
Energy Efficient Scheduling and Routing via
Randomized Rounding

Evripidis Bampis∗ Alexander Kononov† Dimitrios Letsios∗

Giorgio Lucarelli∗ Maxim Sviridenko‡

Abstract

We propose a unifying framework based on configuration linear programs and ran-
domized rounding, for different energy optimization problems in the dynamic speed-
scaling setting. We apply our framework to various scheduling and routing problems in
heterogeneous computing and networking environments. We first consider the energy
minimization problem of scheduling a set of jobs on a set of parallel speed scalable
processors in a fully heterogeneous setting. For both the preemptive-non-migratory
and the preemptive-migratory variants, our approach allows us to obtain solutions of
almost the same quality as for the homogeneous environment. By exploiting the result
for the preemptive-non-migratory variant, we are able to improve the best known ap-
proximation ratio for the single processor non-preemptive problem. Furthermore, we
show that our approach allows to obtain a constant-factor approximation algorithm
for the power-aware preemptive job shop scheduling problem. Finally, we consider the
min-power routing problem where we are given a network modeled by an undirected
graph and a set of uniform demands that have to be routed on integral routes from
their sources to their destinations so that the energy consumption is minimized. We
improve the best known approximation ratio for this problem.

1 Introduction

We focus on energy minimization problems in heterogeneous computing and networking
environments in the dynamic speed-scaling setting. For many years, the exponential increase

∗Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, France
{Evripidis.Bampis, Giorgio.Lucarelli, Dimitrios.Letsios}@lip6.fr

†Sobolev Institute of Mathematics, Novosibirsk, Russia
alvenko@math.nsc.ru

‡Yahoo Labs, New York, NY
sviri@yahoo-inc.com

1

of processors’ frequencies followed Moore’s law. This is no more possible because of physical
(thermal) constraints. Today, for improving the performance of modern computing systems,
designers use parallelism, i.e., multiple cores running at lower frequencies but offering better
performances than a single core. These systems can be either homogeneous where an identical
core is used many times, or heterogeneous combining general-purpose and special-purpose
cores. Heterogeneity offers the possibility of further improving the performance of the system
by executing each job on the most appropriate type of processors [14]. However in order
to exploit the opportunities offered by the heterogeneous systems, it is essential to focus
on the design of new efficient power-aware algorithms taking into account the heterogeneity
of these architectures. In this direction, Gupta et al. in [18] have studied the impact of
the introduction of the heterogeneity on the difficulty of various power-aware scheduling
problems.

In this paper, we show that rounding configuration linear programs helps in handling the
heterogeneity of both the jobs and the processors. We adopt one of the main mechanisms for
reducing the energy consumption in modern computer systems which is based on the use of
speed scalable processors. Starting from the seminal paper of Yao et al. [23], many papers
adopted the speed-scaling model in which if a processor runs at speed s, then the rate of the
energy consumption, i.e., the power, is P (s) = sα with α a constant close to 3 (new studies
show that α is rather smaller: 1.11 for Intel PXA 270, 1.62 for Pentium M770 and 1.66 for
a TCP offload engine [22]). Moreover, the energy consumption is the integral of the power
over time. This model captures the intuitive idea that the faster a processor works the more
energy it consumes.

We first consider a fully heterogeneous environment where both the jobs’ characteristics
are processor-dependent and every processor has its own power function. Formally, we
consider the following problem: we are given a set J of n jobs and a set P of m parallel
processors. Every processor i ∈ P obeys to a different speed-to-power function, i.e., it is
associated with a different αi ≥ 1 and hence if a job runs at speed s on processor i, then
the power is P (s) = sαi . Each job j ∈ J has a different release date ri,j, deadline di,j and
workload wi,j if it is executed on processor i ∈ P . The goal is to find a schedule of minimum
energy respecting the release dates and the deadlines of the jobs.

The assumption that the jobs have processor-dependent works covers for example the
problem of scheduling in the restricted assignment model (see [21]). In this model each job
is associated with a subset of processors and has to be executed on one of them. Clearly,
in our model the work of each job is the same on the processors of its corresponding subset
and infinite on the remaining processors. Moreover, processor-dependent release dates have
been already studied in the literature when the processors are connected by a network. In
such a case, it is assumed that every job is initially available at a given processor and that
a transfer time must elapse before it becomes available at a new machine [8, 15].

In this paper we propose a unifying framework for minimizing energy in different het-
erogeneous computing and networking environments. We first consider two variants of the
heterogeneous multiprocessor preemptive problem. In both cases, the execution of a job may
be interrupted and resumed later. In the non-migratory case each job has to be entirely
executed on a single processor. In the migratory case each job may be executed by more
than one processors, without allowing parallel execution of a job. We also focus on the
non-preemptive single processor case. Furthermore, we consider the energy minimization

2

problem in an heterogeneous job shop environment where the jobs can be preempted. Fi-
nally, we study the min-power routing problem, introduced in [5], where a set of uniform
demands have to be routed on integral routes from their sources to their destinations so that
the energy consumption to be minimized. We believe that our general techniques will find
further applications in energy optimization.

1.1 Related Work

Yao et al. [23] proposed an optimal algorithm for finding a feasible preemptive schedule with
minimum energy consumption when a single processor is available.

The homogeneous multiprocessor case has been solved optimally in polynomial time when
both the preemption and the migration of jobs are allowed [3, 6, 10, 13]. Albers et al. [4]
considered the homogeneous multiprocessor preemptive problem, where the migration of the
jobs is not allowed. They proved that the problem is NP-hard even for instances with
common release dates and common deadlines. Greiner et al. [16] gave a generic reduc-
tion transforming an optimal schedule for the homogeneous multiprocessor problem with
migration, to a Bdαe-approximate solution for the homogeneous multiprocessor preemptive
problem without migration, where Bdαe is the dαe-th Bell number.

Antoniadis and Huang [7] proved that the single processor non-preemptive problem is
NP-hard even for instances in which for any two jobs j and j′ with rj ≤ rj′ it holds that
dj ≥ dj′ . They also proposed a 25α−4-approximation algorithm for general instances. For
the homogeneous multiprocessor non-preemptive case an approximation algorithm of ratio
mα(m

√
n)α−1 has been proposed in [9].

Andrews et al. [5] studied the min-power routing problem and for uniform demands, i.e.
for the case where all the demands have the same value, they proposed a γ-approximation
algorithm, where γ = max{1 + τ2α(τ+1) log e, 2 + τ2α(τ+1)}, with τ = d2 log(α + 4)e. For
non-uniform demands, they proposed a O(logα−1D)-approximation algorithm, where D is
the maximum value of the demands.

For further results on energy-efficient scheduling we refer the interested reader to the
reviews [1, 2].

1.2 Notation

We denote by E(S) the total energy consumed by a schedule S. Moreover, we denote by S∗
an optimal schedule and by OPT the energy consumption of S∗. For each job j ∈ J , we say
that j is alive on processor i ∈ P during the interval [ri,j, di,j]. Let α = maxi∈P{αi}. The
Bell number, Bn, is defined for any integer n ≥ 0 and corresponds to the number of partitions
of a set of n items. It is well known that Bell numbers satisfy the following equality

Bn =
∞∑
k=0

kne−1

k!

known as Dobinski’s formula. Another way to state this formula is that the n-th Bell number
is equal to the n-th moment of a Poisson random variable with parameter (expected value) 1.
This naturally leads to a more general definition. The generalized Bell number, denoted by

3

Multiprocessor Non-Preemptive Routing

Value of
Non-Migratory Single processor Uniform Demands

α
[16] Our

[7] Our [5] Our
Homogeneous Heterogeneous

1.11 2 1.07(1+ε) 2.93 1.15(1+ε) 375 1.07
1.62 2 1.49(1+ε) 17.15 2.30(1+ε) 2196 1.49
1.66 2 1.54(1+ε) 19.70 2.43(1+ε) 2522 1.54

2 2 2(1+ε) 64 4(1+ε) 8193 2
2.5 5 3.08(1+ε) 362 8.72(1+ε) 46342 3.08
3 5 5(1+ε) 2048 20(1+ε) 262145 5

Table 1: Comparison of our approximation ratios vs. better previous known ratios for: (i)
the preemptive multiprocessor problem without migrations, (ii) the single processor non-
preemptive problem, and (iii) the min-power routing problem.

B̃α =
∑∞

k=0
kαe−1

k!
, is defined for any α ∈ R+ and corresponds to the α-th (fractional) moment

of a Poisson random variable with parameter 1. Note that the ratios of our algorithms depend
on the generalized Bell number, while the previous known [16] on the standard Bell number.

1.3 Our Contribution

In this paper we formulate heterogeneous scheduling and routing problems using configura-
tion linear programs (LPs) and we apply randomized rounding. In Section 3, we consider
the heterogeneous multiprocessor speed-scaling problem without migrations and we propose
an approximation algorithm of ratio (1 + ε)B̃α. As this LP has an exponential number of
variables, we give an alternative (compact) formulation of the problem using a polynomial
number of variables and we prove the equivalence between the two LP relaxations. For real
values of α our result improves the Bdαe approximation ratio of [16] for the homogeneous

case to (1 + ε)B̃α for the fully heterogeneous environment that we consider here (see Ta-
ble 1). In Section 4, using again a configuration LP formulation, we present an algorithm
for the heterogeneous multiprocessor speed-scaling problem with migration. This algorithm
returns a solution within an additive factor of ε far from the optimal solution and runs in
time polynomial to the size of the instance and to 1/ε. This result generalizes the results of
[3, 6, 10, 13] from an homogeneous environment to a fully heterogeneous environment. In
Section 5, we transform the single processor speed-scaling problem without preemptions to
the heterogeneous multiprocessor problem without migrations and we give an approximation
algorithm of ratio 2α−1(1 + ε)B̃α, improving upon the previous known 25α−4-approximation
algorithm in [7] for any α < 114 (see Table 1). In Section 6, we study the power-aware
preemptive job shop scheduling problem and we propose a ((1 + ε)B̃α)-approximation algo-
rithm. Finally, in Section 7, we improve the analysis for the min-power routing problem with
uniform demands given in [5], based on the randomized rounding analysis that we propose
in this paper. Our approach gives an approximation ratio of B̃α significantly improving the
analysis given in [5] (see Table 1).

