a tree ensemble partition P initialized at the root node and dynamically refined at

each non-root node.

Algorithm 1 begins by constructing the root node, computing a global lower bound, and

determining a global ordering of all branches (lines 1–5). A given iteration: (i) extracts

a node S from the unexplored node set Q, (ii) strong branches at S to cheaply identify

branches that tighten the domain resulting in node S′, (iii) updates the GBT lower bound

at S′, (iv) branches to obtain the child nodes Sleft and Sright, (v) assesses if each child node

Schild ∈ {Sleft, Sright} may now be pruned and, if not, (vi) adds Schild to the unexplored node

set Q (lines 8–25).

The remainder of this section is structured as follows. Section 5.2 lower bounds Prob-

lem (1). Section 5.3 introduces a GBT branch ordering and leverages strong branching for

cheap node pruning. Section 5.4 discusses heuristics for computing efficient upper bounds.

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 9

Algorithm 1 Branch-and-Bound (B&B) Algorithm Overview

1: S = [L,U]← [vL,vU]

2: bcvx,S←ConvexBound(S) . Lemma 1, Section 5.2.1

3: Proot←RootNodePartition(N) . Section 5.2.2

4: bGBT,S,Proot←GbtBound(S,Proot) . Lemma 2, Section 5.2.2

5: B←BranchOrdering() . Section 5.3.1

6: Q= {S}
7: while Q 6= ∅ do

8: Select S ∈Q
9: if S is not leaf then

10: S′← S

11: repeat

12: S′, (xi, v)← StrongBranch(S′,B) . Algorithm 3, Section 5.3.2

13: until strong branch not found

14: if S′ is not leaf then

15: (Sleft, Sright)←Branch(S′, (xi, v))

16: P : tree ensemble partition of node S

17: P ′←PartitionRefinement(P) . Algorithm 2, Section 5.2.2

18: bGBT,S′,P ′←GbtBound(S′, P ′) . Lemma 2, Section 5.2.2

19: for Schild ∈ {Sleft, Sright} do

20: if Schild cannot be pruned then . Section 5.2.3

21: Q←Q∪{Schild}
22: end if

23: end for

24: end if

25: end if

26: Q←Q \ {S}
27: end while

5.2. Lower Bounding

10 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

5.2.1. Global lower bound The convex MINLP Problem (2) objective function consists

of a convex (penalty) part and a mixed-integer linear (GBT) part. Lemma 1 computes a

lower bound on the problem by handling the convex and GBT parts independently.

Lemma 1. Let S = [L,U]⊆ [vL,vU] be a sub-domain of optimization Problem (2). Denote

by RS the optimal objective value, i.e., the tightest relaxation, over the sub-domain S. Then,

it holds that RS ≥ R̂S, where:

R̂S =

[
min
x∈S

cvx(x)

]
︸ ︷︷ ︸

bcvx,S

+

[
min
x∈S

∑
t∈T

GBTt(x)

]
︸ ︷︷ ︸

bGBT,S,∗

.

Proof Let x∗ = arg minx∈S{cvx(x) + GBT(x)} and observe that cvx(x∗)≥ bcvx,S and

GBT(x∗)≥ bGBT,S,∗. �

Lemma 1 treats the two Problem (1) objective terms independently, i.e., R̂S separates

the convex part from the GBT part. We may compute R̂S by removing the Equation (4)

linking constraints and solving the mixed-integer model consisting of Equations (2) and (3).

Computationally, the Lemma 1 separation leverages efficient algorithms for the convex part

and commercial codes for the MILP GBT part.

5.2.2. GBT Lower Bound While we may efficiently compute bcvx,S (Boyd and Vanden-

berghe 2004), deriving bGBT,S,∗ is NP-hard (Mǐsić 2017). With the aim of tractability, we

calculate a relaxation of bGBT,S,∗. Lemma 2 lower bounds Problem (3), i.e., the GBT part

of Problem (2), by partitioning the GBT ensemble into a collection of smaller ensembles.

Lemma 2. Consider a sub-domain S = [L,U] ⊆ [vL,vU] of the optimization problem.

Let P = {T1, . . . ,Tk} be any partition of T , i.e., ∪ki=1Ti = T and Ti ∩Tj = ∅ ∀1≤ i < j ≤ k.

Then, it holds that bGBT,S,∗ ≥ bGBT,S,P , where:

bGBT,S,P =
∑
T ′∈P

[
min
x∈S

{∑
t∈T ′

GBTt(x)

}]
.

Proof When evaluating GBT(x) at a given x, each tree t ∈ T provides its own inde-

pendent contribution GBTt(x), i.e., a single leaf. A feasible selection of leaves has to be

consistent with respect to the GBT node splits, i.e., if one leaf splits on xi < v1 and another

splits on xi ≥ v2 then v1 > v2. Relaxing this consistency requirement by considering a

partition P of T derives the lower bounds bGBT,S,P for any partition P . �

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 11

Root Node Partition B&B Algorithm 1 chooses an initial root node partition Proot with

subsets of size N and calculates the associated Lemma 2 lower bound. Section 7 numerically

decides the partition size N for the considered instances. The important factors for a subset

size N are the tree depth, the number of continuous variable splits and their relation with

the number of binary variables.

Non-Root Node Partition Refinement Any non-root B&B node has reduced domain x∈ S =

[L,U]⊂ [vL,vU]. B&B Algorithm 1 only branches on GBT node splits, so modeling the

reduced domain S in MILP Problem (3) is equivalent to setting yi,j = 0 or yi,j = 1 for any

yi,j that corresponds to xi ≤Li or xi ≥Ui, respectively.

Assume that, at some non-root node with domain S, the algorithm is about to update

bGBT,S′,P ′ which was calculated at the parent node with domain S′ ⊃ S. Fixing binary

variables yi,j subject to domain S reduces the worst case enumeration cost of calculating

bGBT,S,P ′. The GBT lower bound may further improve at S by considering an alternative

partition P such that |P |< |P ′|, i.e., reducing the number of subsets. However, reducing the

number of subsets has challenges because: (i) choosing any partition P does not necessarily

guarantee bGBT,S,P ≥ bGBT,S′,P ′, and (ii) a full Lemma 2 calculation of bGBT,S,P may still

be expensive when considering the cumulative time across all B&B nodes. Refinability

Definition 2 addresses the choice of P such that bGBT,S,P ≥ bGBT,S′,P ′.

Definition 2. Given two partitions P ′ and P ′′ of set T , we say that P ′ refines P ′′ if

and only if ∀T ′ ∈ P ′, ∃T ′′ ∈ P ′′ such that T ′ ⊆T ′′. This definition of refinement implies a

partial ordering between different partitions of T . We express the refinement relation by �,

i.e., P ′ � P ′′ if and only if P ′ refines P ′′.

Lemma 3 allows bound tightening by partition refinements. Its proof is similar to Lemma 2.

Lemma 3. Let P and P ′ be two partitions of T . If P ′ � P , then bGBT,P ′ ≤ bGBT,P .

In general, for two partitions P and P ′, we do not know a priori which partition results in

a superior GBT lower bound. However, by Lemma 3, P ′ refining P suffices for bgbt,P ≥ bgbt,P ′ .
Therefore, given partition P ′ for the parent node, constructing P for the child node S by

unifying subsets of P ′ will not result in inferior lower bounds.

Algorithm 2 improves bGBT,S′,P ′ at node S by computing a refined partition P . Sup-

pose that P ′= {T1, . . . ,Tk}. Each GBT ensemble subset T ′ ∈ P ′ corresponds to a smaller

subproblem with nT
′,S leaves (zt,l variables) over the domain S. Initially, Algorithm 2

12 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

Algorithm 2 Non-Root Node Partition Refinement

1: P ′: parent node partition

2: Sort P ′ = {T1, . . . ,Tk} so that nT1 ≤ . . .≤ nTk

3: P ←∅
4: i= 1

5: while i < bn/2c and the time limit is not exceeded do

6: P ← P ∪{T2i−1 ∪T2i}
7: i← i+ 1

8: end while

9: P ← P ∪{Tj ∈ P ′ : j > i}
10: return P

sorts the subsets of P ′ in non-decreasing order of nT
′,S. Then, it iteratively takes the

union of consecutive pairs and calculates the associated lower bound, i.e., the first cal-

culation is for bGBT,S,{T1∪T2}, the second is for bGBT,S,{T3∪T4} and so forth. The iterations

terminate when all unions have been recalculated, or at user defined time limit q resulting

in two sets of bounds: those that are combined and recalculated, and those that remain

unchanged. Assuming that the final subset that is updated has index 2l, the new parti-

tion of the trees at node S is P = {T1 ∪T2, . . . ,T2l−1 ∪T2l,T2l+1, . . . ,Tk} with GBT bound

bGBT,S,P =
∑l

i=1 b
GBT,S,{T2i−1∪T2i}+

∑k
i=2l+1 b

GBT,S′,{Ti}. The second sum is a result of placing

time limit q on updating the GBT lower bound. Time limit q maintains a balance between

searching and bounding. Unifying any number of subsets satisfies Lemma 3, but Algorithm 2

unifies pairs to keep the resulting subproblems manageable.

