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Abstract

In industrial scheduling, an initial planning phase may solve the nominal problem

and a subsequent recovery phase may intervene to repair inefficiencies and infeasi-

bilities, e.g. due to machine failures and job processing time variations. This work

investigates the minimum makespan scheduling problem with job and machine per-

turbations and shows that the recovery problem is strongly NP-hard, at least as

hard as solving the problem with full input knowledge. We explore recovery strate-

gies with respect to the (i) planning decisions and (ii) permitted deviations from the

original schedule. The resulting performance guarantees are parameterized by the

degree of uncertainty. The analysis derives from the optimal substructure imposed

by lexicographic optimality, so lexicographic optimization enables more efficient re-

optimization. We revisit state-of-the-art exact lexicographic optimization methods

and propose a lexicographic optimization approach based on branch-and-bound.

Numerical analysis using standard commercial solvers substantiates the method.

Keywords: Scheduling, Lexicographic Optimization, Exact MILP Methods,

Robust Optimization, Price of Robustness

1. Introduction

Scheduling, i.e. the ubiquitous process of efficiently allocating resources to guar-

antee the system operability, requires optimization under uncertainty [56]. A ma-

chine may unexpectedly fail, a client may suddenly cancel a job, or a machine may

complete a job significantly earlier than expected. Robust optimization is a major5

approach for scheduling under uncertainty assuming deterministic uncertainty sets

∗{d.letsios, r.misener}@imperial.ac.uk; Tel: +44 (0) 20759 48315

Preprint February 6, 2019



[5, 8, 26]. Static robust optimization may impose hard constraints forbidding so-

lutions which are highly likely to become infeasible [54], but produces conservative

solutions compared to nominal ones obtained with full input knowledge.

Two-stage robust optimization mitigates conservatism by developing contin-10

gency plans and chooses one when the uncertainty is realized [6, 36, 9, 29, 10].

We investigate two-stage robust optimization with recovery which consists of first-

stage and second-stage decisions revealed before and after uncertainty realization,

respectively. Here, the recourse action is specified by solving a second-stage opti-

mization problem. As illustrated in Figure 1, we compute an initial solution to a15

nominal scenario and modify the solution once the uncertainty is realized, i.e. after

the disturbances occur and the input parameters are revealed. Figure 2 illustrates

the setting: (i) an initial planning phase solves a nominal scheduling problem in-

stance Iinit and produces a solution Sinit, then (ii) a subsequent recovery phase

solves instance Inew by repairing inefficiencies and infeasibilities, e.g. from machine20

failures and job processing time variations. In particular, we consider the two-stage

robust makespan scheduling problem [27, 35, 14] under uncertainty with a set J
of jobs, where job j ∈ J is associated with processing time pj > 0, that have to be

assigned on a setM of parallel identical machines and the objective is minimizing

Cmax = maxi∈M{Ci}, i.e. the maximum machine completion time a.k.a. makespan.25

This fundamental combinatorial optimization problem is strongly NP-hard.

Two-stage robust optimization with recovery allows more flexible recourse and

the extreme case optimizes the problem from scratch without using the first-stage

optimization problem decisions. Significantly modifying the nominal solution may

be prohibitive, e.g. resource-consuming file retransmission in distributed computing30

[57]. We therefore introduce binding and free optimization decisions. Binding deci-

sions are variable evaluations determined from the initial solution after uncertainty

realization. Free decisions are variable evaluations that cannot be determined from

the initial solution, and are essential to ensure feasibility. For instance, assigning

a job with a modified processing time is a binding decision because the planning35

phase specifies an assignment. Assigning a new job after uncertainty realization is

a free decision because the planning phase specifies no assignment.

We focus on rescheduling strategies admitting limited binding decision modi-
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fications and thereby stay close to the planning phase solution. So, the original

makespan problem is a standard optimization problem while the makespan recovery40

scheduling problem transforms an initial solution to a new solution with a bounded

number of modifications. Because we allow limited decision modifications, first-

stage decisions remain critical. Moreover, recovery flexibility allows efficient re-

course with free decisions such as variable additions, which is not applicable in

classical two-stage robust optimization.45

A two-stage robust optimization method for solving a problem under uncer-

tainty requires (i) an exact algorithm producing the initial solution, and (ii) a

recovery strategy restoring the initial solution, after uncertainty realization. Ana-

lyzing a two-stage robust optimization method necessitates defining (i) the uncer-

tainty set of the problem, and (ii) the investigated performance guarantee.50

Uncertainty Set. A robust optimization problem may be harder than its determin-

istic counterpart [33]. But well-motivated uncertainty parameterizations enable

tractability, e.g. bounded uncertainty where the final parameter values p̂j , e.g.

processing times, vary in an interval [pLj , p
U
j ] and at most k parameters deviate

from their initial, nominal values [11]. In this box uncertainty setting, the robust55

counterpart belongs to the same complexity class as its deterministic version for

important problems. For analysis purposes, we generalize to an uncertainty model

defined by a pair (k, f), separating between stable and unstable input parameters.

Here, k is the number of unstable parameters with respect to perturbation factor

f > 1. A parameter pj > 0 is stable if pj/f ≤ p̂j ≤ fpj and unstable, otherwise.60
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Performance Guarantee. Theoretical performance guarantees are important for de-

termining when robust optimization is efficient [8, 26]. The price of robustness

quantifies the quality of a robust solution or the performance of a robust algorithm,

i.e. the ratio between the robust solution objective value and the optimal solution

value obtained with full input knowledge [12]. Denote by C(Inew) the cost, e.g.65

makespan, of a robust solution obtained by some algorithm and by C∗(Inew) the

cost of a nominal optimal solution obtained with full input knowledge [40]. We seek

the tight, worst-case performance guarantee ρ = maxInew∈I(C(Inew)/C∗(Inew)).

Lexicographic Optimization. LexOpt is a subclass of multiobjective optimization

[20, 45]. W.l.o.g., LexOpt minimizes m objective functions F1, . . . , Fm : S → R+
0 ,

in decreasing priority order. In other words, LexOpt optimizes the highest-rank

objective F1, then the second most important objective F2, then the third F3, etc.:

lex min{F1(S), . . . , Fm(S) : S ∈ S}. (LexOpt)

There are indications that LexOpt is useful in optimization under uncertainty.

LexOpt helps maintain a good approximate schedule when jobs are added and70

deleted dynamically, by performing reassignments [48, 53]. LexOpt is also useful

for cryptographic systems against different types of attacks [58]. We consider the

makespan problem generalization lex min{C1(S), . . . , Cm(S) : S ∈ S} of computing

a schedule S with lexicographically minimal machine completion times and we show

that it enables more efficient two-stage robust scheduling. That is, we identify75

robust scheduling as a new LexOpt application.

Apart from optimization under uncertainty, the design of efficient LexOpt meth-

ods is motivated by other LexOpt applications: equitable allocation of a divisible re-

source [37, 25], fairness [13], and selecting strategies that exploit the opponent mis-

takes optimally in a game theoretic context [50, 42]. Solution strategies include se-80

quential, weighting, and highest-rank objective methods [18, 51, 52, 15, 44, 20, 45].

There is also work characterizing the convex hull of important LexOpt problems

[41, 1, 28]. Logic-based methods are also applicable [38].

Contributions. We study makespan scheduling under uncertainty. Section 2.1 de-

fines the minimum makespan problem, which schedules a set of jobs on parallel85
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machines. Section 2.2 defines LexOpt scheduling. We therefore consider existing,

exact LexOpt methods and Section 3 develops a novel LexOpt branch-and-bound

method. We also propose a recovery strategy with positive performance guaran-

tees. On the contrary, an arbitrary optimal planning solution, which is not LexOpt,

has poor worst-case performance.90

We show that the makespan recovery problem is strongly NP-hard, at least as

hard as solving the problem with full input knowledge. Thus, combining planning

and recovery does not mitigate the problem’s computational complexity. Section

4.1 develops a recovery strategy that enforces all available binding decisions and

performs only essential actions to regain feasibility. Section 4.2 shows that every95

recovered solution is a weak approximation if planning produces an arbitrary op-

timal solution. But if the initial optimal solution is LexOpt, Sections 4.2 and 4.3

prove positive performance guarantees for the recovered solution which is efficient

in bounded uncertainty settings. For a single perturbation, planning using LexOpt

ensures a 2 performance guarantee. For multiple perturbations, the initial solution100

may be weakly reoptimizable, but we obtain an asymptotically tight performance

guarantee which is efficient under the previously-mentioned uncertainty set. This

result theoretically justifies that efficient reoptimization requires a well-structured

initial schedule. Section 5 presents numerical results. Section 7 concludes. The

omitted proofs and a notation table are deferred to a supplementary material.105

2. Problem Definitions

This section defines the makespan problem (Section 2.1), the LexOpt scheduling

problem (Section 2.2), and discusses the investigated perturbations (Section 2.3).

2.1. Makespan Problem

A makespan problem instance I, e.g. [27, 35, 14], is a pair (m,J ), where

J = {J1, . . . , Jn} is a set of n independent jobs, with a processing time vector

~p = {p1, . . . , pn}, to be executed by a set M = {M1, . . . ,Mm} of m parallel iden-

tical machines. Job Jj ∈ J must be processed by exactly one machine Mi ∈ M
for pj units of time non-preemptively, i.e. in a single continuous interval without

interruptions. Each machine processes at most one job per time. The objective is

5



to minimize the last machine completion time. Given a schedule S, let Cmax(S)

and Ci(S) be the makespan and the completion time of machine Mi ∈M, respec-

tively, in S. Then, Cmax(S) = max1≤i≤m{Ci(S)}. In the following mixed-integer

linear optimization (MILP) formulation, binary variable xi,j is 1 if job Jj ∈ J is

executed by machine Mi ∈M and 0, otherwise.

min
Cmax,Ci,xi,j

Cmax (1a)

Cmax ≥ Ci Mi ∈M (1b)

Ci =
n∑
j=1

xi,j · pj Mi ∈M (1c)

m∑
i=1

xi,j = 1 Jj ∈ J (1d)

xi,j ∈ {0, 1} Jj ∈ J ,Mi ∈M. (1e)

Expression (1a) minimizes makespan. Constraints (1b) are the makespan defi-110

nition. Constraints (1c) allow a machine to execute at most one job per time.