4

2 Technical Probabilistic Propositions

In this section, we state and prove a series of technical propositions which are key ingredients
in our analysis. Proposition 1 bounds the expectation of a specific function of random
variables.

Proposition 1. Consider n random variables X1, X2, . . . , Xn and let α > 1. Then, it holds
that

E

[(
n∑
i=1

X
1/α
i

)α]
≤

(
n∑
i=1

E[Xi]
1/α

)α

Proof. By defining random variables Yi = X
1/α
i and applying the Minkowski’s inequality we

derive

E

[(
n∑
i=1

Yi

)α]
≤

(
n∑
i=1

E[Y α
i]1/α

)α

=

(
n∑
i=1

E[Xi]
1/α

)α

.

Proposition 2 deals with the expressions arising when one estimates the moments of
random variables with Binomial distributions.

Proposition 2. Consider a set of non-negative cons tants {e1, e2, . . . , en}. For any subset A

of these constants, let f(A) =
(∑

j∈A e
1/α
j

)α
. Let S be a random set generated by choosing

each element ej, 1 ≤ j ≤ n, independently at random with probability Yj. Moreover, let
en = en+1. Assume that S ′ is a random set generated by sampling independently at random
within {e1, e2, . . . , en+1}, with probabilities Y ′1 , Y

′
2 , . . . , Y

′
n+1, where Y ′j = Yj, for 1 ≤ j ≤ n−1,

and Y ′n + Y ′n+1 = Yn. Then,
E[f(S)] ≤ E[f(S ′)]

Proof. Let Pr(T) be the probability that exactly the constants in the set T are chosen among
the constants in U = {e1, e2, . . . , en−1}. That is, Pr(T) =

∏
ej∈T Yj

∏
ej∈U\T (1 − Yj). We

have that

E[f(S)] =
∑
T⊆U

Pr(T)

[
(1− Yn) ·

(∑
j∈T

e
1/α
j

)α

+ Yn ·

(∑
j∈T

e
1/α
j + e1/α

n

)α]

As Yj = Y ′j for 1 ≤ j ≤ n− 1, it holds that

E[f(S ′)] =
∑
T⊆U

Pr(T)

[
(1− Y ′n) · (1− Y ′n+1) ·

(∑
j∈T

e
1/α
j

)α

+ Y ′n · (1− Y ′n+1) ·

(∑
j∈T

e
1/α
j + e1/α

n

)α

+(1− Y ′n) · Y ′n+1 ·

(∑
j∈T

e
1/α
j + e

1/α
n+1

)α

+ Y ′n · Y ′n+1 ·

(∑
j∈T

e
1/α
j + e1/α

n + e
1/α
n+1

)α]

5

For notational convenience, we denote A =
∑

j∈T e
1/α
j and B = e

1/α
n = e

1/α
n+1. In order to

prove the proposition it suffices to show that

(1− Yn)Aα + Yn · (A+B)α ≤ (1− Y ′n) · (1− Y ′n+1) · Aα + Y ′n · (1− Y ′n+1) · (A+B)α

+(1− Y ′n) · Y ′n+1 · (A+B)α + Y ′n · Y ′n+1 · (A+ 2B)α

Given the fact that Yn = Y ′n + Y ′n+1, the above inequality can be rewritten equivalently as

Y ′nY
′
n+1(Aα − 2(A+B)α + (A+ 2B)α) ≥ 0

If either Y ′n = 0 or Y ′n+1 = 0, the inequality is clearly true. Otherwise, the inequality holds
due to the convexity of the function g(x) = xα. Specifically, for any x, y > 0 and θ ∈ [0, 1],
it must be the case that

g(θx+ (1− θ)y) ≤ θg(x) + (1− θ)g(y)

For x = A, y = A+ 2B and θ = 1
2
, we get that

g

(
1

2
A+

1

2
(A+ 2B)

)
≤ 1

2
g(A) +

1

2
g(A+ 2B)⇔ 2(A+B)α ≤ Aα + (A+ 2B)α

Proposition 3 is a corollary of the generalized means inequality.

Proposition 3. For any set of positive values S = {e1, e2, . . . , en} and constant α > 1,(∑
ei∈S

e
1/α
i

)α

≤ |S|α−1
∑
ei∈S

ei

Proposition 4 estimates the moments of Binomial random variables through the moments
of Poisson random variables.

Proposition 4. For any α ≥ 1, the function f(x) = xα and parameter a ∈ [0, 1] we have

E[f(Ba)] ≤ E[f(Pa)]

where Ba is a sum of n independent Bernoulli random variables, E[Ba] = a and Pa is a
Poisson random variable with parameter a.

Proof. To upper bound the expected value of f(x), we will need the following probabilistic
fact that was first proved by Hoeffding [19] for finite sum of Bernoulli random variables and
was lately generalized for more general distributions by Berend and Tassa [12].

Proposition 5. [12] Let X =
∑t

i=1 Xi be the sum of t (where t is possibly equal to infinity)
independent random variables, 0 ≤ Xi ≤ 1 for i = 1, . . . , t and µ = E[X]. For every convex
function f ,

E[f(X)] ≤ E[f(Y)]

where Y is a binomial random variable with distribution Y ∼ B(t, µ/t) in case t < ∞, and
a Poisson random variable with distribution Y ∼ P (µ) otherwise.

6

We define a binomial random variable B′a as a sum of Ba and an infinite number of
Bernoulli random variables Y ′j for j = n + 1, . . . ,∞ such that Pr(Yj = 1) = 0. Obviously,
E[B′a] = E[Ba] = a and E[f(B′a)] = E[f(Ba)]. Since the function f(x) is convex we can apply
the Proposition 5 with parameter t =∞ and the statement follows.

Proposition 6 estimates moments of Poisson random variables with parameter λ through
the moments of Poisson random variables with parameter 1.

Proposition 6. For any real α ≥ 1 and a Poisson random variable Pλ with parameter λ ≥ 0,
we have:

(a) If 0 ≤ λ ≤ 1, then E[Pα
λ] ≤ λE[Pα

1].

(b) If λ > 1, then E[Pα
λ] ≤ λαE[Pα

1].

Proof. Recall that E[Pα
λ] =

∑∞
k=0 k

α λke−λ

k!
.

(a) Note that e−(1−λ) ≥ 1 − (1 − λ) = λ ≥ λk−1 for k ≥ 2 and 0 ≤ λ ≤ 1. Therefore,
e−1 ≥ λk−1e−λ for all k ≥ 2. For λ = 0 the statement of the Lemma is trivial. Assume
λ > 0, then we derive

E[Pα
1]− 1

λ
E[Pα

λ] =
∞∑
k=0

kα
e−1 − λk−1e−λ

k!

= (e−1 − e−λ) +
∞∑
k=2

kα
e−1 − λk−1e−λ

k!

≥ (e−1 − e−λ) +
∞∑
k=2

k
e−1 − λk−1e−λ

k!

=
∞∑
k=0

k
e−1

k!
− 1

λ

∞∑
k=0

k
λke−λ

k!

= 1− 1

λ
· λ = 0.

(b) For the case where λ > 1, we will use two basic facts. The first fact is that given
a Poisson random variable X1 with parameter λ1 and a Poisson random variable X2

with parameter λ2 that are mutually independent, then a random variable X1 +X2 is
a Poisson random variable with parameter λ1 + λ2. The second fact is that for any
random variable X the quantity E[Xp]1/p defines a norm and therefore satisfies the
triangle inequality (Minkowski’s norm inequality), i.e. ||X + Y ||p ≤ ||X||p + ||Y ||p.
Assume that λ = A

B
is a rational number, A,B ∈ Z+ and A > B ≥ 1. Let X be

a Poisson random variable with parameter λ and Y1, . . . , YA be independent Poisson
random variables with parameter 1/B. In addition, let YS be a random variable

YS =

∑
i∈S Yi(
A−1
B−1

)
7

Then

X =
A∑
i=1

Yi =
∑

S⊆[A]:|S|=B

YS

where [A] = {1, . . . , A}. Let P1 be a Poisson random variable with parameter 1. Then
applying the triangle inequality we obtain

E[Xα]1/α ≤
∑

S⊆[A]:|S|=B

E[Y α
S]1/α =

(
A
B

)(
A−1
B−1

)E[Pα
1]1/α = λE[Pα

1]1/α

which implies the inequality in the statement of the lemma for any rational value of
λ > 1.

To derive the inequality for any real λ > 1 we just need to apply the standard limiting
argument, i.e., any real is a limit of rationals and the inequality holds for each of these
rational values. Therefore, the inequality must hold for the real value of λ.