5.2.3. Node Pruning In the B&B algorithm, each node can access: (i) the current best

found feasible objective f ∗, (ii) a lower bound on the convex penalties bcvx,S, and (iii) a

lower bound on the GBT part bGBT,S. The algorithm prunes node S if:

bcvx,S + bGBT,S > f ∗, (5)

i.e., if all feasible solutions in S have objective inferior to f ∗.

5.3. Branching

5.3.1. Branch Ordering Next branch selection is a critical element of B&B Algorithm 1.

Each branch is a GBT split (xi, v) choice and eliminates a certain number of GBT leaves.

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 13

Branching w.r.t. a GBT split that minimizes the number of remaining leaves may lead to a

smaller number of subsequent B&B iterations by reducing the GBT size.

Computing inactive((xi, v),T), the number of discarded GBT leaves when branching

w.r.t. (xi, vi,j) ∀i ∈ [n], j ∈ [mi], is time-consuming. So, we heuristically approximate the

number of discarded leaves by assuming that GBTs are perfectly balanced and assign a

pseudo-cost to each branch. Let r((xi, v), t) return the set of nodes in tree t that split on

(xi, v). Denote by d(s) the depth of node s where the depth of the root node is 0. We

initialize branch pseudo-costs, i.e., the (xi, v) pairs, using a weighting function:

weight((xi, v), t) =
∑

s∈r((xi,v),t)

2−d(s), (6a)

weight((xi, v),T) =
∑
t∈T

weight((xi, v), t). (6b)

Lemma 4 shows that the weight function and the number of inactive (excluded) leaves

are proportional for a GBT instance containing only balanced trees of identical height.

Lemma 4. Let T define a GBT instance where each tree t∈ T is balanced with depth d.

Let inactive((xi, v),T) return the number of inactive leaves when branching on branch pair

(xi, v) in T . Then weight((xi, v),T) = inactive((xi, v),T)/2d.

GBT lower bounding benefits from inactivating a large number of leaves, so B&B Algo-

rithm 1, based on Lemma 4, sorts the branch pairs in non-increasing weight order. This

branching order may aid GBT bounding bGBT,S as the algorithm descends into the search

tree. The weight function characterizes split pairs that are of low depth in their individual

trees and occur more often among all trees. Within a single tree, Lemma 5 shows that if

two split pairs cover the same leaves, then they will be assigned the same weight.

Lemma 5. Given tree t∈ T , let cover(t, s) return the set of leaves that node s∈ t covers,

i.e., those below s. If split pairs (x, v) and (x′, v′) cover the same set of leaves in tree t, i.e.,⋃
s∈r((x,v),t)

cover(s, t) =
⋃

s∈r((x′,v′),t)

cover(s, t),

then weight((x, v), t) = weight((x′, v′), t).

Figure 3 shows how split pairs may be interchangeable and, by Lemma 5, locally the

weighting function will not be unfair to these split pairs.

14 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

(x1,5): 1

(x2,7):
1

2

z6z5

(x2,7):
1

2

(xi′ , v
′): 1

4

z4z3

(xi, v):
1

4

z2z1

(x2,7): 1

(x1,5):
1

2

z6(xi′ , v
′): 1

4

z4z3

(x1,5):
1

2

z5(xi, v):
1

4

z2z1

Figure 3 Equation (6) GBT node weighting function applied to two equivalent trees. The function assigns each

occurrence of split pair (xi, v) weight 2d(s) where s is the split node. Pairs (x1,5) and (x2,7) cover the

same leaves. So, by Lemma 5, their summed weights are equal ensuring fairness.

Algorithm 3 Strong Branching

1: S: B&B node with bounds bGBT,S and bcvx,S

2: BS = [(xi1, v1), . . . , (xil , vl)]: l next branches list w.r.t. Section 5.3.1 pseudo-cost order

3: for (xi, v)∈BS do

4: Sleft, Sright: S children by branching on (xi, v)

5: Compute bcvx,Sleft and bcvx,Sright

6: if max{bcvx,Sleft , bcvx,Sright}+ bGBT,S < f ∗ then

7: return arg min{bcvx,Sleft , bcvx,Sright}, (xi, v)

8: end if

9: end for

10: return S, (xi1, v1)

5.3.2. Strong Branching Branch selection is fundamental to any B&B algorithm. Strong

branching selects a branch that enables pruning with low effort computations and achieves

a non-negligible speed-up in the algorithm’s performance (Morrison et al. 2016). Strong

branching increases the size of efficiently solvable large-scale mixed-integer problems and is

a major solver component (Klabjan et al. 2001, Anstreicher et al. 2002, Anstreicher 2003,

Easton et al. 2003, Belotti et al. 2009, Misener and Floudas 2013, Kılınç et al. 2014). Here,

strong branching leverages the easy-to-solve convex penalty term for pruning.

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 15

At a B&B node S, branching produces two children Sleft and Sright. Strong branching

Algorithm 3 considers the branches in their Section 5.3.1 pseudo-cost ordering and assesses

each branch by computing the associated convex bound. Under the strong branching test,

one node among Sleft and Sright inherits the convex bound bcvx,S from the parent, while the

other requires a new computation. Suppose that S′ ∈ {Sleft, Sright} does not inherit bcvx,S.

If bcvx,S
′

satisfies the Equation (5) pruning condition without GBT bound improvement,

then S′ is immediately selected as the strong branch and strong branching repeats at the

other child node S′′. Figure 4 illustrates strong branching. When Algorithm 1 does not find

a strong branch, it performs a GBT lower bound update and branches on the first item

of the branch ordering. Algorithm 1 then adds this node’s children to a set of unexplored

nodes and continues with the next B&B iteration.

Strong branching allows efficient pruning when the convex objective part is significant.

Strong branching may reduce the computational overhead incurred by GBT bound recalcu-

lation when Algorithm 3 selects multiple strong branches between GBT bound updates.

While a single strong branch assessment is negligible, the cumulative cost of calculating

convex bounds for all branches may be high. Section 5.3.1 orders the branches according

to a measure of effectiveness aiding GBT bounding, so the time spent deriving strong

branches with small weighting function may be better utilized in improving the GBT bound.

Opposed to full strong branching, i.e., assessing all branches, strong branching Algorithm 3

uses a lookahead approach (Achterberg et al. 2005). Parameterized by a lookahead value

l ∈Z>0, Algorithm 3 investigates the first l branches. If Algorithm 3 finds a strong branch,

Algorithm 1 repeats Algorithm 3, otherwise the B&B Algorithm 1 updates the GBT bound

bGBT,S,P at the current node. Algorithm 3 keeps strong branching checks relatively cheap

and maintains a balance between searching and bounding.

5.4. Heuristics

To prune, i.e., satisfy Equation (5), consider two heuristic methods generating good feasible

solutions to Problem (1): (i) a mixed-integer convex programming (convex MINLP) approach,

and (ii) particle swarm optimization (PSO) (Eberhart and Kennedy 1995, Kennedy and

Eberhart 1995). The former approach uses the decomposability of GBT ensembles, while

the latter exploits trade-offs between the convex and objective GBT parts.

16 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

[(xi1, v1), (xi2, v2), (xi3, v3), . . .]

Current

Node

xi1 < v1 xi1 ≥ v1

Current

Node

xi2 < v2 xi2 ≥ v2

Current

Node

xi3 < v3 xi3 ≥ v3

Strong Branch

Figure 4 Strong branching for selecting the next spatial branch. A strong branch leads to a node that is imme-

diately pruned, based on a convex bound computation.