Constraints (1d) assign each job to exactly one machine.

2.2. LexOpt Scheduling Problem

LexOpt minimizes m objective functions F1, . . . , Fm : S → R+
0 over a set S of

feasible solutions. The functions are sorted in decreasing priority order, i.e. Fi is115

more important than Fi′ , for each 1 ≤ i < i′ ≤ m. Formally, an optimal algorithm

for lex min{F1(S), . . . , Fm(S) : S ∈ S} computes a solution S∗ ∈ S such that

F1(S∗) = v∗1 = min{F1(S) : S ∈ S} and Fi(S
∗) = v∗i = min{Fi(S) : S ∈ S, F1(S) =

v∗1, . . . , Fi−1(S) = v∗i−1}, for i = 2, . . . ,m.

Consider two solutions S and S′ to a LexOpt problem lex min{F1(S), . . . ,120

Fm(S) : S ∈ S}. S and S′ are lexicographically distinct if there is at least one

q ∈ {1, . . . ,m} such that Fq(S) 6= Fq(S
′). Further, S is lexicographically smaller

than S′, i.e. S <lex S′ or ~F (S) <lex
~F (S′), if (i) S and S′ are lexicographically

distinct and (ii) Fq(S) < Fq(S
′), where q is the smallest component in which they

differ, i.e. q = min{i : Fi(S) 6= Fi(S
′), 1 ≤ i ≤ m}. S is lexicographically not125

greater than S′, i.e. S ≤lex S
′ or ~F (S) ≤lex

~F (S′), if either S and S′ are lexico-

graphically equal, i.e. not lexicographically distinct, or S <lex S′. The LexOpt
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problem lex min{F1(S), . . . , Fm(S) : S ∈ S} computes a solution S∗ such that

~F (S∗) ≤lex
~F (S), for all S ∈ S.

An instance I = (m,J ) of the LexOpt scheduling problem minimizes m ob-130

jective functions F1, . . . , Fm lexicographically, where Fq is the distinct q-th great-

est machine completion time, for q = 1, . . . ,m, and produces a feasible schedule

S = (~x, ~C). This description motivates a LexOpt formulation with an exponential

number of constraints. We reformulate to a polynomial number of variables and

constraints in Equations (2a) - (2g). Lemma 1 orders the machine completion times135

in a LexOpt schedule and derives valid inequalities.

Lemma 1. There exists an optimal solution to the LexOpt scheduling problem such
that:

1. Ci ≥ Ci+1, for i = 1, . . . ,m− 1,

2.
[∑i−1

q=1Cq

]
+ (m− i+ 1) ·Ci ≥

∑n
j=1 pj and i ·Ci +

[∑m
q=i+1Cq

]
≤
∑n

j=1 pj,140

∀ i = 1, . . . ,m.

Reformulating the LexOpt scheduling problem, Lemma 1 implies the objective

(2a) and constraints (2b) - (2d). Constraints (2e) and (2f) enforce feasibility.

lex min
Ci,xi,j

C1, . . . , Cm (2a)

Ci ≥ Ci+1 Mi ∈M \ {Mm} (2b)

i−1∑
q=1

Cq + (m− i+ 1) · Ci ≥
n∑
j=1

pj Mi ∈M (2c)

i · Ci +
m∑

q=i+1

Cq ≤
n∑
j=1

pj Mi ∈M (2d)

Ci =
n∑
j=1

xi,j · pj Mi ∈M (2e)

m∑
i=1

xi,j = 1 Jj ∈ J (2f)

xi,j ∈ {0, 1} Jj ∈ J ,Mi ∈M. (2g)

2.3. Perturbations

A two-stage makespan scheduling problem is specified by an initial makespan

problem instance Iinit = (m,J ) and a perturbed problem instance Inew = (m̂, Ĵ ).145
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Let M and M̂ be the set of machines in Iinit and Inew, respectively. Similarly,

for a job Jj ∈ J ∩ Ĵ , denote by pj and p̂j the corresponding processing times in

Iinit and Inew. With uncertainty realization, instance Iinit is transformed to Inew.

This manuscript investigates the two-stage makespan problem in the case of (i) a

single perturbation, and (ii) multiple perturbations. In the former case, the effect150

of uncertainty realization is one of the following perturbations:

1. [Processing time reduction] The processing time pj of job Jj ∈ J is decreased

and becomes p̂j = pj/fj , for some fj > 1.

2. [Processing time augmentation] The processing time pj of job Jj ∈ J is

increased and becomes p̂j = fjpj , for some fj > 1.155

3. [Job cancellation] Job Jj ∈ J is removed, i.e. Ĵ = J \ {Jj}.

4. [Job arrival] New job Jj /∈ J arrives, i.e. Ĵ = J ∪ {Jj}.

5. [Machine failure] Machine Mi ∈M fails, i.e. M̂ =M\ {Mi}.

6. [Machine activation] New machine Mi /∈M is added, i.e. M̂ =M∪ {Mi}.

These perturbations are frequently encountered by scheduling practitioners and160

consist an active topic of research in scheduling under uncertainty [32]. In the case

of multiple perturbations, Inew is obtained from Iinit by applying a series of the

above type perturbations. Certain perturbations may be considered equivalent.

Specifically, in some manuscript proofs: (i) cancelling job Jj ∈ J is identical to

reducing pj to zero, i.e. fj → ∞, (ii) machine Mi ∈ M failure is equivalent to165

new arrivals of the jobs in Ji, where Ji is the set of jobs assigned to machine Mi

in schedule Sinit for Iinit, (iii) job arrivals are treated similarly to processing time

augmentations. We denote by f = fj the perturbation factor with respect to job

Jj ∈ J , by k = |{Jj′ ∈ J : fj′ > f}| the number of unstable jobs, and by δ = m̂−m
the number of surplus machines after uncertainty realization.170

3. Exact LexOpt Branch-and-Bound Algorithm (Stage 1)

This section introduces a LexOpt branch-and-bound method using vectorial

bounds. Supplementary material describes the sequential [18, 15], weighting [51,

52], and highest-rank objective [44] methods for LexOpt scheduling.
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The branch-and-bound algorithm idea is to explore the problem’s search tree by175

bounding all objective functions in each node and eliminating subtrees that cannot

lexicographically dominate the incumbent, similar to the ideal point in multiobjec-

tive optimization [20]. In the LexOpt scheduling problem, computing a vectorial

lower bound component is equivalent to approximating a multiprocessor scheduling

problem with rejections generalizing the makespan problem. Using this relation, we180

propose packing-based algorithms for simultaneously computing a vectorial lower

and upper bound. The remainder of the section presents (i) the definition of a

vectorial bound, (ii) the branch-and-bound method description, (iii) algorithms

computing vectorial bounds, and (iv) the branch-and-bound optimality proof.

Definition 1 (Vectorial Bound). Suppose ~C(S) = (C1(S), . . . , Cm(S)) is the185

non-increasing vector of machine completion times in a feasible schedule S of the
LexOpt scheduling problem. Vector ~L = (L1, . . . , Lm) is a vectorial lower bound
of S if Li ≤ Ci(S), for each 1 ≤ i ≤ m. A vectorial upper bound ~U =
(U1, . . . , Um) of S has Ui ≥ Ci(S), for each 1 ≤ i ≤ m.

3.1. Branch-and-Bound Description190

Initially, the branch-and-bound method sorts the jobs in non-increasing pro-

cessing time order, i.e. p1 ≥ p2 ≥ . . . ≥ pn. The search space is a full tree with

n + 1 levels. The root node is located in level 0. The set of leaves is the set S of

all possible mn possible solutions. Each node except for the leaves has exactly m

children. For each ` ∈ {0, 1, . . . , n− 1}, a node v in the `-th tree level represents a195

fixed assignment of jobs J1, . . . , J` to the m machines and jobs J`+1, . . . , Jn remain

to be assigned. The m children of node v correspond to every possible assignment

of job J`+1 to the m machines. Denote by S(v) the set of all schedules in the

subtree rooted at node v. The primal heuristic applied in each node is the longest

processing time first (LPT) algorithm [27]. In each schedule S obtained by primal200

heuristic LPT, the algorithm reorders the machines so that C1(S) ≥ . . . ≥ Cm(S).

Lexicographic order may not apply at the partial schedule associated with level

` < n where only jobs J1, . . . , J` have been assigned to the m machines. The vec-

torial lower bound ~L on the LexOpt schedule S∗ ∈ S(v) below node v is computed

in each node using the Section 3.2 algorithms.205

The branch-and-bound method explores the search tree via depth-first search.

Stack Q stores the set of explored nodes. Variable I stores the incumbent, i.e.
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the lexicographically smallest solution found thus far. At each step, the algorithm

picks the node u on top of Q and explores its m children children(u). For each

v ∈ children(u), if the primal heuristic finds a solution Sv such that ~C(Sv) <lex210

~C(I), the incumbent updates. If v is not a leaf, Algorithm 1 computes a vectorial

lower bound ~L of the lexicographically best solution in S(v). When ~C(I) ≤lex
~L,

the set S(v) does not contain any solution lexicographically better than I and

the subtree rooted at v is fathomed. Otherwise, v is pushed onto stack Q. After

completing Algorithm 1, the incumbent is optimal because every other solution has215

been rejected as not lexicographically smaller than the incumbent.