3 Heterogeneous Multiprocessor without Migrations

In this section we consider the case where the migration of jobs is not permitted, but their
preemption is allowed. The corresponding homogeneous problem is known to be NP-hard
even if all jobs have common release dates and deadlines [4]. We propose an approximation
algorithm by formulating the problem as a configuration integer program (IP) with an ex-
ponential number of variables and a polynomial number of constraints. Given an optimal
solution for the configuration LP relaxation, we apply randomized rounding to get a feasible
schedule for our problem. In order to get a polynomial-time algorithm, we present another
(compact) formulation of our problem with a polynomial number of variables and constraints
and we show that the relaxations of the two formulations are equivalent.

3.1 Linear Programming Relaxation

In order to formulate our problem as a configuration IP we need to discretize the time. In
the following lemma we assume that the release dates and the deadlines of all jobs in all
processors are integers.

Lemma 1. There is a feasible schedule with energy consumption at most ((1 + ε
1−ε)(1 +

2
n−2

))α ·OPT in which each piece of each job j ∈ J (j is executed on processor i ∈ P) starts
and ends at a time point ri,j + k ε

n3 (di,j − ri,j), where k ≥ 0 is an integer and ε ∈ (0, 1).

Proof. We will first transform an optimal schedule S∗ to a feasible schedule S in which the
execution time of each job j ∈ J executed on processor i ∈ P is at least ε

n
(di,j − ri,j).

As the release dates and the deadlines are integers, we can divide the time into unit length
slots. We can get now the schedule S from S∗ as follows: For each unit slot we increase
the processors’ speeds such that to create an idle period of length ε. This can be done by

8

increasing the speeds by a factor of 1 + ε
1−ε , and hence the total energy consumption in S is

increased by a factor of (1 + ε
1−ε)

α. For each job j ∈ J , we reserve an ε
n

period to each unit
slot in (ri,j, di,j] on the processor in which j was executed in S∗. In S, we decrease the speed
of j such that its total work to be executed during the periods where j was executed in S∗
and the additional di,j − ri,j reserved periods. Therefore, in the final schedule the processing
time of each job j ∈ J is at least ε

n
(di,j − ri,j). After this transformation we apply the

Earliest Deadline First (EDF) policy to each processor separately with respect to the set of
jobs assigned on this processor in S∗ and the speeds defined above. This ensures that we
have a schedule with at most n preemptions, as in EDF a job may be interrupted only when
another job is released.

Next, we transform S to a new schedule S ′ such that to satisfy the statement of the
lemma. For each job j ∈ J which is executed on the processor i ∈ P , we split the interval
(ri,j, di,j] into slots of length ε

n3 (di,j − ri,j), i.e., we partition (ri,j, di,j] into intervals of the
form (ri,j + k ε

n3 (di,j − ri,j), ri,j + (k + 1) ε
n3 (di,j − ri,j)], where k ≥ 0 is an integer. As the

processing time of j in S is at least ε
n
(di,j− ri,j), the execution of j has been partitioned into

at least n2 slots. In each of these slots, the job j either is executed during the whole slot or
is executed into a fraction of it. As we have applied the EDF policy, the job j is preempted
at most n times, and hence at most 2n of these slots are not completely covered by j, since
for each preempted piece of j at most two slots may not be completely covered by it, i.e., the
first and the last slot of its execution. We can modify the schedule S and get the schedule
S ′ in which the job j is executed only to the slots where it was entirely executed in S. The
number of these slots is at least n2 − 2n. Thus, we have to increase the speed of j by a
factor of 1 + 2

n−2
, and hence the energy is increased by a factor of (1 + 2

n−2
)α. By taking into

account that S is a factor of (1 + ε
1−ε)

α far from the optimal, the lemma follows.

Let S be a schedule that satisfies Lemma 1 and let j ∈ J be a job executed on the
processor i ∈ P in S. The above lemma implies that the interval (ri,j, di,j] can be partitioned
into polynomial, with respect to n and 1/ε, number of equal length slots. In each of these
slots, j either is executed during the whole slot or is not executed at all. In what follows we
consider schedules that satisfy Lemma 1.

A configuration c is a schedule for a single job on a single processor. Specifically, a con-
figuration determines the slots, with respect to Lemma 1, during which one job is executed.
Given a configuration c for a job j ∈ J , we can define the execution time of j that is equal
to the number of slots in c multiplied by the length of the slot. Due to the convexity of the
speed-to-power function, in a minimum energy schedule that satisfies Lemma 1, the job j
runs at a constant speed sj. Hence, sj is equal to the work of j over its execution time. Let
Cij be the set of all possible feasible configurations for a job j ∈ J in a processor i ∈ P .

In order to ensure the feasibility of our schedule we need to further partition the time, by
merging the slots for all jobs. Given a processor i ∈ P , consider the time points of all jobs of
the form ri,j + k ε

n3 (di,j − ri,j) as introduced in Lemma 1. Let ti,1, ti,2, . . . , ti,`i be the ordered
sequence of these time points. Consider now the intervals (ti,p, ti,p+1], 1 ≤ p ≤ `i − 1. In a
schedule that satisfies Lemma 1, in each such interval either there is exactly one job that
is executed during the whole interval or the interval is idle. Note also that these intervals
might not have the same length. Let I be the set of all these intervals for all processors.

We introduce the binary variable xi,j,c that is equal to one if the job j ∈ J is entirely

9

executed on the processor i ∈ P according to the configuration c, and zero otherwise. Note
that, given the configuration and the processor i where the job j is executed, we can compute
the energy consumption Ei,j,c for the execution of j. For ease of notation, we say I ∈ (i, j, c)
if the interval I ∈ I is included in the configuration c of processor i ∈ P for the job j ∈ J ,
that is there is a slot (ri,j + k ε

n3 (di,j − ri,j), ri,j + (k + 1) ε
n3 (di,j − ri,j)] in c that contains I.

min
∑
i,j,c

Ei,j,c · xi,j,c∑
i,c

xi,j,c = 1 ∀j ∈ J (1)∑
(i,j,c)3I

xi,j,c ≤ 1 ∀I ∈ I (2)

xi,j,c ∈ {0, 1} ∀i ∈ P , j ∈ J , c ∈ Cij (3)

Inequality (1) enforces that each job is entirely executed according to exactly one configu-
ration. Inequality (2) ensures that at most one job is executed in each interval (ti,p, ti,p+1],
1 ≤ p ≤ `i − 1.

We next relax the constraints (3) such that xi,j,c ≥ 0. Since the structure of this LP is
quite simple we can define an equivalent compact LP relaxation with polynomial number of
constraints and variables. We describe how to do it in Section 3.3. For now we assume that
we can find an optimal solution of our configuration LP in polynomial time.

3.2 Randomized Rounding

Now, we show how to apply randomized rounding to get an approximation algorithm for
our problem. Recall that, by definition, an interval I ∈ I corresponds to a single processor
i ∈ P . Our algorithm follows.

Algorithm 1

1: Solve the configuration LP relaxation.
2: For each job j ∈ J , choose a configuration at random with probability xi,j,c.
3: Let wj(I) be the amount of work executed for job j during the interval I ∈ I according

to its chosen configuration and i be the associated processor to the interval I.
4: Set i’s speed during I as if

∑
j∈J wj(I) units of work are executed with constant speed

during the entire I.

Theorem 1. Assume that αi ≥ 1 for all i = 1, . . . ,m. Algorithm 1 achieves an approxima-
tion ratio of ((1 + ε

1−ε)(1 + 2
n−2

))αB̃α for the heterogeneous multiprocessor preemptive speed-
scaling problem without migrations in time polynomial to n and to 1/ε, where α = maxi∈P αi
and ε ∈ (0, 1).

Proof. For each interval I ∈ I, we estimate the expected energy consumption during I. So,
in the remainder of the proof, we fix such an interval (and processor).

10

Initially, the algorithm computes an optimal solution for the relaxed LP. For each job
j ∈ J , let nj be the number of the non-zero xi,j,c variables such that I ∈ (i, j, c). Note that,
every such variable corresponds to some configuration c such that if the job j is executed
according to c, then it must be executed during I. For notational convenience, let Xj,k be
the k-th, 1 ≤ k ≤ nj, of these non-zero variables and sj,k be the corresponding speed. The
probability that the job j is executed during I in the algorithm’s schedule is Yj =

∑nj
k=1 Xj,k.

If the job j is entirely executed according to the configuration which corresponds to the
variable Xj,k, then its energy consumption is ej,k = |I|sαij,k, during I. The energy consumption

achieved by the optimal solution of the LP relaxation during I is LP ∗I =
∑n

j=1

∑nj
k=1 ej,kXj,k.

Assume that the randomized rounding assigns exactly the jobs in the set S to be processed
during the interval I. The probability of such an event is Pr(S) =

∏
j∈S Yj

∏
j∈J\S(1− Yj).

Let E(S) be the expected energy consumption during I under the condition that exactly the
jobs in the set S are executed during I. Then, the expected energy consumption EI of our
algorithm during I can be expressed as follows:

EI =
∑
S⊆J

E(S)
∏
j∈S

Yj
∏

j∈J\S

(1− Yj)

We, now, estimate E(S). Let U(S) be the set of all combinations of pairs (j, k) that we
can choose in order to schedule exactly the jobs in set S, S ⊆ J , during I. If the algorithm
schedules the jobs in S during I according to the configurations in U , where U ⊆ U(S), then

the total energy consumption during I in the algorithm’s schedule is |I|
(∑

(j,k)∈U sj,k

)αi
.