5.4.1. Mixed-Integer Convex Programming Heuristic Although convex MINLP

solvers provide weak feasible solutions for large-scale instances of Problem (1), they may

efficiently solve moderate instances to global optimality (Westerlund and Pettersson 1995,

Tawarmalani and Sahinidis 2005, Vigerske 2012, Misener and Floudas 2014, Lundell et al.

2017). For a given a subset T ′ ⊆T of trees, let fT ′(·) be the objective function obtained by

ignoring the trees T \ T ′. Then, minvL≤x≤vU{fT ′(x)} may be significantly more tractable

than the original problem instance when |T ′|<< |T |. So, the Algorithm 4 heuristic solves

the original convex MINLP by sequentially solving smaller convex MINLP sub-instances of

increasing size. A sub-instance is restricted to a subset T ′ ⊆T of GBTs. Let T (k) be the sub-

set of trees when the k-th heuristic iteration begins. Initially, T (0) = ∅, i.e., fT (0)(·) consists

only of the convex part. Denote by x(k) the sub-instance optimal solution minimizing fT (k)(·).
Note that x(k) is feasible for the full instance. Each iteration k chooses a set of N additional

trees T next ⊆ T \ T (k) and constructs T (k+1) = T (k) ∪ T next, i.e., T (k) ⊆ T (k+1). Consider

two approaches for picking the N trees between consecutive iterations: (i) training-aware

selection and (ii) best improvement selection. Termination occurs when the time limit is

exceeded and Algorithm 4 returns the best computed solution.

Training-aware selection Let T1, T2, . . . , Tm be the tree generation order during training.

This approach selects the trees T next according to this predefined order. That is, in the k-th

iteration, T (k) = {T1, . . . , TkN} and T next = {TkN+1, . . . , T(k+1)N}. A GBT training algorithm

constructs the trees iteratively, so each new tree reduces the current GBT ensemble error

with respect to the training data. Thus, we expect that the earliest-generated trees better

approximate the learned function than the latest-generated trees. Specifically, for two

subsets TA,TB ⊆T with the property that ta < tb for each Tta ∈ TA and Ttb ∈ TB, we expect

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 17

that |fTA(x)− f ∗(x)|≤ |fTB(x)− f ∗(x)|, for each vL ≤ x ≤ vU , where f ∗ is the original

objective function, i.e., the optimal approximation. Intuitively, earlier trees place the GBT

function within the correct vicinity, while later trees have a fine tuning role.

Best improvement selection In this approach, the k-th iteration picks the N trees with the

maximum contribution when evaluating at x(k). We select T next ⊆T \T (k) so that, for each

pair of trees Tt ∈ T next and Tt′ ∈ T \(T (k)∪T next), it holds that ft(x
(k))≥ ft′(x(k)). Assuming

that approximation T (k) is poor, then T next contains the trees that refute optimality of x(k)

the most, from the perspective of ft(x
(k)) t∈ T \ T (k).

Algorithm 4 Mixed-integer convex programming heuristic

1: k← 0

2: T (k)←∅
3: while the time limit is not exceeded do

4: x(k)← arg min
vL≤x≤vU

fT (k)(x)

5: Choose T next from
{
T ′ | T ′ ⊆T \T (k), |T ′|= min{N, |T \ T (k)|}

}
6: T (k+1)←T (k) ∪T next

7: k← k+ 1

8: end while

9: return arg min
k∈{0,...,k−1}

f
(
x(k)

)

5.4.2. Particle Swarm Optimization Kennedy and Eberhart (1995) introduce PSO for

optimizing continuous nonlinear functions. PSO computes a good heuristic solution by

triggering m particles that collaboratively search the feasibility space. PSO picks the initial

particle position x
(0)
i and search direction v

(0)
i of particle i randomly. The search occurs in a

sequence of rounds. In round k, every particle chooses its next position x
(k+1)
i by following

the direction specified by a weighted sum of: (i) the current trajectory direction v
(k)
i , (ii)

the particle’s best found solution pi, (iii) the globally best found solution g, and moving by

a fixed step size. The intertia term ωv
(k)

i
controls how quickly a particle changes direction.

The cognitive term c1 · r1 · (pi−x(k)
i) controls the particle tendency to move to the best

observed solution by that particle. The social term c2 · r2 · (g−x(k)
i) controls the particle

tendency to move toward the best solution observed by any particle. Coefficients ω, c1, and

18 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

c2 are tunable parameters. Termination occurs either when all particles are close, or within

a specified time limit. Algorithm 5 in Appendix C lists the PSO algorithm.

For Problem (1), we improve the PSO performance by avoiding initial particle positions

in feasible regions strictly dominated by the convex term. We project the initial random

points close to regions where the GBT term is significant compared to the convex term.

6. Case Studies

Our case studies consider GBT instances where training data is not evenly distributed

over the [vL,vU] domain. So, while x∈ [vL,vU] is feasible, GBT(x) may be less meaningful

for x far from training data. The Problem (1) cvx(x) function, for the case studies, is a

penalty function constructed with principal component analysis (PCA) (Jolliffe 2002).

PCA characterizes a large, high-dimensional input data set D= {d(1), . . . ,d(p)} with a

low-dimensional subspace capturing most of the variability (James et al. 2013). PCA defines

a set of n ordered, orthogonal loading vectors, φi, such that φi captures more variability

than φi′ , for i < i′. PCA on D defines parameters µ,σ ∈Rn and Φ = [φ1 . . . φn]∈Rn×n, i.e.,

the sample mean, sample standard deviation and loading vectors, respectively. Vectors µ

and σ standardize D since PCA is sensitive to scaling. Often, only a few (k < n) leading

loading vectors capture most of the variance in D and Φ′ = [φ1 . . . φk] may effectively

replace Φ. P = Φ′Φ′> defines a projection matrix to the subspace spanned by {φ1, . . . , φk}.
Penalizing solutions further from training data with PCA defined projection matrix P :

cvx(x) =
∥∥(I −P) diag(σ)−1(x−µ)

∥∥2
2

(7)

where I is the identity matrix and diag(·) is a matrix with the argument on the diagonal.

Note in Equation (7) that our specific nonlinear convex penalty is a convex quadratic.

7. Numerical Results

This section compares the Section 5 algorithms to black-box solvers. Section 7.1 provides

information about the system specifications and the solvers. Sections 7.2 and 7.3 investigate

two GBT instances for engineering applications, namely: (i) concrete mixture design and (ii)

chemical catalysis. The concrete mixture design instance is from the UCI machine learning

repository (Dheeru and Karra Taniskidou 2017). The industrial chemical catalysis instance

is provided from BASF. Table 2 presents information about these instances. For both

instances, we model closeness to training data using the Section 6 Principal Component

Analysis (PCA) approach.

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 19

Table 2 Instance Sizes

Concrete Mixture Design Chemical Catalysis

GBT attributes:
Number of trees 7750 8800
Maximum depth 16 16
Number of leaves 131,750 93200
Number of xi continuous variables 8 42

Convex MINLP (2) attributes:
Number of yi,j binary variables 8,441 2,061
Number of constraints 281,073 183,791

7.1. System and Solver Specifications

Experiments are run on an Ubuntu 16.04 HP EliteDesk 800 G1 TWR with 16GB RAM and

an Intel Core i7-4770@3.40GHz CPU. Implementations are in Python 3.5.3 using Pyomo

5.2 (Hart et al. 2011, 2017) for mixed-integer programming modeling and interfacing with

solvers. We use CPLEX 12.7 and Gurobi 7.5.2 as: (i) black-box solvers for the entire convex

MINLP (2), (ii) branch-and-bound algorithm components for solving MILP (3) instances in

the Section 5.2 GBT lower bounding procedure, and (iii) heuristic components for solving

convex MINLP (2) instances in the Section 5.4 convex MINLP heuristic. Note that current

versions of CPLEX and Gurobi cannot solve general convex MINLP, so we would use a

more general solver if we had non-quadratic penalty functions. The R package GenSA

(Xiang et al. 2013) runs the Simulated Annealing (SA) metaheuristic. We provide a SA

technical description (Kirkpatrick et al. 1983) in Appendix D of the Electronic Companion.