3.2. Vectorial Bound Computation

Consider node v located in the `-th search tree level of branch-and-bound. We

simultaneously compute vectorial lower bound ~L = (L1, . . . , Lm) and vectorial up-

per bound ~U = (U1, . . . , Um) on the LexOpt schedule S∗ ∈ S(v) below node v.220

The algorithm performs m iterations. For iteration i ∈ {1, . . . ,m}, it calculates a

lower bound Li (Algorithm 1) and an upper bound Ui (Algorithm 2) on the i-th

machine completion time using the bounds U1, . . . , Ui−1 and L1, . . . , Li−1, respec-

tively. Recall that the jobs are sorted, so p1 ≥ . . . ≥ pn. W.l.o.g., each machine

executes all jobs with index ≤ ` before any job with index > `. Therefore, for each225

schedule in S(v), a unique vector ~t = (t1, . . . , tm) specifies the machine completion

times by considering only jobs J1, . . . , J` and ignoring the remaining ones. Fur-

ther, no job Jj with ` + 1 ≤ j ≤ n is executed before time tq on machine Mq, for

1 ≤ q ≤ m. Appendix E proves the correctness of Algorithms 1 and 2. We interpret

both computations as approximating a scheduling problem with job rejections.230

Vectorial lower bound component Li. The two-phase computation is equivalent

to constructing a pseudo-schedule S̃ which is feasible except that some jobs are

scheduled fractionally. First, Algorithm 1 assigns fractionally the jobs J`+1, . . . , Jh

to machines M1, . . . ,Mi−1, where h is the smallest index such that
∑h

j=`+1 pj ≥∑i−1
q=1(Uq − tq). For each q = 1 . . . i − 1, machine Mq is assigned sufficiently large235

job pieces so that its completion time is greater than or equal to Uq. In the

second phase, Algorithm 1 assigns the remaining load λ =
∑n

j=h+1 pj of jobs

Jh+1, . . . , Jn fractionally to machines Mi, . . . ,Mm. This assignment minimizes
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Algorithm 1 Computation of the i-th vectorial lower bound component

1: Select job index min{h :
∑h

j=`+1 pj ≥
∑i−1

q=1(Uq − tq)}.
2: Compute remaining load λ =

∑n
j=h+1 pj .

3: Set τ = maxi≤q≤m{tq}.
4: Return the maximum among:

• mini≤q≤m{tq}+ ph+1, and

• maxi≤q≤m{tq}+ max
{

1
m−i+1

(
λ−

∑m
q=i+1(τ − tq)

)
, 0
}

.

the i-th greatest completion time of the resulting fractional schedule. Assum-

ing pn+1 = 0, the value Li is the maximum among mini≤q≤m{tq} + ph+1 and240

maxi≤q≤m{tq}+max
{

1
m−i+1

(
λ−

∑m
q=i+1(τ − tq)

)
, 0
}

, where τ = maxi≤q≤m{tq}.

Lemma 2. Consider a node v of the search tree and a machine index i ∈ {1, . . . ,m}.
Algorithm 1 produces a value Li ≤ Ci(S) for each feasible schedule S ∈ S(v) below
v such that Cq(S) ≤ Uq, ∀ q = 1, . . . , i− 1.

Vectorial upper bound component Ui. Like Li, the Ui computation requires two245

phases that may be interpreted as constructing a fractional pseudo-schedule S̃.

Additionally, Algorithm 2 uses the incumbent I. Schedule S̃ combines the partial

schedule for jobs J1, . . . , J` associated with node v and the pseudo-schedule of

the remaining jobs J`+1, . . . , Jn computed by Algorithm 2. Initially, Algorithm 2

assigns a total load
∑i−1

q=1(Lq − tq) of the smallest jobs to machines M1, . . . ,Mi−1250

so that the completion time of Mq becomes exactly equal to Lq, for q = 1, . . . , i−1.

That is, a piece p̃h of job Jh and jobs Jh+1, Jh+2, . . . , Jn are assigned fractionally to

machines M1, . . . ,Mi−1 so that p̃h+
∑n

j=h+1 pj =
∑i−1

q=1(Lq−tq). Next, Algorithm 2

assigns the remaining load λ =
∑h−1

j=`+1 pj+(ph−p̃h) of jobs J`+1, . . . , Jh fractionally

and uniformly to the least loaded machines among Mi, . . . ,Mm as follows. Initially,255

the partial completion times are sorted so that ti ≤ . . . ≤ tm. This sorting occurs

only in computing the vectorial upper bound and does not affect any branch-and-

boun partial schedule. Let µ be the minimum machine index such that (i) the

remaining load λ may be fractionally scheduled to machines Mi, . . . ,Mµ so that

they end up with a common completion time τ = 1
µ−i+1

(∑µ
q=i tq + λ

)
, and (ii)260

the partial completion time tq of any other machine among Mµ+1, . . . ,Mm is at
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Algorithm 2 Computation of the i-th vectorial upper bound component

1: Compute remaining load λ =
∑n

j=` pj −
∑i−1

q=1(Lq − tq).
2: Sort the machines Mi, . . . ,Mm so that ti ≤ . . . ≤ tm.

3: Select machine index min
{
µ : 1

µ−i+1

(∑µ
q=i tq + λ

)
≤ tµ+1, i ≤ µ ≤ m

}
.

4: Return the minimum among max
{

1
µ−i+1

(∑µ
q=i tq + λ

)
+ p`, tm

}
and Ci(I).

least τ , i.e. tµ+1 ≥ τ . Bound Ui is the minimum of max{τ + p`, tm} and Ci(I).

Lemma 3. Consider a node v of the search tree and a machine index i ∈ {1, . . . ,m}.
Algorithm 2 produces a value Ui ≥ Ci(S) for each feasible schedule S ∈ S(v) below
v such that Cq(S) ≥ Lq, ∀ q = 1, . . . , i− 1.265

3.3. Branch-and-Bound Optimality Proof

Theorem 1 shows the correctness of our branch-and-bound Algorithm.

Theorem 1. The branch-and-bound method computes a LexOpt solution.

Proof:

Consider tree node v. Let ~L = (L1, . . . , Lm) and I be the computed vectorial270

lower bound and the incumbent, when our branch-and-bound algorithm explores

v. We show the following invariant: if node v is pruned, then ~C(S) ≥lex
~C(I),

for every schedule S ∈ S(v). Node v is pruned when L ≥lex
~C(I), i.e. one of the

following cases: (i) L1 > C1(I), (ii) Lq = Cq(I) ∀ q = 1, . . . , i− 1 and Li > Ci(I),

for some i ∈ {2, . . . ,m − 1}, or (iii) Li = Ci(I) ∀ i = 1, . . . ,m. In case (i), be-275

cause C1(S) ≥ L1, it holds that ~C(S) >lex
~C(I) ∀ S ∈ S(v). In case (ii), either

C1(S) > L1, or C1(S) = L1 ∀ S ∈ S(v). Let S1(v) ⊆ S(v) be the subset of schedules

satisfying C1(S) = L1 = C1(I). Algorithm 2 computes U1 = C1(I). By Lemma 2,

either C2(S) > L2, or C2(S) = L2, for each S ∈ S1(v). Let S2(v) ⊆ S1(v) be the

subset of schedules with C2(S) = L2. We define similarly all sets S1(v), . . . ,Si−1(v).280

By Lemma 2, for any schedule in Si−1(v), it holds that Cq(S) = Lq = Cq(I) ∀
q = 1, . . . , i− 1 and Ci(S) ≥ Li > Ci(I). Thus, for each S ∈ S(v), ~C(S) >lex

~C(I).

Finally, in case (iii), for each S ∈ Sm−1(v), Cq(S) = Cq(I) ∀ q = 1, . . . ,m and

~C(S) = ~C(I).

285
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4. Approximate Recovery Algorithm with Binding Decisions (Stage 2)

This section discusses reoptimizing the makespan problem. Section 4.1 presents

our recovery approach. Sections 4.2 and 4.3 analyze the proposed recovery algo-

rithm for a single perturbation and multiple perturbations, respectively. We high-

light the importance of LexOpt even in settings with limited severe disturbances.290

4.1. Recovery Algorithm Description

This section presents our recovery strategy, Algorithm 3. Reoptimization aims

to exploit the initial optimal solution Sinit for solving the perturbed instance Inew.

Definition 2 formalizes the notions of binding and free optimization decisions.

Definition 2. Consider a makespan recovery problem instance (Iinit, Sinit, Inew)295

with Iinit = (M,J ) and Inew = (M̂, Ĵ ).

• Binding decisions {xi,j : (xi,j(Sinit) = 1) ∧ (i ∈ M̂ ∩M) ∧ (j ∈ Ĵ ∩ J )}
are variable evaluations attainable from Sinit in the recovery process.

• Free decisions {xi,j : (j ∈ Ĵ ) ∧ (@i′ ∈ M ∩ M̂ : xi′,j(Sinit) = 1)} are
variable evaluations that cannot be determined from Sinit but are needed to300

recover feasibility.

In the makespan scheduling problem, binding decisions are all job assignments

in Sinit which remain valid for the perturbed instance Inew. Free decisions are

assignments of new jobs or of jobs originally assigned to failed machines.

Our recovery strategy maintains all binding decisions and assigns free decisions305

with the LPT heuristic which takes the lexicographically best decision in each iter-

ation. Algorithm 3 accepts all available binding decisions because: (i) theoretically,

using the binding decisions exploits all relevant information provided by Sinit to

solve the perturbed instance Inew and quantifies the benefit of staying close to Sinit

and (ii) practically, modifying Sinit may be associated with transformation costs,310

e.g. [57], and Algorithm 3 mitigates this overhead. The supplement discusses more

flexible recovery with a bounded number of binding decision modifications.

4.2. Single Perturbation

This section designs and analyzes single perturbation recovery algorithms, the

first step towards effective reoptimization. Theorem 2 shows that reoptimization315
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Algorithm 3 Recovery Strategy

1: Perform all binding decisions (job assignments) with respect to schedule Sinit.