So,

E(S) =
∑

U⊆U(S)

 ∏
(j,k)∈U

Xj,k

Yj

 |I|
 ∑

(j,k)∈U

sj,k

αi

For each job j ∈ S, we denote by ẽj a random variable which takes the value ej,k with

probability
Xj,k
Yj

. Then, we have that

E(S) = E

[(∑
j∈S

ẽ
1/αi
j

)αi]

By Proposition 1,

E(S) ≤

(∑
j∈S

E [ẽj]
1/αi

)αi

We set ej = E [ẽj]. Therefore, the expected energy consumption during I can be upper
bounded as follows

EI ≤
∑
S⊆J

(∑
j∈S

e
1/αi
j

)αi∏
j∈S

Yj
∏

j∈J\S

(1− Yj)

We can assume that there exists a sufficiently large Q ∈ N such that Yj =
qj
Q

, 1 ≤ j ≤ n,

for some qj ∈ N (we don’t make any assumptions on the encoding length of these numbers,
we use them only for analysis purposes) since these numbers come from solving an LP with

11

rational coefficients. Let Y = 1/Q and q =
∑n

j=1 qj. Note that q ≤ Q. By applying the
Proposition 2 iteratively, we split Yj into smaller pieces and we get that

EI ≤
∑

S⊆{1,2,...,q}

(∑
j∈S

e
1/αi
j

)αi

Y |S|(1− Y)q−|S|

By using Proposition 3 we get

EI ≤
∑

S⊆{1,2,...,q}

|S|αi−1

(∑
j∈S

ej

)
Y |S|(1− Y)q−|S|

=

q∑
k=1

∑
S⊆{1,2,...,q},|S|=k

(∑
j∈S

ej

)
kαi−1Y k(1− Y)q−k

By changing the order of the sums in the above inequality and given that
(
q−1
k−1

)
is the number

of sets of cardinality k that contain j, we get

EI ≤

(
q∑
j=1

ej

)
q∑

k=1

(
q − 1

k − 1

)
kαi−1Y k(1− Y)q−k

=

(∑q
j=1 ej

q

)
q∑

k=1

(
q

k

)
kαiY k(1− Y)q−k

=

(∑n
j=1 qjej

q

)
q∑

k=1

(
q

k

)
kαiY k(1− Y)q−k

=
Q

q
LP ∗I

q∑
k=1

(
q

k

)
kαiY k(1− Y)q−k

=
Q

q
LP ∗I · E[Bαi

q/Q]

where Bq/Q is a random variable with expectation q
Q

which corresponds to the sum of q i.i.d
Bernoulli random variables. Therefore,

EI ≤
Q

q
LP ∗I · E[Bαi

q/Q] ≤ Q

q
LP ∗I · E[Pαi

q/Q] ≤ Q

q
LP ∗I ·

q

Q
E[Pαi

1]

where the second inequality follows from Proposition 4 and the last inequality follows from
Proposition 6(a). Therefore, by summing over all intervals and processors and as α =
maxi∈P αi, we get

E ≤ LP ∗ · E[Pα
1] = LP ∗ · B̃α

The theorem follows.

12

Remark: Let fi be the contribution of all variables xi,j,c to the value of the optimal LP
solution, i.e.,

∑
i∈P fi = f where f is the optimal value of the configuration LP. One can

refine the analysis of the Theorem 1 and show the factor of
∑

i∈P B̃αi
fi
f

instead of B̃α if all
αi ≥ 1.

3.3 Compact Linear Programming Relaxation

Next, we define a compact formulation for the problem without migrations and we show
that the relaxations of the compact and the configuration LPs are equivalent. Recall that,
by Lemma 1, there is always an ((1 + ε

1−ε)(1 + 2
n−2

))α-approximate schedule for our problem
such that if the job j ∈ J is executed on the processor i ∈ P , then its feasibility interval
(ri,j, di,j] can be partitioned into equal-length slots. Given such a slot t, j is either executed

during the whole t or it is not executed at all during t. The number of these slots is n3

ε
, while

each slot t has length `t = ε
n3 (di,j − ri,j). Recall also that I denotes the set of all intervals

occurred by merging the slots for all jobs.
In order to formulate our problem as a compact LP, we introduce a binary variable yi,j,q

which is equal to one if the job j is executed on the processor i during exactly q slots and
zero otherwise. Moreover, we introduce a binary variable zi,j,q,t which is equal to one if the
job j is executed on the processor i during the slot t and it is executed during exactly q slots
in total. Otherwise, zi,j,q,t is equal to zero. We define the constants pi,j,q = q ε

n3 (di,j − ri,j)
and Ei,j,q =

w
αi
i,j

p
αi−1
i,j,q

as the total execution time and the energy consumption, respectively, of

the job j if it is entirely executed on the processor i during exactly q slots.

min
∑
i,j,q

Ei,j,q · yi,j,q∑
i,q

yi,j,q = 1 ∀j ∈ J (4)∑
t

zi,j,q,t = q · yi,j,q ∀i ∈ P , j ∈ J , q ∈ {1, 2, . . . , n3

ε
} (5)∑

j,q

∑
t:I⊆t

zi,j,q,t ≤ 1 ∀i ∈ P , I ∈ I (6)

yi,j,q, zi,j,q,t ∈ {0, 1} ∀i ∈ P , j ∈ J , q, t ∈ {1, 2, . . . , n3

ε
} (7)

The constraint (4) ensures that each job is entirely executed on some processor. The con-
straint (5) establishes the relationship between the variables zi,j,q,t and yi,j,q. If yi,j,q = 1,
then exactly q variables zi,j,q,t must be equal to one. The constraint (6) enforces that at most
one job is executed by each processor at each time. Specifically, given a job j ∈ J which is
executed on the processor i ∈ P , if j is executed during the slot t ∈ {1, 2, . . . , n3

ε
}, then j is

executed during every interval I ∈ I such that I ⊆ t. Note that the numbers of both the
variables and the constraints of the above LP are polynomial to n and to 1/ε.

The configuration and the compact formulations are equivalent, as they both lead to
a minimum energy schedule satisfying Lemma 1. Consider now the LPs that occur if we
relax constraints (3) and (7), respectively. In Lemma 2 we prove that the equivalence is also

13

true for these relaxations through a transformation of a solution for the configuration LP
relaxation to a solution for the compact LP relaxation, and vice versa. As a result, given
a solution of the compact LP relaxation obtained by any polynomial time algorithm, we
can get a solution for the configuration LP relaxation. Then, we can apply the randomized
rounding presented in the previous section and get the approximation ratio of Theorem 1.

Lemma 2. The relaxations of the configuration LP and the compact LP are equivalent.

Proof. We will show that any feasible solution for the configuration LP relaxation can be
transformed to a feasible solution for the compact LP relaxation with the same energy
consumption and vice versa.

Assume that we are given a feasible solution for the relaxation of the configuration LP.
Such a solution corresponds to a schedule of the jobs on the processors. Specifically, the value
of the variable xi,j,c specifies the part of the job j ∈ J executed on processor i ∈ P during
the slots that belong to the configuration c ∈ Cij. Let Cijq ⊆ Cij be the set of configurations
of j on i with exactly q slots. Then, we define zi,j,q,t =

∑
c∈Cq :t∈c xi,j,c. This defines a feasible

solution for the relaxation of the compact LP.
Assume that we are given a feasible solution for the compact LP. We will define a set of

configurations and we will assign a non-zero value for each variable xi,j,c that corresponds to
these configurations. The number of these configurations should be polynomial to n and to
1
ε
. The remaining variables of the configuration LP will be set to zero.

Consider a non-zero variable yi,j,q (and its corresponding variables zi,j,q,t) in the solution
of the compact LP. We partition the part of the schedule defined by yi,j,q into a set of
configurations with q slots and we specify the values of the variables xi,j,c that correspond
to these configurations. To do this, for each variable yi,j,q and its associated variables zi,j,q,t,
we construct a bipartite graph G = (A ∪ B,E) as follows. The set A contains q nodes, i.e.
A = {a1, a2, . . . , aq}. Intuitively, each of these nodes corresponds to one of the q slots of

the configurations that will correspond to yi,j,q. The set B contains n3

ε
nodes, one for each

possible slot of j on the processor i (see Lemma 1), i.e. B = {b1, b2, . . . , bn3
ε

}. We will define

the set of edges E and their weights, such that each node ak ∈ A has weighted degree exactly
yi,j,q and each node bt ∈ B has weighted degree exactly zi,j,q,t. Note that, the total weight
of all the edges will be q · yi,j,q =

∑
t zi,j,q,t. We start by adding edges from a1 to b1, b2, . . .

of weight zi,j,q,1, zi,j,q,2, . . ., respectively, as long as
∑k

t=1 zi,j,q,t ≤ yi,j,q. The first time where∑k
t=1 zi,j,q,t > yi,j,q we add an edge between a1 and bk of weight yi,j,q−

∑k−1
t=1 zi,j,q,t. Moreover,

we add an edge between a2 and bk of weight zi,j,q,k−(yi,j,q−
∑k−1

t=1 zi,j,q,t). We continue adding
edges from a2 to bk+1, bk+2, . . . of weight zi,j,q,k+1, zi,j,q,k+2, . . ., respectively, until the sum of
their weights is bigger than yi,j,q. At this point we add an edge of appropriate weight
starting from a3 and we continue like this. Note that, by construction each node bt ∈ B has
degree either one or two. Then, we construct a set of configurations based on the following
proposition.

Proposition 7. Let G = (A ∪ B,E) be a bipartite graph in which each node in A has
weighted degree exactly one and each node in B has weighted degree at most one. There are
perfect matchings M1,M2, . . . ,Mr (i.e., matchings having exactly |A| edges) and coefficients
λ1, λ2, . . . , λr such that

∑r
i=1 λi = 1, and for each edge e it holds that

∑
i:e∈Mi

λi = we, where
we is the weight of the edge e.