The Python module PySwarms (Miranda 2018) implements the Section 5.4 Particle Swarm

Optimization (PSO) metaheuristic.

We use the default CPLEX 12.7 and Gurobi 7.5.2 tolerances, i.e., relative MIP gap,

integrality and barrier convergence tolerances of 10−4, 10−5 and 10−8, respectively. We use

the default SA parameters. We parameterize PSO with inertia term ω = 0.5, cognitive term

c1 = 0.7, social term c2 = 0.3, 500 particles and an iteration limit of 100. Each particle takes

a randomly generated point, x(0) ∈ [vL,vU], and its projection, x(p) on P and initializes at

x= h ·x(0) + (1−h) ·x(p). For our tests, we use h= 0.15.

7.2. Concrete Mixture Design

In concrete mixture design, different ingredient proportions result in different properties of

the concrete, e.g., compressive strength. The relationship between ingredients and properties

is complex, so black-box machine learning is well suited for the function estimation task

(Chou et al. 2011, Erdal 2013, DeRousseau et al. 2018).

20 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

Table 3 Concrete mixture design instance: Black-box solver solutions (upper
bounds) by solving the entire mixed-integer convex programming (convex

MINLP) model using: (i) CPLEX 12.7, (ii) Gurobi 7.5.2, (iii) Simulated Annealing
(SA), and (iv) Particle Swarm Optimization (PSO), with 1 hour timeout.

CPLEX 12.7 Gurobi 7.5.2 PSO SA

-14.2 -17.7 -88.7 -91.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−80
−60
−40
−20

Time/hours

B
ou

n
d

TA-CPLEX
TA-Gurobi
BI-CPLEX
BI-Gurobi

Random-CPLEX
Random-Gurobi
Best feasible

Figure 5 Concrete mixture design instance: Convex MINLP heuristic using CPLEX 12.7, or Gurobi 7.5.2 for each

subproblem, and training-aware (TA), best improvement (BI), or random strategies for choosing the

next trees. Each iteration selects 10 new trees. Best feasible is the Simulated Annealing solution.

7.2.1. Instance We maximize concrete compressive strength where GBTs are used for

modeling. Since we maximize concrete compressive strength, negating all leaf weights Ft,l

forms an equivalent GBT instance that fits the Problem (1) minimization formulation.

We use the Yeh (1998) concrete compressive strength dataset from the UCI machine

learning repository (Dheeru and Karra Taniskidou 2017). This dataset has n= 8 continuous

variables. R packages gbm (Ridgeway 2017) and caret (Kuhn 2008) are used for GBT

training. Root-mean-square error is used for model selection. The resulting GBT instance

has 7750 trees with max depth 16. The PCA based convex penalty has rank(P) = 4, i.e.,

we select the first four loading vectors.

7.2.2. Heuristics Table 3 compares the CPLEX 12.7, Gurobi 7.5.2, SA, and PSO

computed solutions for the entire convex MINLP, under 1 hour time limit. SA performs the

best. PSO solution is relatively close to the SA best found solution, compared to CPLEX

12.7 or Gurobi 7.5.2. Figure 5 evaluates the Section 5.4.1 augmenting convex MINLP

heuristic using CPLEX 12.7, Gurobi 7.5.2, and the different tree selection approaches, i.e.,

(i) training-aware (TA), (ii) best improvement (BI), and (iii) random selection. Figure 5

also plots the SA best-found solution. In general, both TA and BI perform better than

random selection. Moreover, TA performs better than BI. Therefore, there is a benefit in

choosing the earlier trees to find good heuristic solutions. Interestingly, the solution found

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 21

0 20 40 60 80 100 120 140 160 180 200 220 240

−140

−120

−100

−80

2,000

4,000

6,000

Partition Subset Size

L
ow

er
B
ou

n
d

C
P
L
E
X

12
.7

R
u
n
T
im

e:
C
P
L
E
X

12
.7
/s

R
u
n
T
im

e:
G
u
ro
b
i
7.
5.
2/

s

Figure 6 Concrete mixture design instance: Global GBT lower bounding. Solid lines evaluate the Section 5.2

GBT lower bounding approach, i.e., computed lower bounds and running times, for different partition

subset sizes. The dashed line plots the CPLEX 12.7 lower bound for MILP formulation (3), with 1 hour

timeout. Gurobi 7.5.2 produces a lower bound -574 (not plotted).

in the first iteration of the augmenting convex MINLP heuristic, i.e., by solely minimizing

the convex part, is lower than -43, while the upper bounds reported by CPLEX 12.7 and

Gurobi 7.5.2 after one hour of execution are greater than -18.

7.2.3. GBT Lower Bounding Figure 6 evaluates the Section 5.2 GBT lower bounding

approach. We lower bound the GBT part of the concrete mixture design instance using

different partition subset sizes. For a given partition subset size, we use either CPLEX 12.7,

or Gurobi 7.5.2 to solve the MILP corresponding to each GBT subset. Figure 6 illustrates

the global GBT lower bound improvement as the partition subset size increases. For the

entire MILP instance, CPLEX 12.7 and Gurobi 7.5.2 achieve GBT lower bounds -97 and

-547 (not plotted), respectively, within 1 hour. The Section 5.2 approach achieves a lower

bound of -83 (partition size 190), in 1 hour, and improves upon the MILP solver lower

bounds in less than 15 minutes (partition size 70). For small subset sizes, the partition-based

lower bounding has decreasing running time because of the overhead from many sequentially

solved subproblems. For larger subset sizes, the running time increases exponentially, while

the lower bound improvement rate decreases exponentially.

7.2.4. Branch-and-Bound Algorithm We instantiate the branch-and-bound algorithm

with the best found Table 3 feasible solution. We use either CPLEX 12.7, or Gurobi 7.5.2

in the lower bounding procedure. The root node partition subset size is 70. The non-root

node lower bounding time limit is 120 seconds. Furthermore, we set the strong branching

22 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−140

−120

−100

Time/hours

B
ou

n
d

Best feasible
BB-CPLEX-100
BB-CPLEX-1
BB-Gurobi-100
BB-Gurobi-1
Gurobi

Figure 7 Concrete mixture design instance: B&B lower bound improvement compared to Gurobi 7.5.2, with 1

hour timeout. The B&B Algorithm 1 uses either CPLEX 12.7, or Gurobi 7.5.2 in the lower bounding

procedure and strong branching lookahead list size either 1, or 100. The dashed-dotted line reports

best found feasible solution (upper bound).

lookahead list size either 1, or 100. We compare the B&B results to 3 hour runs of CPLEX

12.7 and Gurobi 7.5.2 on the entire convex MINLP model, which accounts for the B&B

algorithm using 1 hour for a heuristic solution, 1 hour for GBT lower bounding at the root

node, and 1 hour for the B&B search.

Figure 7 depicts the lower bound improvement. The B&B algorithm lower bound improves

over time, but there is still a non-negligible gap from the best-known feasible solution after

1 hour. This gap appears to be due to a cluster-like effect in the GBTs (Du and Kearfott

1994, Wechsung et al. 2014, Kannan and Barton 2017), where the breakpoints variables

are quite close. In the B&B algorithm, if the current lookahead list contains these clusters,

strong branching is less effective. CPLEX 12.7 results in an out-of-memory error prior

to beginning the branch-and-bound search therefore its lower bounds are relatively poor.

Gurobi 7.5.2 returns an incumbent of -85 and a lower bound of -141, after 2 hours, and

these do not improve further in the subsequent hour. The B&B algorithm, at 2 hours, i.e.,

prior to tree search, has an incumbent of -91 and a lower bound not less than -133. Given

an additional hour for tree search, the gap reduces further.

7.3. Chemical Catalysis

BASF uses catalysts to improve yield and operating efficiency. But, modeling catalyst

effectiveness is highly nonlinear and varies across different applications. BASF has found

GBTs effective for modeling catalyst behavior. Capturing the high-dimensional nature of

catalysis over the entire feasible domain requires many experiments, too many to run in

practice. Running a fewer number of experiments necessitates penalizing solutions further

from where the GBT function is trained.

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 23

Table 4 Chemical catalysis BASF instance (with different λ values): Black-box solver
solutions (upper bounds) by solving the entire mixed-integer convex programming (convex

MINLP) model using: (i) CPLEX 12.7, (ii) Gurobi 7.5.2, (iii) Simulated Annealing (SA), and
(iv) Particle Swarm Optimization (PSO), with 1 hour timeout.