2: Schedule free (unassigned) jobs using Longest Processing Time first (LPT).

J1

J2 J3 J4 J5 J6 J7

M4

M3

M2

M1

(a) Weakly recoverable optimal Sinit.

J1

J2 J3

J4 J5

J6 J7M4

M3

M2

M1

(b) Efficiently recoverable LexOpt Sinit.

Figure 3: Illustration of the benefit obtained by LexOpt for schedules Sinit.

beginning with an arbitrary optimal initial solution is ineffective and produces a

weak, non-constant approximation factor recovery, e.g. under makespan degeneracy

conditions. But reoptimization is more efficient when the initial schedule is a

LexOpt solution. Theorem 3 shows that Algorithm 3 for a LexOpt solution has

a constant performance guarantee for any single perturbation. Effectively, the320

LexOpt structure allows reoptimization to overcome the makespan degeneracies.

Theorem 2. For the makespan recovery problem with a single perturbation, Al-
gorithm 3 produces an Ω(m)-approximate solution if Sinit is an arbitrary optimal
schedule.

Before proving the positive performance guarantee obtained with LexOpt in325

Theorem 3, we derive Lemma 4. We denote by C∗max(m,J ) the minimum makespan

for a problem instance (m,J ). Lemma 4 formalizes the importance of lexicographic

ordering in a solution Sinit when machine M` is perturbed ∀` ∈M: the subsched-

ule specified by Sinit on the remaining m − 1 machines M\ {M`} is a minimum

makespan schedule for the subset J ′. Furthermore, Lemma 4 relates two minimum330

makespans for the same J but a different number of machines.

Lemma 4. Consider a makespan problem instance (m,J ) and let S be LexOpt
schedule. Given an arbitrary machine M` ∈M, denote by J ′ the subset of all jobs
assigned to the machines in M\ {M`} by S. Then, it holds that:

1. maxMi∈M\{M`}{Ci(S)} = C∗max(m− 1,J ′), and335

2. C∗max(m− 1,J ) ≤ 2 · C∗max(m,J ).
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Theorem 3 shows a significantly improved, positive performance guarantee for

the makespan recovery problem for a LexOpt initial solution, e.g. Figure 3b.

Theorem 3. For the makespan recovery problem with a single perturbation, Algo-
rithm 3 produces a tight 2-approximate solution, if Sinit is LexOpt.340

Proof:

Consider the Section 2.3 perturbation types. Perturbations in the same group

are analyzed with similar arguments. The sequel proves a job reduction (type 1

perturbation) using LexOpt. For any perturbation, we cannot achieve a better

performance guarantee without modifying binding decisions.345

Consider a LexOpt schedule Sinit for instance Iinit and suppose that job Jj

processing time decreases by δ ∈ (0, pj ], i.e. pj ← pj − δ. Cancelling job Jj ∈ J
is equivalent to reducing pj to zero. Let M` be the machine executing Jj in Sinit.

Without loss of generality, job Jj completes last among all jobs assigned to M`.

Algorithm 3 maintains the Sinit job assignments and returns the recovered schedule350

Srec obtained by decreasing pj and C`(Sinit) by δ. Suppose Snew is an optimal

schedule for the perturbed instance Inew. We distinguish two cases depending on

whether M` completes last in Srec.

First, suppose C`(Srec) < Cmax(Srec). W.l.o.g., ` 6= 1 and C1(Srec) = Cmax(Srec),

i.e. M1 completes last in Srec. Let J ′ ⊆ J be the jobs executed by all machines

M\M`. Then,

Cmax(Srec) = C∗max(m− 1,J ′) [Lemma 4.1],

≤ C∗max(m− 1,J \ {Jn}) [J ′ ⊆ J \ {Jn}],

≤ 2 · C∗max(m,J \ {Jn}) [Lemma 4.2],

= 2 · Cmax(Snew) [Definition].

Subsequently, consider C`(Srec) = Cmax(Srec). In this case, Cmax(Srec) = Cmax(Sinit)−
δ. We claim that Srec is a minimum makespan schedule for Inew. Assume for contra-355

diction the existence of an optimal schedule Snew for Inew such that Cmax(Snew) <

Cmax(Sinit) − δ. Starting from Snew, we add δ extra units of time on job Jj and

we obtain a feasible schedule S̃ for Iinit such that Cmax(S̃) < Cmax(Sinit). But this

contradicts the fact that Sinit is optimal for Iinit.

360
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4.3. Multiple Perturbations

Reoptimization with multiple disturbances can be seen as a two-player game

where (i) we solve an initial problem instance, (ii) a malicious adversary generates

perturbations, and (iii) we transform the initial solution into an efficient solution

for the new instance. Adversarial strategies with multiple perturbations can ren-365

der the initial optimal solution weakly reoptimizable. But a LexOpt solution can

manage a bounded adversary. Algorithm 3 produces efficient solutions in bounded

uncertainty settings and attains a positive performance guarantee parameterized

by the degree of uncertainty. For analysis purposes, Definition 3 describes uncer-

tainty set U(f, k, δ) with three parameters: (i) the factor f indicating the boundary370

between stable and unstable job perturbations, (ii) the number k of unstable jobs,

and (iii) the number δ of surplus machines. We assume that the number k of

unstable jobs is bounded by the number of machines m, i.e. k < m.

Definition 3. For a makespan problem instance (m,J ) with processing time vec-
tor ~p = (p1, . . . , pn), the uncertainty set U(f, k, δ) contains every instance (m̂, Ĵ )375

with processing time vector p̂ = (p̂1, . . . , p̂n) such that:

• Stability/unstability boundary. Ĵ can be partitioned into the set Ĵ s of
stable jobs and the set Ĵ u of unstable jobs, where pj/f ≤ p̂j ≤ pj ·f ∀ Jj ∈ Ĵ s,

• Bounded number of unstable jobs. |Ĵ u| ≤ k, we assume k < m,

• Bounded surplus machines availability. m̂−m ≤ δ.380

Similarly to Section 4.2, suppose C∗max(m,J ) is the optimal objective value

for the makespan problem instance (m,J ). Lemma 5 (i) formalizes the optimal

substructure imposed by LexOpt, (ii) bounds pairwise machine completion time

differences in LexOpt schedules, (iii) quantifies the optimal objective’s sensitivity

with respect to the number of machines, and (iv) quantifies the objective value385

sensitivity with respect to processing times.

Lemma 5. Let (m,J ) be a makespan problem instance with LexOpt schedule S.

1. Given the subset J ′ ⊆ J of jobs scheduled on the subset M′ ⊆ M of ma-
chines, where |M′| = m′, the sub-schedule of S on M′ is optimal for (m′J ′),
i.e. maxMi∈M′{Ci(S)} = C∗max(m′,J ′).390

2. Assuming that Mi,M` ∈ M are two different machines and that job Jj ∈ J
is assigned to machine Mi in S, then C`(S) ≥ Ci(S)− pj.
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Type Perturbation type (Section 2.3) Performance guarantee

Type 1 Job cancellations, Processing time reductions 2f · (1 + d k
m−k e)

Type 2 Processing time augmentations f + k

Type 3 Machine activations (1 + dδ/me)
Type 4 Job arrivals, Machine failures max{2, ρ}

Table 1: Algorithm 3 performance guarantees for the perturbation types,

considering the (i) perturbation factor f , (ii) number k < m of unstable

jobs, and (iii) number δ surplus machines. The term ρ is the product of the

performance guarantees obtained for Types 1-3.

3. It holds that C∗max(J ,m−`) ≤
(

1 +
⌈

`
m−`

⌉)
·C∗max(J ,m) ∀ ` ∈ {1, . . . ,m−1}.

4. Let (m, Ĵ ) be a makespan problem instance such that 1
f · p̂j ≤ pj ≤ p̂j, where

p and p̂ are the processing times in (m,J ) and (m, Ĵ ), respectively. Then,395

1
f · C

∗
max(m, Ĵ ) ≤ C∗max(m,J ) ≤ C∗max(m, Ĵ ).

Table 1 summarizes the performance guarantees for the Algorithm 3 recovery

strategy with respect to the four Section 2.3 perturbation types. Lemma 6 proves

Type 1 and Supplementary material presents Types 2-4. The proofs also show that

our analysis is asymptotically tight. Distinguishing the arguments required for each400

perturbation type, yields a global, tight performance guarantee by propagating

the solution degradation with respect to the above sequence. Considering the

perturbations in this series of steps is an assumption only for analysis purposes

and does not restrict the uncertainty model. Theoretically, LexOpt is essential

only for bounding the solution degradation due to job removals and processing405

time reductions. But practically, the optimal substructure derived by LexOpt,

as stated in Lemma 5, is beneficial in an integrated setting with all possible

perturbations. Section 5 complements the theoretical analysis with experiments

highlighting reoptimization’s significance in the recovered solution quality.

Lemma 6. For the makespan recovery problem with only job cancellations and410

processing time reductions (Type 1), in the U(f, k, δ) uncertainty set, Algorithm 3
produces a 2f · (1 + d k

m−ke)-approximate solution and this performance guarantee
is asymptotically tight, ∀ k < m.

Proof:
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Processing time reductions are only recovered using binding decisions. Job can-415

cellation is equivalent to reducing the processing time to zero. Considering the

recovered schedule Srec, partition the machines M into the sets Ms of stable ma-

chines which are not assigned unstable jobs and Mu of unstable machines which

are assigned unstable jobs. That is, Ci(Srec) ≥ 1
f ·Ci(Sinit), for each Mi ∈Ms, and

ms = |M s| ≥ m−k. NoteMu =M\Ms and mu = |Mu| ≤ k. Denote Mi ∈M as420

a critical machine, if it completes last in schedule Srec, i.e. Ci(Srec) = Cmax(Srec).