14

Proof. By the construction of the graph G, all its edges have a positive weight and all nodes
in the set A have the same weighted degree which is equal to yi,j,q. Consider an arbitrary
perfect matching M in G. Let wmin = mine∈M{we}. Clearly, wmin > 0. We define λ1 = wmin

and we modify the graph G by setting the weight of every edge e ∈ M equal to we − wmin.
Then, we remove all edges with zero weight. We repeat this procedure until the graph is
empty. Given that we remove at least one each in each iteration, we compute a polynomial
number of perfect matchings.

It is easy to see that the solution obtained for the configuration LP is feasible. The
fact that Constraint (1) is satisfied comes from Constraints (4) and (5). The fact that
Constraint (2) is satisfied comes from Constraint (6).

4 Heterogeneous Multiprocessor with Migrations

In this section we present an algorithm for the heterogeneous multiprocessor speed-scaling
problem with preemptions and migrations. We assume that, if x units of work for the job j
are executed on the processor i, then x/wi,j portion of j is accomplished by i. We formulate
the problem as a configuration LP, with an exponential number of variables and a polynomial
number of constraints, and we show how to obtain an OPT + ε solution with the Ellipsoid
algorithm in time polynomial to the size of the instance and to 1/ε, where ε > 0.

A configuration c is a one-to-one assignment of nc, 0 ≤ nc ≤ m, jobs to the m processors
as well as an assignment of a speed value for every processor. We denote by C the set of all
possible configurations. A well defined schedule for our problem has to specify exactly one
configuration at each time t. The cardinality of C is unbounded, since the processors’ speeds
may be any real values. Hence, we have to discretize the possible speed values and consider
only a finite number of speeds at which the processors can run.

Lemma 3. There is a feasible schedule of energy consumption at most OPT + ε that uses
a finite (exponential to the size of the instance and polynomial to 1/ε) number of discrete
processors’ speeds, for any ε > 0.

Proof. To discretize the speeds, we first define a lower and an upper bound on the speed of
any processor in an optimal schedule. For the lower bound, consider a job j ∈ J . Recall that
the release date and the deadline of j are different on different processors. Hence, the feasible
intervals of j in different processors may be completely disjoint, that is the processing time
of j in an optimal schedule can be equal to

∑
i∈P(di,j− ri,j). Therefore, due to the convexity

of the speed-to-power function, a non-zero lower bound on the speed of every processor is
the minimum density among all the jobs, i.e., sLB = minj∈J { mini∈P{wi,j}∑

i∈P (di,j−ri,j)}. For the upper

bound, consider a processor i ∈ P . An upper bound on the speed of i can be obtained by
calculating the speed at which the jobs would run if they were all executed in the minimum

alive interval of any job on i, i.e.,
∑
j∈J wi,j

minj∈J (di,j−ri,j) . Hence, an upper bound on the speed of

every processor is sUB = maxi∈P{
∑
j∈J wi,j

minj∈J (di,j−ri,j)}.
Given these lower and upper bounds and a small constant δ > 0, we discretize the

speed values in a geometric way. In other words, we consider only the speeds of the form

15

(1+δ)sLB, (1+δ)2sLB, . . . , (1+δ)ksLB, where k is the first integer such that (1+δ)ksLB ≥ sUB.

Hence, the number of speed values is equal to k =
⌈
log1+δ

sUB
sLB

⌉
, which is polynomial to the

size of the instance and to 1/ log(1 + δ).
Consider now an optimal schedule for our problem. Let S be the schedule obtained from

the optimal one by rounding up the processors’ speeds to the closest discrete value. The
ratio of the energy consumption of any processor i ∈ P at any time t in S over the energy
consumption by i at t in the optimal schedule is at most (1 + δ)αi . By summing up for
all processors and all time instances, we get that the energy consumption of S is at most
(1 + δ)αOPT . Finally, if we pick a δ such that δ = (1 + ε

OPT
)1/α − 1, then the energy

consumption of S is at most OPT + ε. However, this selection made the number of discrete
speeds to be exponential to the size of the instance and to 1/ε.

In what follows in this section, we deal with schedules that satisfy Lemma 3. Let, now,
t0 < t1 < . . . < t` be the time instants that correspond to release dates and deadlines of jobs
so that there is a time ti for every possible release date and deadline. We denote by I the
set of all possible intervals of the form (ti−1, ti], for 1 ≤ i ≤ `. Let |I| be the length of the
interval I.

We introduce a variable xI,c, for each I ∈ I and c ∈ C, which corresponds to the total
processing time during the interval I ∈ I where the processors run according to the config-
uration c ∈ C. We denote by EI,c the instantaneous energy consumption of the processors if
they run with respect to the configuration c during the interval I. Moreover, let sj,c be the
speed of the job j according to the configuration c. For notational convenience, we denote
by (I, c) the set of jobs which are alive during the interval I and which are executed on some
processor by the configuration c. Finally, let i(j, c) be the processor on which the job j is
assigned into configuration c. We propose the following configuration LP:

min
∑

I∈I,c∈C

EI,c · xI,c∑
c∈C

xI,c ≤ |I| ∀I ∈ I (8)∑
I,c: j∈(I,c)

sj,c
wi(j,c),j

xI,c ≥ 1 ∀j ∈ J (9)

xI,c ≥ 0 ∀I ∈ I, c ∈ C

Consider the schedule for the interval I that occurs by an arbitrary order of the configurations
assigned to I. This schedule is feasible, as the processing time of all configurations assigned
to I is equal to the length of the interval. Hence, Inequality (8) ensures that for each interval
I there is exactly one configuration for each time t ∈ I. Inequality (9) implies that each job
j is entirely executed.

The above LP has an exponential number of variables. In order to handle this, we
create the dual LP, which has an exponential number of constraints. Next, we show how to
efficiently apply the Ellipsoid algorithm to it (see [17]). For this, we provide a separation
oracle, i.e., we give a polynomial-time algorithm which given a solution for the dual LP
decides if this solution is feasible or otherwise it identifies a violated constraint. As we can
compute an optimal solution for the dual LP, we can also find an optimal solution for the

16

primal LP by solving it with the variables corresponding to the constraints that were found
to be violated during the run of the ellipsoid method and setting all other primal variables
to be zero. The number of these violated constraints is polynomial to the size of the instance
and to 1/ε. Thus, we can solve the primal LP with a polynomial number of variables.

The dual LP is the following:

max
∑
j∈J

λj −
∑
I∈I

µI |I|∑
j∈(I,c)

sj,c
wi(j,c),j

λj − µI ≤ EI,c ∀I ∈ I, c ∈ C

µI , λj ≥ 0 ∀I ∈ I, j ∈ J

The separation oracle for the dual LP works as follows. For each I ∈ I, we try to find
if there is a violated constraint. Recall that there are O(nm) intervals in the set I. For a
given I, it suffices to check the minimum among the values EI,c −

∑
j∈(I,c)

sj,c
wi(j,c),j

λj over all

possible configurations c. If this minimum value is less than −µI , then we have a violated
constraint. Otherwise, if we cannot find any violated constraint for all I ∈ I, then the dual
solution is feasible.

Note here that EI,c =
∑

j∈(I,c) s
αi(j,c)
j,c , and hence we want to find the minimum value of∑

j∈(I,c)(s
αi(j,c)
j,c − sj,c

wi(j,c),j
λj). For each job j ∈ J that is alive during I, the term s

αi(j,c)
j,c −

sj,c
wi(j,c),j

λj is minimized at the discrete value vi(j,c),j which is one of the two closest possible

discrete speeds to the value
(

λj
αi(j,c)·wi(j,c),j

)1/(αi(j,c)−1)

. To see this we just need to notice

that we minimize a one variable convex function over a set of possible discrete values. The

value
(

λj
αi(j,c)·wi(j,c),j

)1/(αi(j,c)−1)

is obtained by minimizing s
αi(j,c)
j,c − sj,c

wi(j,c),j
λj if there is no

discretization of the speeds and it is obtained by equating the derivative of the last expression
with zero. Hence, given an interval I, we want to find a configuration c that minimizes∑

j∈(I,c)(v
αi(j,c)
i(j,c),j −

vi(j,c),j
wi(j,c),j

λj).

Since a configuration c assigns 0 ≤ nc ≤ m jobs to m processors, the problem of mini-
mizing the last expression reduces to a maximum weighted matching on the bipartite graph
which is constructed as follows: we introduce one node for each job and one node for each
processor. There is an edge between each alive job j ∈ J in interval I and each processor
i ∈ P with weight equal to−(vαii,j−

vi,j
wi,j

λj). The maximum weight matching in such a bipartite

graph defines a configuration c, that is an assignment of nc ≤ m jobs to m processors.
Hence, there is a polynomial time separation oracle for the dual problem which runs in

polynomial time. To apply the ellipsoid method in polynomial time, we need to check two
additional technical conditions. The first condition is that the value of all dual variables are
upper bounded by some number R. The second condition is that for the dual program there
is a feasible point (or solution) and every point in a radius r is feasible. Then the running
time of the ellipsoid method will be polynomial to log R

r
.

The first condition and the bound on R can be derived from the fact that the solution
of the problem must be a vertex of the corresponding polyhedra since we know that the
value of an optimal solution is bounded. Therefore, R is a polynomial involving various
input parameters. We skip the precise definition of R. The second condition is satisfied for

17

the point (λ, µ) defined as follows: λj = 1 for all j ∈ J and µI is large enough such that

−µI + 1 ≤ minc

(
EI,c − 2

∑
j∈(I,c)

sj,c
wi(j,c),j

)
. Hence, the inequalities are satisfied in the ball of

radius 1 around (λ, µ), that is r = 1.