λ CPLEX 12.7 Gurobi 7.5.2 PSO SA

0 * -158.5 -96.8 -168.2
1 * -101.6 -89.8 -130.7
10 952 -100.1 -97.6 -102.7
100 1,040 11.5 -82.7 -84.2
1000 18,579 606.5 -76.5 -81.3

7.3.1. Instance The BASF industrial instance contains n = 42 continuous variables.

The convex part of the instance takes the following form:

cvxλ(x) = λ
∥∥(I −P) diag(σ)−1(x−µ)

∥∥2
2

+

100−
∑
i∈I%

xi

2

(8)

The Equation (8) augend contains PCA defined parameters P , σ and µ, and is similar to

the Equation (7) penalty function. Equation (8) differs from Equation (7) in its penalty

parameter λ> 0 and its right summand. A larger λ generates more conservative solutions

with respect to PCA subspace P . The Equation (8) addend aims to generate solutions

where xi ∈ I, i.e., proportions of the chemicals being mixed, sum to 100%. The test instance

has rank(P) = 2 and |I%|= 37. The GBT part contains 8800 trees where 4100 trees have

max depth 16, the remaining trees have max depth 4, the total number of leaves is 93,200

and the corresponding Problem (3) MILP model has 2061 binary variables.

7.3.2. Heuristics Table 4 compares the CPLEX 12.7, Gurobi 7.5.2, SA, and PSO

computed solutions for the entire covex MINLP, under a 1 hour time limit. SA outperforms

all others. PSO performs well for larger λ values, because it keeps the contribution of the

convex part low at initialization. Gurobi 7.5.2 also performs relatively well for smaller

λ values, however due to solver tolerances it may report incorrect objective values. For

example, using λ= 0 the solver reports an objective of −174.1, however a manual evaluation

results in −158.5. In fact, both CPLEX 12.7 or Gurobi 7.5.2, may produce incorrect outputs

due to solver tolerances, hence a specialized fixing method may be necessary.

Figures 8 and 9 evaluate the Section 5.4.1 augmenting convex MINLP heuristic for

different values of the λ input parameter. We investigate the augmenting convex MINLP

heuristic performance using either CPLEX 12.7, or Gurobi 7.5.2 for solving convex MINLP

sub-instances and each of the: (i) training-aware (TA), (ii) best improvement (BI), and (iii)

24 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−120
−100
−80
−60
−40

Time/hours

B
ou

n
d

TA-CPLEX
TA-Gurobi
BI-CPLEX
BI-Gurobi

Random-CPLEX
Random-Gurobi
Best feasible

Figure 8 Chemical catalysis instance (λ= 1): Convex MINLP heuristic using CPLEX 12.7, or Gurobi 7.5.2 for

each subproblem, and training-aware (TA), best improvement (BI), or random strategies for choosing

the next trees. Each iteration selects 10 new trees. Best feasible is the Simulated Annealing solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−80

−70

−60

Time/hours

B
ou

n
d

TA-CPLEX
TA-Gurobi
BI-CPLEX
BI-Gurobi

Random-CPLEX
Random-Gurobi
Best feasible

Figure 9 Chemical catalysis instance (λ= 1000): Convex MINLP heuristic using CPLEX 12.7, or Gurobi 7.5.2 for

each subproblem, and training-aware (TA), best improvement (BI), or random strategies for choosing

the next trees. Each iteration selects 10 new trees. Best feasible is the Simulated Annealing solution.

random selection strategies. The Figures 8 and 9 best feasible solution is the one produced

by SA. For λ= 1, TA constructs several heuristic solutions that outperform both the BI

and random selection ones. In this case, since the GBT part dominates the convex part,

TA iteratively computes a better GBT approximation. For λ= 1000, TA and BI exhibit

comparable performance, with BI finding the best solution. Random selection also performs

well because the convex part dominates the GBT part.

7.3.3. GBT Lower Bounding Figure 10 evaluates the Section 5.2.2 GBT lower bounding

approach, for different partition subset sizes. For each partition subset size, CPLEX 12.7 or

Gurobi 7.5.2 computes the optimal GBT value for each subset of GBTs. The Figure 10

results resemble Figure 6. In particular, (i) the lower bound is improved with larger subset

sizes, (ii) there is a time-consuming modelling overhead for solving many small MILPs

for small subset sizes, and (iii) the running time increases exponentially, though non-

monotonically, for larger subset sizes. We compare the lower bounding approach with solving

the entire MILP (3) using CPLEX 12.7, or Gurobi 7.5.2 as black-box solvers. Our lower

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 25

0 50 100 150 200 250 300 350 400 450 500 550

−1,500

−1,000

−500

1,000

2,000

Partition Subset Size

L
ow

er
B
ou

n
d

C
P
L
E
X

12
.7

G
u
ro
b
i
7.
5.
2

R
u
n
T
im

e:
C
P
L
E
X

1
2.
7
/s

R
u
n
T
im

e:
G
u
ro
b
i
7.
5.
2/

s

Figure 10 Chemical catalysis BASF instance: Global GBT lower bounding. Solid lines evaluate the Section

Section 5.2 GBT lower bounding approach, i.e., computed bounds and running times, for different

partition subset sizes. The dashed and dotted lines plot the CPLEX 12.7 and Gurobi 7.5.2 lower

bounds, respectively, for the Problem (3) MILP formulation, with 1 hour timeout.

bounding approach exhibits a superior time-to-lower bound performance: (i) it improves

the Gurobi 7.5.2 lower bound with subset size 140 and 4 minutes of execution, and (ii) it

improves the CPLEX 12.7 lower bound with subset size 360 and 8 minutes of execution.

7.3.4. Branch-and-Bound Algorithm We instantiate the branch-and-bound algorithm

with the Table 4 best found feasible solution. We use either CPLEX 12.7, or Gurobi 7.5.2.

for solving MILP instances in the lower bounding procedure. The root node partition is set

equal to 150 trees. The non-root node lower bounding time limit is fixed to 120 seconds.

We use strong branching lookahead lists of size 1 and 100. We compare the B&B results to

3 hour runs of CPLEX 12.7 and Gurobi 7.5.2 for the entire convex MINLP, which accounts

for the B&B algorithm using 1 hour for a heuristic solution, 1 hour for GBT lower bounding

at the root node, and 1 hour for the B&B search

Figures 11 and 12 plot the lower bound improvement for λ= 1 and λ= 1000, respectively.

CPLEX 12.7 reports a poor lower bound and does not find a feasible solution within 3 hours.

The B&B algorithm closes a larger gap than Gurobi 7.5.2 for both λ= 1 and λ= 1000. For

λ= 1, the global lower bound obtained before the tree search is tighter than the Gurobi

7.5.2 lower bound obtained in 2 hours. The B&B algorithm performs better for λ= 1000

because the convex part dominates the GBT part and strong branching is more effective.

Strong branching affects the B&B algorithm performance. For λ= 1000, lookahead list

size 100 closes more gap compared to lookahead list size 1. For λ= 1, larger lookahead list

26 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−800
−600
−400
−200

0

Time/hours

B
ou

n
d Best Feasible

BB-CPLEX-100

BB-CPLEX-1

BB-Gurobi-100

BB-Gurobi-1

Gurobi

Figure 11 Chemical catalysis BASF instance (λ= 1): B&B lower bound improvement compared to Gurobi 7.5.2

with one hour timeout. The B&B Algorithm 1 uses either CPLEX 12.7, or Gurobi 7.5.2 in the lower

bounding procedure and strong branching lookahead list size either 1, or 100. The dashed-dotted line

reports best found feasible solution (upper bound).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−800
−600
−400
−200

0

Time/hours

B
ou

n
d Best Feasible

BB-CPLEX-100

BB-CPLEX-1

BB-Gurobi-100

BB-Gurobi-1

Gurobi

Figure 12 Chemical catalysis BASF instance (λ = 1000): B&B lower bound improvement compared to Gurobi

7.5.2 with one hour timeout. The B&B Algorithm 1 uses either CPLEX 12.7, or Gurobi 7.5.2 in the

lower bounding procedure and strong branching lookahead list size either 1, or 100. The dashed-dotted

line reports best found feasible solution (upper bound).

size does not have a noticable effect. However, this last finding does not depreciate strong

branching. Since the GBT part daminates the convex aspect for small λ values, tighter

GBT lower bounds might be effential for taking full advantage of strong branching.