There are two cases: Ms may contain a critical machine, or not.

Case 1: Ms contains a critical machine.. Let J snew be the subset of jobs assigned

to the machines Ms by Srec. Each job in J snew has been perturbed by a factor

of at most f . Denote by J sinit the same jobs before uncertainty realization. The

jobs in J sinit are exactly those executed on Ms in Sinit and appear in J snew with

one-by-one smaller processing times. Then,

Cmax(Srec) = max
Mi∈Ms

{Ci(Srec)} [Ms contains a critical machine],

≤ max
Mi∈Ms

{Ci(Sinit)} [Processing time reduction],

= C∗max(ms,J sinit) [Lemma 5.1],

≤ f · C∗max(ms,J snew) [Lemma 5.4],

≤ f · C∗max(ms,Jnew) [J snew ⊆ Jnew],

= f · C∗max(m−mu,Jnew) [ms = m−mu],

≤ f ·
(

1 +

⌈
mu

m−mu

⌉)
· C∗max(m,Jnew) [Lemma 5.3],

≤ f ·
(

1 +

⌈
k

m− k

⌉)
· Cmax(Snew). [mu ≤ k]

Case 2: Only Mu contains critical machines.. Consider an unstable critical ma-

chine Mi ∈ Mu in Srec, i.e. Cmax(Srec) = Ci(Srec). If only one job Jj ∈ J has

been assigned to Mi, then schedule Srec is optimal, i.e. Cmax(Srec) = Cmax(Snew).

Now consider Mi that has been assigned at least two jobs in Srec. This perturba-

tion type reduces processing time, so Ci(Srec) ≤ Ci(Sinit). Since k < m, there is

at least one machine M` ∈ Ms. Furthermore, since Sinit is LexOpt, Lemma 5.2
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requires that C`(Sinit) ≥ Ci(Sinit) − pj , for each job Jj ∈ J assigned to Mi by

Sinit. Since Sinit contains at least two jobs, there exists a job Jj assigned to Mi

by Sinit such that pj ≤ 1
2 · Ci(Sinit). Hence, Ci(Sinit) ≤ 2 · C`(Sinit). We conclude

that Cmax(Srec) ≤ 2 · C`(Sinit). Because M` ∈ Ms, using our analysis for case 1,

we derive that

Cmax(Srec) ≤ 2f ·
(

1 +

⌈
k

m− k

⌉)
· Cmax(Snew).

The supplementary material shows the tightness of our analysis.

425

Theorem 4 is a direct corollary of the performance guarantee analysis. Suppose

that fr, kr are the perturbation factor and the number of unstable processing time

reductions including job cancellations, fa, ka are the perturbation factor and the

number of unstable processing time augmentations, and δ+ is the increase to the

number of machines after uncertainty realization. That is, f = fr +fa, k = kr +ka430

and δ+ = max{δ, 0}.

Theorem 4. For the makespan recovery problem within a U(f, k, δ) uncertainty
set, Algorithm 3 achieves the following tight performance guarantee:

2fr ·
(

1 +

⌈
kr

m− kr

⌉)
· (fa + ka) ·

(
1 +

⌈
δ+

m

⌉)
.

5. Numerical Results

Section 5.1 describes the system specifications and benchmark instances. Sec-

tion 5.2 evaluates the exact methods. Section 5.3 discusses the perturbed instances.435

Section 5.4 evaluates the recovery strategies and the impact of LexOpt.

5.1. System Specification and Benchmark Instances

We ran all computations on an Intel Core i7-4790 CPU 3.60GHz with a 15.6

GB RAM running a 64-bit Ubuntu 14.04. Our implementations use Python 2.7.6

and Pyomo 4.4.1 [31, 30] and solve the MILP models with CPLEX 12.6.3 and440

Gurobi 6.5.2. The source code and test cases are available [34]. We have generated

random LexOpt scheduling instances. Well-formed instances admit an optimal
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Instances m n q

Moderate 3, 4, 5, 6 20, 30, 40, 50 100, 1000

Hard 10, 15, 20, 25 200, 300, 400, 500 10000, 100000

Table 2: Well-formed Instance Sizes

solution close to a perfect solution which has all machine completion times equal,

i.e. Ci = Ci′ for each i, i′ ∈ M. Degenerate instances have a less-balanced opti-

mal solution. This section investigates well-formed instances. The supplementary445

material presents extended numerical results including degenerate instances.

The well-formed instances depend on 3 parameters: (i) the number m of ma-

chines, (ii) the number n of jobs, and (iii) a processing time seed q. This test

set, summarized in Table 3a, consists of moderate and hard instances. For each

combination of m, n and q, we generate 3 instances by selecting ~p using 3 distri-450

butions parameterized by q. Each processing time is rounded to the nearest inte-

ger. Uniform distribution selects pj ∼ U({1, . . . , q}). Normal distribution chooses

pj ∼ N (q, q/3) and guarantees that 99.7% of the values lie in interval [0, 2q]. Sym-

metric of normal distribution samples p ∼ N (q, q/3) and selects pj = q − p if

p ∈ [0, q], or pj = 2q − (p − q) if pj ∈ (q, 2q]. Normal and symmetric normal455

processing times outside [0, 2q] are rounded to the nearest of 0 and 2q.

5.2. LexOpt Scheduling

This section numerically evaluates the LexOpt methods. The sequential, highest-

rank objective, and weighting methods solve MILP instances. We use MILP termi-

nation criteria: (i) 103 CPU seconds, and (ii) 10−4 relative error tolerance, where460

the relative gap (Ub−Lb)/Ub is computed using the best-found incumbent Ub and

the lower bound Lb. The sequential method solves a sequence of MILP models,

each with 10−4 relative error tolerance. The simultaneous method solves one min-

imum makespan MILP model with 10−4 makespan error tolerance and populates

the solution pool with 2000 solutions. The weighting method and our branch-and-465

bound method terminate with 10−4 weighted value error tolerance, where Ub is the

weighted value W (S) =
∑m

i=1B
m−i · Ci(S) of the returned schedule S and B = 2.

We compute Lb by similarly weighting the global vectorial lower bound.
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The sequential method solves m MILP instances with repeated CPLEX calls,

each computing one objective value. We use the CPLEX reoptimize feature to470

exploit information obtained from solving higher-ranked objectives. If the method

exceeds 103 CPU seconds in total, it terminates when the ongoing MILP run is

completed. We implement the weighting method using Pyomo and solve the MILP

with CPLEX and Gurobi. We use weighting parameter B = 2. The highest-rank

objective method uses the CPLEX solution pool feature (capacity = 2000) in two475

phases. The first phase solves the standard makespan MILP model. The second

phase continues the tree exploration and generates a pool of solutions.

The Figure 4 performance profiles compare the LexOpt methods with respect

to elapsed times and best found solutions on the well-formed instances [19]. In

terms of running time and number of solved instances, sequential method performs480

similarly to weighting method on moderate instances and slightly better on hard

instances. But the sequential method produces slightly worse feasible solutions

than weighting method since lower-ranked objectives are not optimized in case

of a sequential method timeout. The highest-rank objective method has worse

running times than sequential and weighting methods on moderate instances since485

the solution pool populate time is large compared to the overall solution time. On

hard test cases, populating the solution pool is only a fraction of the global solution

time and highest-rank objective method attains significantly better running times

than sequential and weighting methods. The highest-rank objective method does

not prove global optimality: it only generates 2000 solutions. But, the highest-rank490

objective method produces the best heuristic results for most test cases.

The branch-and-bound method with vectorial lower bounds, obtains good LPT

heuristic solutions without populating the entire solution pool. Figure 4 shows that

it guarantees global optimality more quickly than the other approaches for test

cases where it converges. Branch-and-bound converges for > 60% of the moderate495

test cases, and > 30% hard instances. Branch-and-bound consistently produces a

good heuristic, i.e. better than sequential and weighting methods, in hard instances.

5.3. Generation of Initial Solutions and Perturbed Instances

This section describes generating the benchmark instances for the makespan

recovery problem. An instance is specified by: (i) an initial makespan problem500
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(a) Moderate instances: time (s) on log2 scale (left), upper bounds on [1, 1.009] (right).
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(b) Hard instances: time (s) on log2 scale (left), upper bounds on [1, 2] (right).

Figure 4: Performance profiles for the well-formed test set with 103 s timeout.

instance Iinit, (ii) an initial solution Sinit to Iinit, and (iii) a perturbed instance Inew.

Recall that the recovery problem transforms solution Sinit to a feasible solution

Snew for instance Inew using the recovery strategies.

The initial makespan problem instances are the Section M.1 instances. For each

instance Iinit, we generate a set S(Iinit) of at least 50 diverse solutions by solv-505

ing Iinit using the CPLEX solution pool feature and the Section M.2 termination

criteria. A key property is that the obtained solutions have, in general, different

weighted values, i.e. for many pairs of solutions S1, S2 ∈ S(Iinit), W (S1) 6= W (S2),

where W (S) =
∑m

i=1B
m−i ·Ci(S). Using the weighted value as a distance measure

from the LexOpt solution, we evaluate a recovered solution’s quality as a function510

of the initial solution distance from LexOpt.

For each makespan problem instance Iinit, we construct a perturbed instance

Inew by generating random disturbances. A job disturbance is (i) a new job arrival,

(ii) a job cancellation, (iii) a processing time augmentation, or (iv) a processing
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time reduction. A machine disturbance is (i) a new machine activation, or (ii) a515

machine failure. To achieve a bounded degree of uncertainty, i.e. a bounded num-

ber k of unstable jobs and number δ of additional machines in the uncertainty set

U(f, k, δ), we generate dn = d0.2 · ne job disturbances and dm = d0.2 ·me machine

perturbations. To obtain a different range of perturbation factor values, we disturb

job processing times randomly. The type of each job disturbance is chosen uniformly520

at random among the four options (i) - (iv). A new job arrival chooses the new job

processing time according to U({1, . . . , q}), where q is the processing time parame-

ter used for generating the original instance. A job cancellation deletes one among

the existing jobs chosen uniformly at random. A processing time augmentation

of job Jj ∈ J chooses a new processing time uniformly at random with respect525

to U({pj + 1, . . . , 2 · q}). Analogously, a processing time reduction of job Jj ∈ J
chooses a new processing time at random with respect to U({1, 2, . . . pj − 1}). The

type of a machine disturbance is chosen uniformly at random among options (i) -

(ii). A new machine activation increases the number of available machines by one.