Theorem 2. A schedule for the heterogeneous multiprocessor speed-scaling problem with
migrations of energy consumption OPT + ε can be found in polynomial time with respect to
the size of the instance and to 1/ε, for any ε > 0.

5 Single processor without Preemptions

In this section we present an approximation algorithm for the single processor speed-scaling
problem in which the preemption of jobs is not allowed. As a single processor is available, each
job j ∈ J has a unique release date rj, deadline dj and amount of work wj, while when the
processor runs at speed s, it consumes energy with rate sα. Due to the convexity of the speed-
to-power function, j runs at a constant speed sj in an optimal schedule S∗. Antoniadis and
Huang [7] proved that this problem is NP-hard and gave a 25α−4-approximation algorithm.

The algorithm in [7] consists of a series of transformations of the initial instance. Our
algorithm applies the first of these transformations. Then, we give a transformation to the
heterogeneous multiprocessor speed-scaling problem without migrations.

For completeness, we describe the first transformation given in [7]. We partition the time
as follows: let t1 be the smallest deadline of any job in J , i.e., t1 = min{dj : j ∈ J }. Let
J1 ⊆ J be the set of jobs which are released before t1, i.e., J1 = {j ∈ J : rj ≤ t1}. Next,
we set t2 = min{dj : j ∈ J \ J1} and J2 = {j ∈ J : t1 < rj ≤ t2}, and we continue this
procedure until all jobs are assigned into a subset of jobs. Let k be the number of subsets of
jobs that have been created. Moreover, let t0 = min{rj : j ∈ J } and tk+1 = max{dj : j ∈ J }.

Consider the intervals (ti−1, ti], 1 ≤ i ≤ k + 1. Let Ij be the set of intervals in which the
job j ∈ J is alive. In some of them j is alive during the whole interval, while in at most two
of them it is alive during a part of the interval. Consider now the non-preemptive problem
in which the execution of j should take place into exactly one interval I ∈ Ij. Note that the
execution of j should respect its release date and its deadline.

Proposition 8. Let S be an optimal non-preemptive schedule for the problem in which the
execution of each job j ∈ J should take place into exactly one interval I ∈ Ij. It holds that
E(S) ≤ 2α−1OPT .

Proof. In order to get a relation about the energy consumption between the schedule S and
the optimal schedule S∗, consider first a job j ∈ J` which is alive in more than one intervals,
i.e., |Ij| ≥ 2. By definition, it holds that rj ≤ t` and t`′ < dj ≤ t`′+1, where ` < `′. Moreover,
consider a p, ` < p ≤ `′, and let j′ ∈ Jp be the job that defines tp, i.e., dj′ = tp. By definition,
for j′ it holds that tp−1 < rj′ ≤ tp. Although j is alive at times tp−1 and tp, there is no feasible
schedule in which j is executed at both of them; otherwise j′ could not be feasibly executed
as we have available only one processor. Therefore, in S∗ a job cannot appear into more
than two consecutive intervals (t`−1, t`] and (t`, t`+1].

Starting from S∗, we create a feasible non-preemptive schedule S ′ for the problem in
which the execution of each job j ∈ J should take place into exactly one interval I ∈ Ij

18

respecting its release date and its deadline. In order to do this, consider a job j ∈ J
which is executed into two intervals in S∗, let (t`−1, t`] and (t`, t`+1]. Let ej,` and ej,`+1

be the execution time of j into (t`−1, t`] and (t`, t`+1], respectively. Assume, w.l.o.g., that
ej,` ≥ ej,`+1. In S, we execute the whole work of j during (t`−1, t`] such that its execution

takes exactly
(ej,`+ej,`+1)

2
time. In order to do this, we just have to increase the speed sj that

j had in S∗ by a factor of 2. Hence, the energy consumption of j in S∗ was (ej,` + ej,`+1)sαj ,

while in S ′ is
(ej,`+ej,`+1)

2
(2sj)

α. By summing up for all jobs we get that E(S ′) ≤ 2α−1OPT .
As S is an optimal schedule, we get that E(S) ≤ 2α−1OPT .

Next, we describe how to pass from the transformed problem to the heterogeneous mul-
tiprocessor speed-scaling problem without migrations. For every interval (ti−1, ti], 1 ≤ i ≤
k + 1, we create a processor i. For every job j ∈ J which is alive during a part or during
the whole interval (ti−1, ti], 1 ≤ i ≤ k + 1, we set: (i) ri,j = 0 if rj ≤ ti−1 or ri,j = rj − ti−1 if
rj > ti−1, (ii) di,j = ti − ti−1 if dj > ti or ri,j = dj − ti−1 if dj ≤ ti, and (iii) wi,j = wj. For
each processor i, 1 ≤ i ≤ k + 1, we set αi = α.

We next apply the approximation algorithm presented in Section 3 which is based on
the rounding of a configuration LP. Note that the number of configurations of each job
here is polynomial to n and to 1/ε, as we consider that preemptions are not allowed and
hence a configuration can only contain continuous slots. Thus, the resulting LP after the
transformation has polynomial size and it can be directly solved without using the compact
LP presented in Section 3.3.

Note also that the algorithm presented in Section 3 will create a preemptive schedule
S. However, we can transform S into a non-preemptive schedule S ′ of the same energy
consumption. To see this, note that in each processor i, 1 ≤ i ≤ k + 1, each job j ∈ J has
ri,j = 0 or di,j = ti − ti−1. Hence, by applying the Earliest Deadline First policy to each
processor separately we can get the non-preemptive schedule S ′.

Theorem 3. The single processor speed-scaling problem without preemptions can be approx-
imated within a factor of 2α−1((1 + ε

1−ε)(1 + 2
n−2

))αB̃α, where ε ∈ (0, 1).

6 Job Shop Scheduling with Preemptions

In this section, we consider the energy minimization problem in a job shop environment.
An instance of the problem contains a set of jobs J , where each job j ∈ J consists of
µj operations Oj,1, Oj,2, . . . , Oj,µj , which must be executed in this order. That is, there are
precedence constraints of the form Oj,k → Oj,k+1, for each j ∈ J and 1 ≤ k ≤ µj − 1,
meaning that the operation Oj,k+1 can start only once the operation Oj,k has finished. Let µ
be the number of all the operations, i.e. µ =

∑
j∈J µj. Each operation Oj,k has an amount of

work wj,k. Moreover, we are given a set of m heterogeneous processors P . Every operation
Oj,k, j ∈ J and 1 ≤ k ≤ µj, is also associated with a single processor i ∈ P on which it must
be entirely executed. Note that more than one operations of the same job may have to be
executed on the same processor. Furthermore, for each operation Oj,k, we are given a release
date rj,k and a deadline dj,k. For each j ∈ J , we can assume that rj,1 ≤ rj,2 ≤ . . . ≤ rj,µj as
well as dj,1 ≤ dj,2 ≤ . . . ≤ dj,µj . Preemptions of operations are allowed. The objective is to
find a feasible schedule of minimum energy consumption.

19

Next, we formulate the job shop problem as an integer configuration LP. A configuration
is a schedule for a job, i.e. a schedule for all its operations. In order to define formally
the notion of a configuration, we have to discretize the time. We define the time points
t0, t1, . . . , tτ , in increasing order, where each t` corresponds to either a release date or a
deadline, so that there is a corresponding t` for each possible release date and deadline of an
operation. Then, we define the intervals I` = (t`−1, t`], for 1 ≤ ` ≤ τ , and we denote by |I`|
the length of I`. We further discretize the time inside each interval I`, 1 ≤ ` ≤ τ , based on
the following lemmas in which it is assumed that the release dates and the deadlines of all
operations are integers.

Lemma 4. There is a feasible schedule with energy consumption at most (1 + ε)α ·OPT in
which each piece of each operation Oj,k, j ∈ J and 1 ≤ k ≤ µj, executed during the interval
I`, 1 ≤ ` ≤ τ , starts and ends at a time point t`−1 + h ε

µ(1+ε)
|I`|, where h ≥ 0 is an integer

and ε ∈ (0, 1).

Proof. Consider an optimal schedule S∗ for our problem and an interval I`, 1 ≤ ` ≤ τ .
We define the time points u0 = t`−1, u1, u2, . . . , up = t`, in increasing order, where each uq,
0 ≤ q ≤ p, corresponds to either a begin time or a completion time of a piece of an operation
on any processor during I` in S∗, so that for each begin time and completion time there is
a corresponding uq. We call the interval (uq−1, uq], for 1 ≤ q ≤ p, a slice. Consider any such
slice and any processor i ∈ P . During the whole slice, the processor is either idle of fully
occupied by a single operation.

Note that we can see the part of the schedule S∗ during the interval I` as a schedule for
the preemptive job shop problem without speed-scaling where the makespan is at most |I`|.
Baptiste [11] at al. (see their Corollary 4.2) showed that there is always a schedule for this
problem with at most µ slices.

We will now transform S∗ to a feasible schedule S satisfying the lemma. Consider an
interval I`, 1 ≤ ` ≤ τ . We first create an idle period of length at least ε

1+ε
|I`|. This can be

done by increasing the speeds of all processors of all slices in I` by a factor of 1 + ε. Hence,
the energy consumption becomes at most a factor of (1 + ε)α far from the energy of S∗. In
order to obtain S, we round up the length of each slice to the closest h ε

µ(1+ε)
|I`|. In this

way, the length of each slice is increased by at most ε
µ(1+ε)

|I`|. Since the number of slices

is at most µ, the total processing time in I` is increased by at most µ(ε
µ(1+ε)

|I`|) = ε
1+ε
|I`|,

which is the length of the created idle period. Thus, S is a feasible schedule, and the lemma
follows.