8. Conclusion

As machine learning methods mature, decision makers want to move from solely making

predictions on model inputs to integrating pre-trained machine learning models into

larger decision-making problems. This paper addresses a large-scale, industrially-relevant

gradient-boosted tree model by directly exploiting: (i) advanced mixed-integer programming

technology with strong optimization formulations, (ii) GBT tree structure with priority

towards searching on commonly-occurring variable splits, and (iii) convex penalty terms with

enabling fewer mixed-integer optimization updates. The general form of the optimization

problem appears whenever we wish to optimize a pre-trained gradient-boosted tree with

convex terms in the objective, e.g., penalties. It would have been alternatively possible to

train and then optimize a smooth and continuous machine learning model, but applications

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 27

with legacy code may start with a GBT. Our numerical results test against concrete mixture

design and chemical catalysis, two applications where the global solution to an optimization

problem is often particularly useful. Our methods not only generate good feasible solutions

to the optimization problem, but they also converge towards proving the exact solution.

Acknowledgments

The support of: BASF SE, the EPSRC Centre for Doctoral Training in High Performance Embedded and

Distributed Systems to M.M. (EP/L016796/1), and an EPSRC Research Fellowship to R.M. (EP/P016871/1).

References

Achterberg T, Koch T, Martin A (2005) Branching rules revisited. Oper. Res. Lett. 33(1):42–54.

Anstreicher K, Brixius N, Goux JP, Linderoth J (2002) Solving large quadratic assignment problems on

computational grids. Math. Program. 91(3):563–588.

Anstreicher KM (2003) Recent advances in the solution of quadratic assignment problems. Math. Program.

97(1):27–42.

Belotti P, Kirches C, Leyffer S, Linderoth J, Luedtke J, Mahajan A (2013) Mixed-integer nonlinear optimization.

Acta Numer. 22:1–131.

Belotti P, Lee J, Liberti L, Margot F, Wächter A (2009) Branching and bounds tightening techniques for

non-convex MINLP. Optim. Method. Softw. 24(4-5):597–634.

Bertsimas D, Dunn J (2017) Optimal classification trees. Mach. Learn. 106(7):1039–1082.

Bertsimas D, King A (2016) OR Forum – An algorithmic approach to linear regression. Oper. Res. 64(1):2–16.

Bertsimas D, King A, Mazumder R (2016) Best subset selection via a modern optimization lens. Ann. Stat.

44(2):813–852.

Bertsimas D, Mazumder R (2014) Least quantile regression via modern optimization. Ann. Stat. 42(6):2494–

2525.

Bixby RE (2012) A brief history of linear and mixed-integer programming computation. Doc. Math. 107–121.

Bollas GM, Barton PI, Mitsos A (2009) Bilevel optimization formulation for parameter estimation in

vapor-liquid(-liquid) phase equilibrium problems. Chem. Eng. Sci. 64(8):1768–1783.

Boukouvala F, Misener R, Floudas CA (2016) Global optimization advances in mixed-integer nonlin-

ear programming, MINLP, and constrained derivative-free optimization, CDFO. Eur. J. Oper. Res.

252(3):701–727.

Boyd S, Vandenberghe L (2004) Convex optimization (Cambridge university press).

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression Trees (Wadsworth,

Inc.).

28 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 785–794.

Chou JS, Chiu CK, Farfoura M, Al-Taharwa I (2011) Optimizing the prediction accuracy of concrete

compressive strength based on a comparison of data-mining techniques. J. Comput. Civil Eng. 25(3):242–

253.

DeRousseau M, Kasprzyk J, Srubar W (2018) Computational design optimization of concrete mixtures: A

review. Cement Concrete Res. 109:42–53.

Dheeru D, Karra Taniskidou E (2017) UCI machine learning repository. URL http://archive.ics.uci.

edu/ml.

Du K, Kearfott RB (1994) The cluster problem in multivariate global optimization. J. Global Optim.

5(3):253–265.

Easton K, Nemhauser G, Trick M (2003) Solving the travelling tournament problem: A combined integer

programming and constraint programming approach. Practice and Theory of Automated Timetabling

IV, 100–109, ISBN 978-3-540-45157-0.

Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. Proceedings of the Sixth

International Symposium on Micro Machine and Human Science, 39–43.

Erdal HI (2013) Two-level and hybrid ensembles of decision trees for high performance concrete compressive

strength prediction. Eng. Appl. Artif. Intel. 26(7):1689–1697.

Fischetti M, Jo J (2018) Deep neural networks and mixed integer linear optimization. Constraints 23(3):296–

309.

Freund Y (1995) Boosting a weak learning algorithm by majority. Inform. Comput. 121(2):256–285.

Friedman JH (2001) Greedy function approximation: A gradient boosting machine. Ann. Stat. 29(5):1189–1232.

Friedman JH (2002) Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4):367–378.

Günlük O, Kalagnanam J, Menickelly M, Scheinberg K (2016) Optimal generalized decision trees via integer

programming. arXiv preprint arXiv:1612.03225 .

Hart WE, Laird CD, Watson JP, Woodruff DL, Hackebeil GA, Nicholson BL, Siirola JD (2017) Pyomo–

optimization modeling in Python, volume 67 (Springer Science & Business Media), second edition.

Hart WE, Watson JP, Woodruff DL (2011) Pyomo: modeling and solving mathematical programs in Python.

Math. Program. Comput. 3(3):219–260.

Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical Learning (Springer-Verlag New York),

second edition.

James G, Witten D, Hastie T, Tibshirani R (2013) An Introduction to Statistical Learning (Springer-Verlag

New York).

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded 29

Jolliffe IT (2002) Principal Component Analysis (Springer-Verlag New York), second edition.

Kannan R, Barton PI (2017) The cluster problem in constrained global optimization. J. Global Optim.

69(3):629–676.

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) LightGBM: A highly efficient

gradient boosting decision tree. Advances in Neural Information Processing Systems 30, 3149–3157.

Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of the IEEE International Conference

on Neural Networks, volume 4, 1942–1948.

Kılınç M, Linderoth J, Luedtke J, Miller A (2014) Strong-branching inequalities for convex mixed integer

nonlinear programs. Comput. Optim. Appl. 59(3):639–665.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680,

URL http://dx.doi.org/10.1126/science.220.4598.671.

Klabjan D, Johnson EL, Nemhauser GL, Gelman E, Ramaswamy S (2001) Solving large airline crew scheduling

problems: Random pairing generation and strong branching. Comput. Optim. Appl. 20(1):73–91.

Kuhn M (2008) Building predictive models in R using the caret package. J. Stat. Softw. 28(5):1–26.

Lundell A, Kronqvist J, Westerlund T (2017) SHOT – a global solver for convex MINLP in Wolfram

Mathematica. Espua A, Graells M, Puigjaner L, eds., 27th European Symposium on Computer Aided

Process Engineering, volume 40 of Computer Aided Chemical Engineering, 2137 – 2142 (Elsevier).

Miranda LJV (2018) PySwarms: A research toolkit for Particle Swarm Optimization in Python. J. Open

Source Softw. 3.

Misener R, Floudas CA (2010) Piecewise-linear approximations of multidimensional functions. J. Optim. The-

ory Appl. 145(1):120–147.

Misener R, Floudas CA (2013) GloMIQO: Global Mixed-Integer Quadratic Optimizer. J. Global Optim.

57(1):3–50.

Misener R, Floudas CA (2014) ANTIGONE: Algorithms for continuous / integer global optimization of

nonlinear equations. J. Global Optim. 59(2):503–526.

Misener R, Gounaris CE, Floudas CA (2009) Global optimization of gas lifting operations: A comparative

study of piecewise linear formulations. Ind. Eng. Chem. Res. 48(13):6098–6104.

Mistry M, Callia D’Iddio A, Huth M, Misener R (2018) Satisfiability modulo theories for process systems

engineering. Comput. Chem. Eng. 113:98–114.

Mǐsić VV (2017) Optimization of Tree Ensembles. ArXiv e-prints ArXiv:1705.10883.