A machine cancellation deletes an existing machine chosen uniformly at random.530

5.4. Rescheduling

This section compares the recovered solution quality to the LexOpt using the

Section M.3 initial solutions and perturbed instances. Recall that weighted value

W (S) =
∑m

i=1B
m−i · Ci(S) measures the distance of schedule S from LexOpt.

For each instance Iinit, we recover every solution Sinit ∈ S(Iinit) by applying both535

binding and flexible recovery strategies from Sections 4.1 and G, respectively. For

flexible recovery, we set g = 0.1n, i.e. at most 10% of the binding decisions may

be modified. The flexible recovery MILP model is run with termination criteria of:

(i) 100 CPU seconds timeout, and (ii) 10−4 relative error tolerance.

The Figure 5a and 5b scatter plots correlate the recovered solution quality to540

the initial solution distance from the LexOpt solution for the binding and flexible

recovery strategy, respectively. We specify each scatter plot point by the normalized

weighted value of an initial solution Sinit ∈ S(Iinit) and the normalized makespan

of the corresponding recovered solution Srec. The normalized weighted value of

Sinit is WN (Sinit) = W (Sinit)
W ∗(Iinit)

, where W ∗(Iinit) is the best weighted value in the545

CPLEX solution pool for instance Iinit. Similarly, the normalized makespan of Srec
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(b) Flexible Recovery

Figure 5: Well-formed instances scatter plots illustrating the recovered solu-

tion makespan with respect to the initial solution weighted value.

is CN (Srec) = Cmax(Srec)
C∗max(Inew) , where C∗max(Inew) is the makespan of the best binding or

flexibly recovered schedule for instance Inew. For each initial instance and solution

pool generates at least 50 diverse solutions, so there is significant computational

overhead in recovering all ≈ 2× 104 solutions.550

Figure 5a indicates that LexOpt facilitates the Algorithm 3 binding recov-

ery strategy, i.e. the expected recovered solution improves if the initial schedule

weighted value decreases. This trend is also verified in Figure 5b related to the flex-

ible recovery strategy. Flexible decisions accomplish more efficient recovery. These

findings highlight the importance of LexOpt towards more efficient reoptimization.555

They also motivate efficient solution methods for scheduling with uncertainty where

the planning and recovery phases are investigated together.

6. Discussion

LexOpt is useful in various areas including game theory and fairness. Our

work initiates the usage of LexOpt in two-stage robust scheduling. Specifically, (i)560

we investigate the performance of LexOpt methods (sequential, weighting, highest-

rank objective) simultaneously in the context of mixed-integer programming, (ii) we

identify a common drawback of existing methods as the lack of strong lower bound-

ing techniques, (iii) we propose a new bounding approach for LexOpt problems.
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Our novel bounding approach requires (i) defining vectorial bounds by introduc-565

ing vectorial bounds which bound all objectives simultaneously, similar to an ideal

point in multiobjective optimization [20], (ii) proving that the branch-and-bound

algorithm is optimal with respect to the new definition, i.e. it prunes correctly, (iii)

computing efficient bounds tighter than weighting and sequential approaches, i.e.

the known alternatives for globally bounding LexOpt problems. The branch-and-570

bound method (i) avoids the iterative MILP of sequential methods, (ii) does not

suffer from the precision issues of weighting methods, and (iii) reduces the sym-

metry of simultaneous methods. Experimentally, our branch-and-bound algorithm

proves global optimal optimality fastest for more instances compared to the other

investigated LexOpt methods. The numerical results verify a phase transition in575

the LexOpt scheduling problem, separating more difficult and easier instances.

We provide new insights on the combinatorial structure of robust scheduling.

Technically, the analysis of our recovery strategy (i) exploits the lexicographic op-

timal substructure, (ii) uses sensitivity lemmas quantifying the effect of instance

perturbations, (iii) distinguishes two parts based on whether a machine is stable or580

unstable, and (iv) obtains a global, tight performance guarantee for all perturba-

tions simultaneously by evaluating the effect of each perturbation type individually

and propagating the solution degradation. Our experimental two-stage simulation

generates multiple initial solutions and verifies that the closest to LexOpt the initial

solution is, the better the recovered solution quality we get.585

7. Conclusion

Practical scheduling applications frequently require an initial, nominal schedule

that is later modified after uncertainty realization. But modifying the nominal

schedule may be difficult, e.g. distributed computing file retransmission [57] or

university course timetabling changes [46]. We use reoptimization principles to590

adapt an initial plan to the solution for the final problem instance [2, 7, 16, 49].

Lexicographic ordering is known to expedite the solution of highly-symmetric

mixed-integer optimization problems [3, 22, 21, 47], but our results additionally

show that the LexOpt solution of the minimum makespan problem enables positive

performance guarantees for the recovered solution. Our guarantees are for worst-595
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case schedules, but the computational results show the lexicographic ordering is

also useful in randomly-generated instances. Beyond scheduling, the Verschae [55]

proofs suggest that this work can be extended to uncertain min-max partitioning

problems with generalized cost functions and other applications, e.g. facility loca-

tion and network communications. Finally, the new branch-and-bound method is600

broadly relevant to lexicographic optimization.
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Appendix A LexOpt Reformulation Lemma745

Lemma 1. There exists an optimal solution to the LexOpt scheduling problem such
that:

1. Ci ≥ Ci+1, for i = 1, . . . ,m− 1,

2.
[∑i−1

q=1Cq

]
+ (m− i+ 1) ·Ci ≥

∑n
j=1 pj and i ·Ci +

[∑m
q=i+1Cq

]
≤
∑n

j=1 pj,

∀ i = 1, . . . ,m.750

Proof:

A LexOpt schedule with non-increasing order of machine completion times is

straightforward. The machines are identical, so they may be rearranged in any fea-

sible solution to satisfy the proposed order. For the bounds, observe that
∑m

i=1Ci =∑n
j=1 pj because all jobs are feasibly executed. Since Ci ≥ Ci+1 ≥ . . . ≥ Cm, see755

that
∑i−1

q=1Cq + (m − i + 1) · Ci ≥
∑n

j=1 pj . Similarly, as C1 ≥ C2 ≥ . . . ≥ Ci, we

conclude that i · Ci +
∑m

q=i+1Cq ≤
∑n

j=1 pj .

Appendix B State-of-the-Art LexOpt Methods

This section describes the sequential, weighting, and highest-rank objective760

methods for solving LexOpt.

B.1 Sequential Method

A sequential method minimizes the objective functions iteratively with respect

to their priorities [18, 15]. In each step, a sequential method optimizes the next

objective function. Algorithm 4 computes the optimal vector of values v∗1, . . . , v
∗
i−1765
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Algorithm 4 Sequential Method

1: v∗1 = min{C1 : (~x, ~C) ∈ S}.
2: for i = 2, . . . ,m do
3: v∗i = min{Ci : x ∈ S,C1 = v∗1, . . . , Ci-1 = v∗i-1}
4: Return the solution computed in the last iteration.

Algorithm 5 Weighting Method

1: Select big-M parameter B = 2.
2: for i = 2, . . . ,m do
3: Set machine weight wi = Bm−i.

4: Solve min{
∑m

i=1wi · Ci : (~x, ~C) ∈ S}.

from the feasible solutions S to MILP (2). Note that the i-th step requires all

values v∗1, . . . , v
∗
i−1. Warm-starting the i-th step using the solution of the (i− 1)-th

step improves the sequential method’s efficiency.

B.2 Weighting Method

As shown in Algorithm 5, weighting methods select appropriate weights formu-770

late LexOpt as minimizing a weighted sum of the objectives [51]. The standard way

of picking the weights is wi = Bm−i, ∀ i = 1, 2, . . . ,m, where the big-M parameter

B is a sufficiently large constant [52]. The highest-rank objectives are associated

with the largest weights. Section M.2 applies the weighting method with the big-M

parameter B = 2, i.e. the smallest integer greater than 1. This big-M choice B = 2775

produces a LexOpt solution for the tested instances solved within the specified

time limit. The weighted sum also measures the distance of any solution from the

LexOpt solution. Figures 5, 12 and 13 use this weighted normalization approach

with B = 2.

B.3 Highest-Rank Objective Method780

A LexOpt solution is also an optimal solution for the mono-objective problem

of minimizing the highest-rank objective function C1. This method enumerates

all optimal solutions of the highest-rank objective problem and selects the lexico-

graphically smallest [44], e.g. using the solution pool feature in CPLEX or Gurobi

to collect non-dominated solutions. The highest-rank objective method is useful785
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Algorithm 6 Highest-Rank Objective Method

1: Solve v∗1 = min{C1 : (~x, ~C) ∈ S}.
2: Compute the solution pool P = {(~x, ~C) ∈ S : C1 = v∗1}.
3: Return lex min{~C : (~x, ~C) ∈ P}.

Algorithm 7 LexOpt Branch-and-Bound Method using Vectorial Bounds

1: Q: empty stack
2: r: root node
3: push(Q, r)
4: I = {+∞}m
5: while Q 6= ∅ do
6: u = top(Q)
7: for v ∈ children(u) do
8: if v is leaf then
9: S: schedule of v

10: I = lex min{I, S}
11: else
12: S: heuristic schedule computed via LPT
13: I = lex min{I, S}
14: ~L: vectorial lower bound of node v
15: if ~L ≤lex

~C(I) then
16: push(Q, v)

when (i) solution pool is relatively small, or (ii) exact methods cannot handle the

LexOpt problem and the solution pool can be efficiently approximated.