Lemma 5. There is a feasible schedule with energy consumption at most (1+ε)α(1+ 2
µ−2

)α(1+
ε

1−ε)
α · OPT such that, for each operation Oj,k, j ∈ J and 1 ≤ k ≤ µj, there are two time

points bj,k and cj,k, as the ones defined in Lemma 4, so that each piece of Oj,k starts and ends
at a time point bj,k + h ε

µ3
(cj,k − bj,k) in (bj,k, cj,k], where h ≥ 0 is an integer and ε ∈ (0, 1).

Proof. Consider a schedule S satisfying Lemma 4. In S, each interval I`, 1 ≤ ` ≤ τ , is
partitioned into polynomial to µ and to 1/ε number of equal length slots. In each of these
slots, each operation Oj,k, j ∈ J and 1 ≤ k ≤ µj, is either executed during the whole slot
or is not executed at all. Let bj,k and cj,k be the starting time of the first piece and the
completion time of the last piece, respectively, of Oj,k in S.

20

We will first transform the schedule S to a feasible schedule S ′ in which the execution
time of each operation Oj,k, j ∈ J and 1 ≤ k ≤ µj, is at least ε

µ
(cj,k − bj,k). For each time

slot s of Lemma 4 we increase the processors’ speeds in order to create an idle period of
length ε|s|, where |s| is the length of the slot. This can be done by increasing the speeds
by a factor of 1 + ε

1−ε , and hence the total energy consumption in S is increased by a factor

of (1 + ε
1−ε)

α. For each operation Oj,k, j ∈ J and 1 ≤ k ≤ µj, we reserve an ε|s|
µ

period to

each slot s in (bj,k, cj,k]. We then decrease the speed of Oj,k so that its total work is executed
during the periods where Oj,k was executed in S and the additional cj,k − bj,k reserved
periods. Therefore, in the final schedule the processing time of each operation Oj,k is at least
ε
µ
(cj,k − bj,k). After this transformation we apply the Earliest Deadline First (EDF) policy

to the operations of each processor separately, considering as release date and deadline of
each operation Oj,k, j ∈ J and 1 ≤ k ≤ µj, the time points bj,k and cj,k, respectively. This
ensures that we have a feasible schedule with at most µ preemptions, as in EDF an operation
may be interrupted only when another operation is released.

Next, we transform S ′ to a new schedule S ′′ satisfying the lemma. For each operation Oj,k,
j ∈ J and 1 ≤ k ≤ µj, we split the interval (bj,k, cj,k] into slots of length ε

µ3
(cj,k−bj,k), i.e., we

partition (bj,k, cj,k] into intervals of the form (bj,k +h ε
µ3

(cj,k− bj,k), bj,k +(h+1) ε
µ3

(cj,k− bj,k)],
where h ≥ 0 is an integer. As the processing time of j in S is at least ε

µ
(cj,k − bj,k), the

execution of Oj,k has been partitioned into at least µ2 slots. In each of these slots, the
operation Oj,k either is executed during the whole slot or is executed into a fraction of it.
As we have applied the EDF policy, each operation is preempted at most µ times. Thus,
among the time slots that Oj,k is executed, at most 2µ of them are not fully occupied by Oj,k

because for each preempted piece of Oj,k at most two slots may not be completely covered
by it. We can modify the schedule S ′ and get the schedule S ′′ in which the operation Oj,k is
executed only to the slots where it was entirely executed in S ′. The number of these slots
is at least µ2 − 2µ. Thus, we have to increase the speed of Oj,k by a factor of 1 + 2

µ−2
, and

hence the energy is increased by a factor of (1 + 2
µ−2

)α. By taking into account Lemma 4

and the fact that S ′ is a factor of (1 + ε
1−ε)

α far from S, the lemma follows.

Henceforth, we consider schedules that satisfy the above lemma. That is, for each oper-
ation Oj,k, we consider that there is a polynomial number of candidate time points bj,k and
cj,k such that Oj,k is entirely executed during (bj,k, cj,k]. Moreover, the interval (bj,k, cj,k] is
partitioned into a polynomial number of equal length slots so that, given such a slot, the
operation Oj,k is either executed during the whole slot or is not executed at all during that
slot.

Now, we can formulate our problem as an integer program. A configuration c is a schedule
for a single job j, i.e. a feasible schedule for all its operations. So, a configuration specifies
the interval (bj,k, cj,k] and the time slots inside this interval, with respect to Lemma 5, during
which each operation Oj,k of the job j is executed. Let Cj be the set of all possible feasible
configurations for job j ∈ J .

In order to proceed, we need an additional definition by combining the slots of all the
operations. Specifically, given a processor i ∈ P , consider the time points of all operations
of the form bj,k + h ε

µ3
(cj,k − bj,k) as introduced in Lemmas 4 and 5. Let ti,1, ti,2, . . . , ti,pi

be the ordered sequence of these time points on the processor i ∈ P . In a schedule that

21

satisfies Lemma 5, in each interval (ti,q, ti,q+1], 1 ≤ q ≤ pi − 1, either there is exactly one
operation that is executed during the whole interval or the interval is idle on i. Note also
that these intervals might not have the same length. Let I be the set of all these intervals
for all processors. According to Lemmas 4 and 5, the size of I is polynomial to the size of
the instance and to 1/ε.

Recall that the execution interval of a job j can be partitioned into a set of equal length
time slots so that, for every such time slot, either a single operation of j is executed during
the whole slot or j is not executed at all during that slot. It has to be noticed that, by
definition, every such slot consists of one or more intervals in I and every interval in I
(during which some operation of j is alive) is contained entirely in a single slot of j.

If we know the configuration according to which the job j is executed, we can compute the
energy consumption Ej,c for the execution of j because there is always an optimal schedule
such that each operation is executed with constant speed. For notational convenience, we
say that I ∈ (j, c), if the job j is executed during the interval I ∈ I according to the
configuration c. That is, there is an operation Oj,k, two time points bj,k and cj,k, and a slot
(bj,k + h ε

µ3
(cj,k − bj,k), bj,k + (h+ 1) ε

µ3
(cj,k − bj,k)] in c that contains I.

min
∑
j,c

Ej,c · xj,c∑
c

xj,c ≥ 1 ∀j ∈ J (10)∑
c∈Cj :I∈(j,c)

xj,c ≤ 1 ∀I ∈ I (11)

xj,c ∈ {0, 1} ∀j ∈ J , c ∈ Cj (12)

Constraint (10) enforces that each job is entirely executed according to exactly one con-
figuration. Constraint (11) ensures that at most one job is executed in each interval I ∈ I.
We consider the relaxed LP of the above integer program where the integrality constraints
xj,c ∈ {0, 1} are replaced by the constraints xj,c ≥ 0, for all j ∈ J and c ∈ Cj. This LP
contains an exponential number of variables but it can be solved in polynomial time by
applying the Ellipsoid algorithm to its dual as we explain in the following. The dual LP is

min
∑
j

λj −
∑
I

κI

λj −
∑
I∈(j,c)

κI ≤ Ej,c ∀j, c (13)

λj, κI ≥ 0 (14)

We will show that the dual program can be solved in polynomial time by applying the
Ellipsoid algorithm. In order to do so, it suffices to construct a polynomial time separation
oracle. Assume that we are given a solution (λj, κI) for the dual LP. The separation oracle
works as follows. For each job j ∈ J , we try to minimize the term Ej,c +

∑
I∈(j,c) κI . If the

value minc{Ej,c +
∑

I∈(j,c) κI} is less than λj, then we have a violated constraint. Otherwise,
the solution is feasible.

22

In order to find the configuration that minimizes the above expression, we use dynamic
programming. Consider some configuration c. The contribution of the operation Oj,k in the
expression Ej,c +

∑
I∈(j,c) κI is the energy consumption of Oj,k plus the κI ’s of the intervals

I ∈ I contained in the time slots during which Oj,k is executed. Let Ak,I be the minimum
contribution of the operations Oj,1, Oj,2, . . . , Oj,k to the objective function of our separation
problem among the configurations in which Oj,k completes not later than I. Furthermore,
let Bk,I′,I be the minimum contribution of the operation Oj,k to the objective function of
separation problem among the configurations in which it is executed after I ′ and not later
than I. Clearly,

Ak,I = min
I′<I
{Ak−1,I′ +Bk,I′,I}

In order to complete our dynamic programming algorithm, we have to specify a way of
computing efficiently the term Bk,I′,I . Assume that there are ` time slots, between I ′ and
I, during which Oj,k can be executed respecting Lemma 5. If we restrict our attention
to configurations in which Oj,k is executed in exactly q ≤ ` slots, Oj,k must be executed
during the q slots with the minimum κI ’s so that Ej,c +

∑
I∈(j,c) κI is minimized. These slots

can be computed easily. In order to compute Bk,I′,I , it suffices to check all possible values
q = 1, 2, . . . , `.

Thus, for each job j ∈ J , we can compute, in polynomial time, the minimum Ej,c +∑
I∈(j,c) κI among all the configurations c ∈ Cj, and hence we have a polynomial-time sep-

aration oracle for the dual LP. So, we can solve the dual LP in polynomial time with the
Ellipsoid algorithm. Given our discussion in Section 4, we can solve the relaxed LP as well.
Then, by applying the same randomized rounding algorithm and analysis as in Section 3.2,
we obtain the following theorem.