Miyashiro R, Takano Y (2015) Mixed integer second-order cone programming formulations for variable

selection in linear regression. Eur. J. Oper. Res. 247(3):721–731.

Morrison DR, Jacobson SH, Sauppe JJ, Sewell EC (2016) Branch-and-bound algorithms: A survey of recent

advances in searching, branching, and pruning. Discrete Optim. 19:79–102.

http://dx.doi.org/10.1126/science.220.4598.671

30 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

Nocedal J, Wright SJ (2006) Sequential Quadratic Programming, 529–562. ISBN 978-0-387-40065-5.

Ridgeway G (2017) Package ‘gbm’. URL https://cran.r-project.org/web/packages/gbm/index.html.

Rossi F, Van Beek P, Walsh T (2006) Handbook of constraint programming (Elsevier).

Schweidtmann AM, Mitsos A (2018) Global deterministic optimization with artificial neural networks

embedded. arXiv preprint arXiv:1801.07114 .

Singer AB, Taylor JW, Barton PI, Green WH (2006) Global dynamic optimization for parameter estimation

in chemical kinetics. J. Phys. Chem. A 110(3):971–976.

Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms.

Advances in Neural Information Processing Systems 25, 2951–2959.

Sra S, Nowozin S, Wright SJ (2012) Optimization for Machine Learning (MIT Press).

Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global optimization. Math.

Program. 103:225–249.

Vaswani N, Bouwmans T, Javed S, Narayanamurthy P (2018) Robust subspace learning: Robust pca, robust

subspace tracking, and robust subspace recovery. IEEE Signal Proc. Mag. 35(4):32–55.

Vielma JP, Ahmed S, Nemhauser G (2010) Mixed-integer models for nonseparable piecewise-linear optimiza-

tion: Unifying framework and extensions. Oper. Res. 58(2):303–315.

Vigerske S (2012) Decomposition in Multistage Stochastic Programming and a Constraint Integer Programming

Approach to Mixed-Integer Nonlinear Programming. PhD in Mathematics, Humboldt-University Berlin.

Wechsung A, Schaber SD, Barton PI (2014) The cluster problem revisited. J. Global Optim. 58(3):429–438.

Westerlund T, Pettersson F (1995) An extended cutting plane method for solving convex MINLP problems.

Comput. Chem. Eng. 19:131–136.

Xiang Y, Gubian S, Suomela B, Hoeng J (2013) Generalized simulated annealing for efficient global optimiza-

tion: the GenSA package for R. R J. 5.

Yeh IC (1998) Modeling of strength of high-performance concrete using artificial neural networks. Cement

Concrete Res. 28(12):1797–1808.

https://cran.r-project.org/web/packages/gbm/index.html

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded A1

Appendix A: Full convex MINLP formulation

min
vL≤x≤vU

cvx(x) +
∑
t∈T

∑
l∈Lt

Ft,lzt,l (9a)

s.t.
∑
l∈Lt

zt,l = 1, ∀t∈ T , (9b)∑
l∈Leftt,s

zt,l ≤ yi(s),j(s), ∀t∈ T , s∈ Vt, (9c)

∑
l∈Rightt,s

zt,l ≤ 1− yi(s),j(s), ∀t∈ T , s∈ Vt, (9d)

yi,j ≤ yi,j+1, ∀i∈ [n], j ∈ [mi− 1], (9e)

xi ≥ vi,0 +

mi∑
j=1

(vi,j − vi,j−1)(1− yi,j), ∀i∈ [n], (9f)

xi ≤ vi,mi+1 +

mi∑
j=1

(vi,j − vi,j+1)yi,j , ∀i∈ [n], (9g)

yi,j ∈ {0,1}, ∀i∈ [n], j ∈ [mi], (9h)

zt,l ≥ 0, ∀t∈ T , l ∈Lt. (9i)

Appendix B: Omitted Proofs

Lemma 4. Let T define a GBT function where each t ∈ T is balanced with maximum depth d. Let

inactive((xi, v),T) return the number of inactive (unreachable) leaves when branching on split pair (xi, v) in

T . Then, weight((xi, v),T) = inactive((xi, v),T)/2d.

Proof Consider the set r((xi, v), t) of GBT nodes that split on (xi, v) in tree t∈ T . For a node s∈ r((xi, v), t),

let d(s) be the depth of s, i.e., the length (in number of edges) of the path from the root to s. Furthermore,

let w(s) = 2−d(s) and i(s) = 2d−d(s) be the number of inactive leaves below s when branching w.r.t. (xi, v).

Hence w(s) = i(s)/2d and

weight((xi, v),T) =
∑
t∈T

weight((xi, v), t)

=
∑
t∈T

∑
s∈r((xi,v),t)

w(s)

=
∑
t∈T

∑
s∈r((xi,v),t)

i(s)/2d

= inactive((xi, v),T)/2d

�

Lemma 5. For some tree t∈ T , let cover(t, s) be the set of leaves covered by node s∈ t. If the set of leaves

covered by split pairs (xi, v) and (xi′ , v
′) in t are equal, i.e.,⋃

s∈r((xi,v),t)

cover(t, s) =
⋃

s∈r((xi′ ,v
′),t)

cover(t, s),

then weight((xi, v), t) = weight((xi′ , v
′), t).

A2 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

Proof The result holds trivially for (xi, v) = (xi′ , v
′). Assume that (xi, v) 6= (xi′ , v

′). Since (xi, v) and

(xi′ , v
′) cover the same leaves in t, every node that splits w.r.t. (xi, v) is either ancestor or descendant of

some node that splits w.r.t. (xi′ , v
′), and vice versa. Let t(s) denote the subtree of t rooted at node s. As

the term weight((xi, v), t) sums the weights of all nodes that split w.r.t. (xi, v), w.l.o.g., it suffices to show

that weight((xi, v), t(s)) = weight((xi′ , v
′), t(s)), ∀ s∈ r((xi, v), t) such that r((xi′ , v

′), t(s)) 6= ∅. A symmetric

statement follows by swapping (xi, v) and (xi′ , v
′).

Claim 1 shows that there exists a subtree rooted at some node ŝ ∈ t(s) such that both child nodes of ŝ,

namely s′ and s′′, split on (xi′ , v
′). Denote by d(s′, t(s)) the depth of node s′ at tree t(s).

Claim 1. Let dmax((xi′ , v
′), t(s)) = max{d(s′, t(s))|s′ ∈ r((xi′ , v

′), t(s))} be the maximum depth of a node s′

in the subtree t(s) that splits on (xi′ , v
′). So, consider such a node s′ ∈ r((xi′ , v

′), t(s)) such that depth(s′, t(s)) =

dmax((xi′ , v
′), t(s)). For the sibling node s′′ of s′, i.e., s′′ 6= s′ and parent(s′′, t(s)) = parent(s′, t(s)), it holds

that s′′ ∈ r((xi′ , v
′), t(s)).

Proof Assume for a contradiction that s′′ /∈ r((xi′ , v
′), t(s)). Because s′ is of maximum depth branching

on (xi′ , v
′), it must be the case that r((xi′ , v

′), t(s′′)) = ∅. Since (xi, v) covers all leaves in t(s), there exists

node s̃ ∈ r((xi′ , v
′), t(s)) that is an ancestor of s′′ and therefore an ancestor of s′ which contradicts that

s′ ∈ r((xi′ , v
′), t(s)). �

Claim 2 shows that t∈ T is equivalent, in terms of tree evaluations and weights, to the tree t′ obtained

from t by swapping the nodes splitting on (xi, v) and (xi′ , v
′) so that (xi′ , v

′) always occurs higher.

Claim 2. Consider a node s ∈ t splitting on (xi, v) whose child nodes both split on (xi′ , v
′). Let a, b ∈

{left, right} and denote by sa, sab the child nodes following the a branch from s and the b branch from sa,

respectively. Define a new tree t′ as identical to t up to nodes not in t(s), set the node located at s in t′ to

split on (xi′ , v
′), and call this node s′. Analagously define s′a, s′ab and t′(s′ab). Set s′a to split on (xi, v) and

t′(s′ab) = t(sba). Then, GBTt(x) = GBTt′(x), for each x ∈ [L,U], and weight((xi, v), t) = weight((xi, v), t′),

for every split pair (xi, v) with v= vi,j such that i∈ [j] and j ∈ [mi].