In Algorithm 6, the highest-rank objective problem v∗1 = min{C1 : (~x, ~C) ∈ S}
is the makespan problem, where S is the set of solutions satisfying (2b) - (2g). Al-

gorithm 6 (i) identifies the solution pool P, and (ii) computes the lexicographically790

best solution in P, i.e. lex min{~C(S) : S ∈ P}. In LexOpt, maintaining a sin-

gle solution in the pool is sufficient if the current solution is always replaced with

a lexicographically smaller solution. A simple greedy lexicographic comparison

algorithm checks when such an update is essential.

Appendix C Branch-and-Bound Algorithm Pseudocode795

This section formally describes the Section 3 branch-and-bound algorithm (Al-

gorithm 7).

A3



Algorithm 8 Longest Processing Time First (LPT) at level `

1: ~t: Initial machine completion times
2: for j = `+ 1, . . . , n do
3: i = arg minMq∈M{tq}
4: Ci ← ti + pj

5: Sort the machines so that C1 ≥ . . . ≥ Cm.

M4

M3

M2

M1

t4

t3

t2

t1 U1

U2

(a) Partial schedule associated with node v.

J`+1 J`+4

J`+2 J`+5

J`+3 J`+6

(b) Remaining jobs.

Figure 6: Computing vectorial lower bound component Li at node v in the
`-th search tree level, by scheduling jobs J`+1, . . . , Jn in the partial schedule
of v. Jobs J`+1, . . . , Jh are rejected in the intervals [tq, Uq], for q = 1, . . . , i−1,
and Li is computed by scheduling jobs Jh+1, . . . , Jm on machinesMi, . . . ,Mm,
fractionally, and lower bounding the completion time of machine Mi.

Appendix D Longest Processing Time First Heuristic

This section presents the Longest Processing Time First (LPT) (formally de-

scribed by Algorithm 8) applied in each branch-and-bound tree node v by Algo-800

rithm 7 [27]. If node v is located in level `, LPT maintains the assignment for jobs

J1, . . . , J` and greedily assigns the remaining J`+1, . . . , Jn jobs with the ordering

p`+1 ≥ . . . ≥ pn. At each step, LPT assigns the next job to the least-loaded ma-

chine. LPT is a powerful heuristic for the LexOpt makespan problem because it

(i) produces a 4/3-approximate schedule [27] and (ii) makes the lexicographically805

best decision in each step.

Appendix E Vectorial Bounds Correctness

This section shows the correctness of Algorithms 1 - 2 for computing vectorial

bounds within our branch-and-bound algorithm.

E.1 Vectorial Lower Bound810

Lemma 2. Consider a node v of the search tree and a machine index i ∈ {1, . . . ,m}.
Algorithm 1 produces a value Li ≤ Ci(S) for each feasible schedule S ∈ S(v) below
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v such that Cq(S) ≤ Uq, ∀ q = 1, . . . , i− 1.

Proof:

In schedule S and the pseudo-schedule S̃ constructed by Algorithm 1, jobs J1, . . . , J`815

are assigned to the m machines equivalently and the vector ~t = (t1, . . . , tm) specifies

the machine completion times with respect to these jobs. All remaining jobs R =

{J`+1, . . . , Jn} are scheduled differently in S̃ and S. Schedule S̃, i.e. Algorithm 1,

assigns fractionally the jobs in R̃ = {J`+1, . . . , Jh} to machines M1, . . . ,Mi−1 and

the jobs in R \ R̃ = {Jh+1, . . . , Jn} to machines Mi, . . . ,Mm. Denote by R′ ⊆ R820

the corresponding subset of jobs assigned to machines M1, . . . ,Mi−1, in schedule

S. That is, the jobs in R \R′ are assigned to machines Mi, . . . ,Mm.

Initially, observe that
∑

Jj∈R′ pj =
∑i−1

q=1 (Cq(S)− tq) ≤
∑i−1

q=1 (Uq − tq) ≤∑
Jj∈R̃ pj , where the first equality holds by definition, the first inequality is based

on the assumption that Cq(S) ≤ Uq, for each q = 1, 2, . . . , i− 1, and the second in-825

equality is true because Algorithm 1 fits machines M1, . . . ,Mi−1 at least up to their

respective upper bounds, in the first phase. Thus,
∑

Jj∈R\R′ pj ≥
∑

Jj∈R\R̃ pj .

Next, we claim that maxJj∈R\R′{pj} ≥ max
Jj∈R\R̃{pj}. Recall max

Jj∈R\R̃{pj} =

ph+1 and R̃ consists of jobs J`+1, . . . , Jh. Assume for contradiction that maxJj∈R\R′{pj} <
ph+1. Then,R′ must contain all jobs J`+1, . . . , Jh+1. Hence,

∑
Jj∈R′ pj ≥

∑h+1
j=`+1 pj >830 ∑

Jj∈R̃ pj , which is a contradiction.

Because schedule S is feasible, it holds that C1(S) ≥ . . . ≥ Cm(S). We show

that Li ≤ Ci(S) by considering three cases. First, since schedule S assigns a job of

processing time maxJj∈R\R′{pj} to a machine in Mi, . . . ,Mm,

Ci(S) ≥ min
i≤q≤m

{tq}+ max
Jj∈R\R′

{pj} ≥ min
i≤q≤m

{ti}+ ph+1.

Second, it is clear that, Ci(S) ≥ maxi≤q≤m{ti}. Finally, based on a standard

packing argument and the fact that
∑

Jj∈R\R′ pj ≥
∑

Jj∈R\R̃ pj , if the quantity

Λ =
∑n

j=h+1 pj −
∑m

q=i(τ − tq) is positive, where τ = maxi≤q≤m{tq}, then

Ci(S) ≥ max
i≤q≤m

{tq}+
Λ

m− i+ 1
.
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E.2 Vectorial Upper Bound

Lemma 7. Consider a node v of the search tree and a machine index i ∈ {1, . . . ,m}.835

Algorithm 2 produces a value Ui ≥ Ci(S) for each feasible schedule S ∈ S(v) below
v such that Cq(S) ≥ Lq, ∀ q = 1, . . . , i− 1.

Proof:

Recall that jobs J1, . . . , J` are assigned equivalently in the Algorithm 2 pseudo-

schedule S̃ and schedule S. Moreover, vector ~t = (t1, . . . , tm) specifies the iden-840

tical machine completion times of S̃ and S with respect to these jobs. Let R =

{J`+1, . . . , Jn} be the set of remaining jobs. Denote by R̃ = {J`+1, . . . , Jh} ⊆ R
(considering only the appropriate piece of Jh) the subset of jobs assigned to ma-

chines Mi, . . . ,Mm in S̃ and byR′ ⊆ R the corresponding subset of jobs assigned to

these machines by schedule S. Arguing similarly to the Lemma 2 proof, note that845 ∑
Jj∈R\R̃ pj ≥

∑
Jj∈R\R′ pj . Additionally, max

Jj∈R\R̃{pj} ≥ maxJj∈R\R′{pj}.
Since schedule S is feasible, C1(S) ≥ . . . ≥ Cm(S). Further, the total load as-

signed to machines Mi, . . . ,Mm among jobs J`+1, . . . , Jn is clearly
∑

Jj∈R\R′ pj ≤
λ =

∑n
j=`+1 pj−

∑i−1
q=1(Lq− tq). To compute Ui, Algorithm 2 assigns an amount of

load λ fractionally and uniformly to the least loaded machines among Mi, . . . ,Mm.850

In particular, it sorts these machines so that ti ≤ . . . ≤ tm, and it assigns λ units

of processing time to machines Mi, . . . ,Mµ so that end up having the same com-

pletion time τ = 1
µ−i+1

(∑µ
q=1 tq + λ

)
. Recall that maxJj∈R{pj} = p`. Using a

simple packing argument, Ci(S) ≤ max{τ + p`, tm}.
855

Appendix F Makespan Recovery NP-Hardness Proof

This section shows the NP-hardness of the makespan recovery problem even

for a single perturbation. That is, an optimal solution for a neighboring instance

does not mitigate the computational complexity and recovery remains at least as

hard as the original makespan problem.860

A solution Sinit to makespan problem instance Iinit partitions the set J of jobs

into m components K1, . . . ,Km, where Ki corresponds to the jobs Sinit assigns to

machine Mi ∈ M. Define the critical component as K∗ = arg max{F (Ki) : 1 ≤
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i ≤ m}, where F (Ki) =
∑

Jj∈Ki pj , for each i = 1, . . . ,m. The Theorem 5 NP-

hardness proof stems observing that the makespan objective inherently depends865

on the critical components, i.e. the objective value of solution Sinit. Intuitively,

Theorem 5 starts from problem instance I and constructs instance Iinit with all

jobs of I and additional dummy jobs with sufficiently large processing time so

that at least one dummy job belongs to the critical component in Sinit. Then, we

perturb Iinit to balance the effect of the dummy jobs on the new objective value in870

Inew. Solving Inew becomes equivalent to solving the computationally intractable

instance I.

Theorem 5. Makespan recovery scheduling with a single perturbation is strongly
NP-hard.

Proof:875

Consider the four perturbation types in Section 2.3. We derive an NP-hardness

reduction for each perturbation type individually: the reduction uses the same

initial instance Iinit and schedule Sinit for each type. These reductions start from

the strongly NP-hard makespan problem [23] and are based on makespan problem

degeneracy. Given an instance I = (m,J ) and a target makespan T , the decision880

version of the makespan problem asks if feasible schedule S for I with makespan

Cmax(S) ≤ T exists. This proof considers instance I = (m,J ) and constructs a

makespan recovery problem instance (Iinit, Sinit, Inew) with target makespan Tnew,

see Figure 7.