Theorem 4. There is an algorithm of running time polynomial to µ and to 1/ε with approx-
imation ratio (1 + ε)α(1 + 2

µ−2
)α(1 + ε

1−ε)
αB̃α for the preemptive job shop scheduling problem

with the energy objective, where ε ∈ (0, 1).

7 Routing

Now, we turn our attention to the min-power routing problem. Formally, we are given a
directed graph G = (V,E) and a set of demands D. Each demand i ∈ D is associated with
a source node si, a destination node ti and it requests di integer units of bandwidth. We
consider the special case where all the demands request the same bandwidth, i.e. di = d for
all i ∈ D. Each edge e ∈ E is associated with a constant αe such that if f units of demand
cross e, then there is an energy consumption equal to cef

αe . The objective is to route all
the demands from their sources to their destinations so that the total energy consumption is
minimized. We consider the unsplittable version of the problem in which each demand has
to be routed through a single path.

Andrews et al. [5] formulated the above problem as an integer convex program and
they presented an analysis based on randomized rounding. Using a similar analysis as in
Section 3.2, we show that the algorithm presented in [5] has a significantly better approxi-
mation ratio (see Table 1).

23

In order to obtain the integer convex programming formulation in [5] for the min-power
routing problem, we introduce a variable xe, for all e ∈ E, which corresponds to the number
of demands that cross the edge e and a binary variable yi,e which indicates if the demand
i ∈ D crosses the edge e. The integer convex program follows.

min
∑
e∈E

ced
αe max{xe, xαee }

xe =
∑
i

yi,e ∀e ∈ E (15)∑
e∈Γ+(u)

yi,e −
∑

e∈Γ−(u)

yi,e = 0 ∀i ∈ D, u ∈ V \ {si, ti} (16)

∑
e∈Γ+(si)

yi,e = 1 ∀i ∈ D (17)

∑
e∈Γ−(ti)

yi,e = 1 ∀i ∈ D (18)

yi,e ∈ {0, 1} ∀i ∈ D, e ∈ E (19)

The above integer convex program is a valid formulation for our problem. Our goal is to
minimize the total energy consumption of all edges, i.e.

∑
e∈E ced

αexαee . Since all variables
xe are integers in any feasible integral solution, the above program has the same optimal
integral solution as if we have used as objective the

∑
e∈E ced

αexαee . However, the use of
this objective leads to an integer program with large integrality gap [5]. For this reason,
we modify the objective to be

∑
e∈E ced

αe max{xe, xαee } obtaining a program with smaller
integrality gap. Equation (15) relates the variables xe and yi,e, while Equations (16)-(18)
ensure the flow conservation.

In order to obtain a feasible integral solution for our problem, we solve the relaxation of
the above convex program, where the constraints yi,e ∈ {0, 1} are relaxed so that yi,e ≥ 0,
and we obtain a fractional solution. Then, we apply a randomized rounding procedure,
introduced by Raghavan and Thompson [20], in order to select a path for each demand.
Specifically, for each demand i ∈ D, we consider the subgraph of G that contains only the
edges with yi,e > 0 and define the standard flow decomposition. We compute a (si, ti)-path
p on this graph and we set zi,p = mine∈p{yi,e}. Then, we subtract zi,p from the variables yi,e
which correspond to the edges of the path p. We continue this procedure until there are no
(si, ti)-paths. The randomized rounding algorithm chooses a path p for the demand i with
probability zi,p. Note that

∑
p zi,p = 1.

Theorem 5. There is a B̃αmax-approximation algorithm for the min-power routing problem
with uniform demands.

Proof. Consider an edge e ∈ E and let λe =
∑

i∈D yi,e be the expected number of demands
that cross e. The expected energy consumption on the edge e is

Ee = ced
αe
∑
S⊆D

|S|αePr(S)

24

where Pr(S) is the probability that exactly the demands in S are routed through the edge
e. Hence, we have

Ee = ced
αe
∑
S⊆D

|S|αe
∏
i∈S

yi,e
∏
i 6∈S

(1− yi,e).

Since yi,e come from a mathematical programming solver, we can assume that there exists
N ∈ N such that yi,e = λe · qi,eN for some qi,e ∈ N. Similarly with the proof of Theorem 1, we
can chop each yi,e into qi,e pieces zi,e,` = λe

N
. Note that, N =

∑
i∈D qi,e since

∑
i∈D

yi,e
λe

= 1.
For the ease of exposition we identify the set {1, 2, . . . , N} with the set of all pairs ((i, e), `)
such that i ∈ D and 1 ≤ ` ≤ qi,e. By applying Proposition 2 iteratively, we get

Ee ≤ ced
αe

∑
S⊆{1,2,...,N}

|S|αe
(
λe
N

)|S|(
1− λe

N

)N−|S|

= ced
αe

N∑
k=0

∑
S∈{1,2,...,N},|S|=k

kαe
(
λe
N

)k (
1− λe

N

)N−k

= ced
αe

N∑
k=0

kαe
(
N

k

)(
λe
N

)k (
1− λe

N

)N−k
as there are

(
N
k

)
subsets of {1, 2, . . . , N} with k elements. The sum in the last expression is

the αe-th moment of a Binomial random variable Bλe (sum of independent Bernoulli trials)
with expectation λe. Hence, by using Propositions 4 and 6 we get

Ee ≤ ced
αeE[Bαe

λe
] ≤ ced

αeE[Pαe
λe

] ≤ ced
αe max{λe, λαee }E[Pαe

1] = LP ∗e B̃αe

where Pλe is a Poisson random variable with parameter λe. By summing up over all edges
and setting α = maxe∈E{αe}, the theorem follows.

8 Conclusions

We have presented a unified framework for dealing with various scheduling and routing prob-
lems in speed-scaling setting. Our algorithms are based on configuration linear programs and
randomized rounding. Improving the approximation ratios or studying the inapproximabil-
ity of the considered problems are some of the interesting directions for future work. The
most intriguing open question is the existence of a constant factor approximation algorithm
for the non-preemptive multiprocessor scheduling problem.

Acknowledgements

We would like to thank Oleg Pikhurko for providing the original proof of Part (b) of the
Proposition 6.

25

References

[1] S. Albers. Energy-efficient algorithms. Communications of ACM, 53:86–96, 2010.

[2] S. Albers. Algorithms for dynamic speed scaling. In STACS, pages 1–11, 2011.

[3] S. Albers, A. Antoniadis, and G. Greiner. On multi-processor speed scaling with mi-
gration: extended abstract. In SPAA, pages 279–288. ACM, 2011.

[4] S. Albers, F. Müller, and S. Schmelzer. Speed scaling on parallel processors. In SPAA,
pages 289–298. ACM, 2007.

[5] M. Andrews, A. F. Anta, L. Zhang, and W. Zhao. Routing for power minimization in
the speed scaling model. IEEE/ACM Trans. on Networking, 20:285–294, 2012.

[6] E. Angel, E. Bampis, F. Kacem, and D. Letsios. Speed scaling on parallel processors
with migration. In Euro-Par, volume 7484 of LNCS, pages 128–140, 2012.

[7] A. Antoniadis and C.-C. Huang. Non-preemptive speed scaling. In SWAT, volume 7357
of LNCS, pages 249–260. Springer, 2012.

[8] B. Awerbuch, S. Kutten, and D. Peleg. Competitive distributed job scheduling (Ex-
tended abstract). In STOC, pages 571–580, 1992.

[9] E. Bampis, A. Kononov, D. Letsios, G. Lucarelli, and I. Nemparis. From preemptive to
non-preemptive speed-scaling scheduling. In COCOON, volume 7936 of LNCS, pages
134–146. Springer, 2013.

[10] E. Bampis, D. Letsios, and G. Lucarelli. Green scheduling, flows and matchings. In
ISAAC, volume 7676 of LNCS, pages 106–115. Springer, 2012.

[11] P. Baptiste, J. Carlier, A. Kononov, M. Queyranne, S. Sevastyanov, and M. Sviridenko.
Properties of optimal schedules in preemptive shop scheduling. Discrete Applied Math-
ematics, 159(5):272–280, 2011.

[12] D. Berend and T. Tassa. Improved bounds on Bell numbers and on moments of sums
of random variables. Probability and Math. Statistics, 30:185–205, 2010.

[13] B. D. Bingham and M. R. Greenstreet. Energy optimal scheduling on multiprocessors
with migration. In ISPA, pages 153–161. IEEE, 2008.

[14] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli. State-
of-the-art in heterogeneous computing. Sci. Program., 18:1–33, 2010.

[15] X. Deng, H.-N. Liu, and B. Xiao. Deterministic load balancing in computer networks.
In SPDP, pages 50–57, 1990.

[16] G. Greiner, T. Nonner, and A. Souza. The bell is ringing in speed-scaled multiprocessor
scheduling. In SPAA, pages 11–18. ACM, 2009.

26

[17] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimizations, 2nd corrected edition. Springer-Verlag, 1993.

[18] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs. Scheduling heterogeneous
processors isn’t as easy as you think. In SODA, pages 1242–1253, 2012.

[19] W. Hoeffding. On the distribution of the number of successes in independent trials.
Annals of Mathematical Statistics, 27:713–721, 1956.

[20] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7:365–374, 1991.

[21] O. Svensson. Santa claus schedules jobs on unrelated machines. In STOC, pages 617–
626, 2011.

[22] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in processor
sharing systems. In INFOCOM, pages 2007–2015, 2009.

[23] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In
FOCS, pages 374–382, 1995.

27