Proof We first show equivalence of the trees. Fix x ∈ [L,U]. Let Vt(x) and Vt′(x) be the sets of GBT

nodes on the root-to-leaf path that evaluates x in trees t and t′ respectively. If s /∈ Vt(x) then the relevant

root-to-leaf paths of x are identical in trees t and t′, so GBTt(x) = GBTt′(x). Assume now that s∈ Vt(x).

Since t and t′ are identical up to s and s′, respectively, it must be the case that s′ ∈ Vt′(x). By construction,

the fact that sab ∈ S implies that s′ba ∈ S′. Furthermore t(sab) = t′(s′ba). Hence, the two sequences of nodes

after sab and s′ba, respectively, are identical and GBTt(x) = GBTt′(x).

We now show that the weights are the same. Let Vt and Vt′ be the sets of split nodes in trees t and

t′, respectively. Clearly there exists a bijective mapping f : Vt \ {s, sleft, sright}→ Vt′ \ {s′, s′left, s′right} such

that, for each s∈ Vt \ {s, sleft, sright}, it holds that d(s, t) = d(f(s), t′), and s∈ t splits on the same pair with

f(s) ∈ t′. Therefore, for each (xi′′ , v
′′) /∈ {(xi, v), (xi′ , v

′)} such that v′′ = vi′′,j′′ with i′′ ∈ [n] and j′′ ∈ [mi],

weight((xi′′ , v
′′), t) = weight((xi′′ , v

′′), t′). For (xi, v), let w be the contribution to weight((xi, v), t) from nodes

in Vt \ {s}. By the bijective mapping f , the contribution to weight((xi, v), t′) from nodes in Vt′ \ {s′left, s′right}

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded A3

is also w. It remains taking into account nodes s, s′left and s′right. Taking into account the node depths and

the construction of t′:

weight((xi, v), t) =w+ 2−d(s,t) =w+ 2−d(s,t)−1 + 2−d(s,t)−1 = weight((xi, v), t′).

With a similar argument for (xi′ , v
′), Claim 2 follows. �

With repeated application of Claims 1 and 2, we can define a finite sequence T (k) of k trees where all trees

are equivalent to t(s) and the final element t′ of T (k) has root node spitting on (xi′ , v
′). This tree t′ assigns

weight 1 to both (xi, v) and (xi′ , v
′). Therefore (xi, v) and (xi′ , v

′) have the same weight in t(s), and Lemma 5

follows. �

Appendix C: Particle Swarm Optimization

Algorithm 5 lists the particle swarm optimization algorithm (Kennedy and Eberhart 1995).

Algorithm 5 Particle Swarm Optimization

Compute initial position x
(0)

i
∈Rn and velocity v

(0)

i
∈Rn for each particle i= 1, . . . ,m.

pi←x
(0)

i
g← arg min{f(pi)}
k← 0

while the time limit is not exceeded do

for i= 1, . . . ,m do

Choose random values r1, r2 ∼U(0,1)

v
(k+1)

i
← ωv

(k)

i
+ c1 · r1 · (pi−x

(k)

i
) + c2 · r2 · (g−x(k)

i
)

x
(k+1)

i
←x(k)

i
+v

(k+1)

i
if f(x

(k+1)

i
)< f(pi) then

pi←x
(k+1)

i
end if

end for

g← arg min{f(pi)}
k← k+ 1

end while

Appendix D: Simulated Annealing

Algorithm 6 lists the simulated annealing algorithm (Kirkpatrick et al. 1983).

A4 Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

Algorithm 6 Simulated Annealing

1: Compute an initial solution x(0) ∈Rn.

2: Set initial temperature T (0) = 1 and probability constant c= 1.

3: Set temperature factor α∈ [0.80,0.99].

4: t= 0, k= 0

5: while T (t) > ε do

6: for r iterations do

7: Select a neighboring solution x∈N (x(k)) randomly.

8: if f(x)< f(x(k)) then

9: x(k+1)←x
10: k← k+ 1

11: else

12: Choose p∼U(0,1)

13: if exp(−(f(x)− f(x(k)))/cT (t))> p then

14: x(k+1)←x
15: k← k+ 1

16: end if

17: end if

18: end for

19: T (t+1)← αT (t)

20: t← t+ 1

21: end while

Appendix E: Table of Notation

Name Description

GBT Ensemble Definition
n Number of the GBT-trained function (continuous) variables
i Continuous variable index
xi Continuous variable
x Vector (x1, . . . , xn)T

T Set of gradient boosted trees
t Gradient boosted tree
Vt Set of split nodes (vertices) in tree t
Lt Set of leaf nodes in tree t
s Split node associated with a tree t and mainly referred to as (t, s)
i(t, s) Continuous variable index associated with split node s in tree t
v(t, s) Splitting value of variable xi(t,s) at split node s in tree t

Mistry et al.: Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded A5

GBTt(x) Tree t evaluation at point x
GBT(x) GBT ensemble evaluation at point x

Convex MINLP with GBTs Problem Definition
cvx(x) Convex function evaluation at point x
mi Number of variable xi splitting values
vi,j j-th greatest variable xi splitting value
vLi or vi,0 Variable xi lower bound
vUi or vi,mi+1 Variable xi upper bound
vL Vector (vL1 , . . . , v

L
n)

vU Vector (vU1 , . . . , v
U
n)

Leftt,s Set of leaves in the subtree rooted in the left child of s in tree t
Rightt,s Set of leaves in the subtree rooted in the right child of s in tree t
Ft,l Contribution of leaf node l in tree t
yi,j Binary variable indicating whether xi ≤ vi,j , or not
zt,l Binary variable specifying whether tree t evaluates at leaf l
d Maximum tree depth

Branch-and-Bound Algorithm Overview
[vL,vU] Optimization problem global domain
S = [L,U] Optimization problem subdomain / B&B node
(xi, v) GBT splitting point / B&B branch
Sleft, Sright, Sc, S

′ B&B nodes
Q Set of unexplored B&B nodes
Proot Initial GBT ensemble partition at B&B root node
P,P ′, P ′′ GBT ensemble partitions
bcvx,S Convex lower bound over domain S
bGBT,S,P GBT lower bound over domain S w.r.t. partition P

Lower Bounding
RS Optimal objective value, i.e., tightest relaxation

R̂S Relaxation dropping linking constraints
bGBT,S,∗ Optimal GBT lower bound over domain S
x∗ Optimal solution
i, j, l Subset indices of a GBT ensemble partition
k GBT ensemble partition size
Ti,Tj ,T ′,T ′′ Subsets of GBTs
N GBT ensemble subset size
nT ,S Number of leaves in GBT subset T over domain S
f∗ Best found feasible objective
q Time limit on lower bound improvement algorithm

Branching
B Branch ordering
r((xi, v), t) Set of nodes in tree t that split on (xi, v)
d(s) Depth of split node s (root node has zero depth)
w(s) Weight of split node s
i(s) Number of inactive leaves below split s when branching w.r.t. (xi, s)
weight((xi, v), t) Weight assigned to (xi, v) in tree t
weight((xi, v),T) Weight assigned to (xi, v) in GBT ensemble T
inactive((xi, v),T) Number of inactive leaves when branching on pair (xi, v) in T
cover(t, s) Set of leaves covered by split node s at tree t
S,Sleft, Sright, S0 B&B nodes denoted by their corresponding domain
l Strong branching lookahead parameter

Table 5: Nomenclature

	Introduction
	Background
	Optimization Problem
	Mixed-Integer Convex Formulation
	GBT MILP Formulation
	Linking Constraints
	Worst Case Analysis

	Branch-and-Bound Algorithm
	Overview
	Lower Bounding
	Global lower bound
	GBT Lower Bound
	Node Pruning

	Branching
	Branch Ordering
	Strong Branching

	Heuristics
	Mixed-Integer Convex Programming Heuristic
	Particle Swarm Optimization

	Case Studies
	Numerical Results
	System and Solver Specifications
	Concrete Mixture Design
	Instance
	Heuristics
	GBT Lower Bounding
	Branch-and-Bound Algorithm

	Chemical Catalysis
	Instance
	Heuristics
	GBT Lower Bounding
	Branch-and-Bound Algorithm

	Conclusion
	Full convex MINLP formulation
	Omitted Proofs
	Particle Swarm Optimization
	Simulated Annealing
	Table of Notation