Type 1: Job removal, processing time reduction.885

Initial instance Iinit consists of m machines, the n original jobs, and a dummy

job with processing time pn+1 =
∑n

j=1 pj . Schedule Sinit assigns all jobs J1, . . . , Jn

to machine M1, job Jn+1 to machine M2, while all machines M3, . . . ,Mn are empty.

Clearly, Sinit is optimal for Iinit because any optimal schedule Sinit for Iinit has

makespan Cmax(Sinit) ≥ pn+1. Instance Inew is obtained from Iinit by removing890

job Jn+1. We set Tnew = T . Since Inew consists only of the jobs in I, Inew admits

a feasible schedule of makespan Tnew iff I admits a schedule of makespan T . The

processing time reduction case is treated similarly, assuming that pn+1 is decreased

from
∑n

j=1 pj down to 0.
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p1 p2 pn

pn+1

M1

M2

M3

Mm

(a) Type 1: Job cancellation, processing time
reduction

p1 p2 pn

pn+1

pn+(m−1)

M1

M2

Mm

(b) Types 2 & 4: Job arrival, processing time
augmentation, machine failure

pn+1 p1 p2 pn

pn+2 pn+(m+1)

pn+m

M1

M2

Mm

(c) Type 3: Machine activation

Figure 7: Constructed instance Iinit and schedule Sinit in our makespan
recovery NP-hardness reductions for different perturbation types. Jobs
J1, . . . , Jn are derived from the makespan problem instance I = (m,J ) with
~p = (p1, . . . , pn), while each dummy job Jn+1, . . . , Jn+(m+1) has processing
time

∑n
j=1 pj .

Types 2 & 4: Job arrival, processing time augmentation, machine failure.895

Construct an initial instance Iinit with m machines, all original n jobs and

m− 1 additional dummy jobs Jn+1, . . . , Jn+m−1, each one of processing time pk =∑n
j=1 pj , for k = n+1, . . . ,m−1. The initial schedule Sinit assigns all original jobs

J1, . . . , Jn to machine M1 and a dummy job to each other machine M2, . . . ,Mm.

Clearly, Sinit is optimal for Iinit as it is perfectly balanced. Perturb the initial900

instance Iinit by adding job Jn+m with processing time pn+m =
∑n

j=1 pj . That

is, Inew = (m,n + m, ~pnew) with ~pnew = (p1, . . . , pn+m). Furthermore, we set

Tnew =
∑n

j=1 pj + T . In the constructed makespan recovery problem instance we

ask the existence of a feasible schedule Snew with makespan Cmax(Snew) ≤ Tnew.

Since T <
∑n

j=1 pj , if such a schedule exists, every pair of dummy jobs must905

executed by a different machine. Thus, I and T is a yes-instance of the makespan

problem iff Inew and Tnew is yes-instance for the makespan recovery problem.

The processing time augmentation case uses the same arguments assuming an

extra dummy job Jn+m with pn+m = 0 in Iinit, whose processing time becomes
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∑n
j=1 pj in Inew. Finally, in the machine removal case, instance Inew is perturbed910

removing machine M1.

Type 3: Machine activation

Construct the initial instance Iinit with m machines, all n original jobs, and

m+1 dummy jobs Jn+1, . . . , Jn+(m+1) such that p` =
∑n

j=1 pj , for ` = n+1, . . . , n+

(m + 1). The initial schedule Sinit schedules a dummy job and all n original jobs915

on machine M1, two dummy jobs on machine M2 and one dummy job on each

machine M3, . . . ,Mm. Any feasible schedule assigns at least two dummy jobs on

one machine and has makespan at least 2 ·
∑n

j=1 pj , so Sinit is optimal. Now per-

turb instance Iinit by adding a new machine and set Tnew =
∑n

j=1 pj + T . As

T <
∑n

j=1 pj , any feasible schedule for Inew of length Tnew must assign one dummy920

job on every machine. There is a feasible schedule of makespan Tnew for Inew iff

there is a feasible schedule of makespan T for I.

Appendix G Flexible Recovery Algorithm

This section presents an alternative, more flexible recovery strategy to Algo-925

rithm 3 that allows modifying a bounded number of binding decisions, e.g. as in

[43, 17]. Section M.4 numerically investigates the importance of LexOpt for more

flexible recovery. The sequel formulates the makespan recovery problem with a

bounded number of allowable binding decision adaptations as an MILP.

Let J B = {Jj ∈ Jinit ∩ Jnew : ∃i with xi,j(Sinit) = 1} be the subset of binding

jobs which appear in both Iinit, Inew and schedule Sinit assigns these jobs to common

machines of Iinit, Inew. Algorithm 3 maintains the assignment of jobs J B as in

Sinit and greedily schedules the free jobs J F = J \ J B. A more flexible recovery

strategy allows migrating a bounded number b of binding jobs in J B. These

migrations incur better solution quality at the price extra computational effort

and higher transformation cost. In Sinit, denote by µj the machine index which

job Jj ∈ J B is initially assigned to and by J Bi ⊆ J B the subset of binding jobs

initially assigned to machine Mi. To formulate the makespan recovery problem

with a bounded number g of allowable transformations as an MILP, we extend the
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minimum makespan MILP (1) by adding the following constraint:∑
Jj∈JB

∑
Mi∈M\{Mµj }

xi,j ≤ g (3)

Appendix H Single Perturbation Negative Performance Guarantee930

Theorem 6. For the makespan recovery problem with a single perturbation, Al-
gorithm 3 produces an Ω(m)-approximate solution if Sinit is an arbitrary optimal
schedule.

Proof:

We consider job Jn cancellation, but processing time reduction with large decrease935

of pn is equivalent. The proof develops a makespan recovery instance where Algo-

rithm 3 produces a schedule Srec with makespan Ω(m) times far from the makespan

of schedule Snew for Inew.

Figure 3a depicts the structure of instance Iinit and schedule Sinit. Instance Iinit

has m machines and n+1 jobs with processing times ~p = (p1, . . . , pn,
∑n

j=1 pj). Set940

pj = p, for j = 1, . . . , n and p > 0, and n = k·m for some integer k ∈ Z+. Initial op-

timal schedule Sinit assigns jobs J1, J2, . . . , Jn to machine M1, job Jn+1 to machine

M2 and keeps the other machines M3, . . . ,Mm empty. Since Cmax(Sinit) = pn+1,

schedule Sinit is optimal for Iinit. Instance Inew arises when Jn+1 cancels. Al-

gorithm 3 returns solution Srec with makespan Cmax(Srec) =
∑n

j=1 pj . But an945

optimal schedule Snew for Inew has makespan Cmax(Snew) = 1
m

∑n
j=1 pj .

Appendix I Recovery Strategy Analysis Omitted Lemma Proofs

This section proves Lemmas 4 and 5.

Lemma 4. Consider a makespan problem instance (m,J ) and let S be LexOpt950

schedule. Given a machine M` ∈ M, denote by J ′ the subset of all jobs assigned
to the machines in M\ {M`} by S. Then, it holds that:

1. maxMi∈M\{M`}{Ci(S)} = C∗max(m− 1,J ′), and

2. C∗max(m− 1,J ) ≤ 2 · C∗max(m,J ).
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Proof:955

Suppose for contradiction that maxMi∈M\{M`}{Ci(S)} > C∗max(m− 1,J ′). Let S∗

be an optimal schedule for makespan problem instance (m−1,J ′), i.e. Cmax(S∗) =

C∗max(m− 1,J ′). Construct schedule S̃ by scheduling the jobs in J ′ as in S∗ and

maintaining the assignments of the jobs in J \J ′ to machine M` as in the LexOpt

schedule S for (m,J ). Schedule S̃ is feasible for (m,J ) and S̃ <lex S, which is a960

contradiction.

Starting from a minimum makespan schedule S∗ for the job set J on m ma-

chines, produce a new schedule S̃ by moving all jobs assigned to machine Mm

to the end of machine Mm−1 without modifying the schedule of the remaining

jobs. Clearly, S̃ is a feasible schedule for J on m− 1 machines and the makespan965

has at most doubled with respect to S∗. Hence, C∗max(m − 1,J ) ≤ Cmax(S̃) ≤
2 · Cmax(S∗) = 2 · C∗max(m,J ).

Lemma 5. Consider a makespan problem instance (m,J ) and let S be a LexOpt
schedule for it.970

1. Given the subset J ′ ⊆ J of jobs scheduled on the subset M′ ⊆ M of ma-
chines, where |M′| = m′, the sub-schedule of S on M′ is optimal for (m′J ′),
i.e. maxMi∈M′{Ci(S)} = C∗max(m′,J ′).

2. Assuming that Mi,M` ∈ M are two different machines and that job Jj ∈ J
is assigned to machine Mi in S, then C`(S) ≥ Ci(S)− pj.975

3. It holds that C∗max(J ,m−`) ≤
(

1 +
⌈

`
m−`

⌉)
·C∗max(J ,m) ∀ ` ∈ {1, . . . ,m−1}.

4. Let (m, Ĵ ) be a makespan problem instance such that 1
f · p̂j ≤ pj ≤ p̂j, where

p and p̂ are the processing times in (m,J ) and (m, Ĵ ), respectively. Then,
1
f · C

∗
max(m, Ĵ ) ≤ C∗max(m,J ) ≤ C∗max(m, Ĵ ).

Proof:980

1. Assume for contradiction that maxMi∈M′{Ci(S)} > C∗max(m′,J ′). Let S∗ be an

optimal schedule for instance (m′,J ′), i.e. Cmax(S∗) = C∗max(m′,J ′). Construct

schedule S̃ by scheduling the jobs in J ′ as in S∗ and maintaining the assignments

of the jobs in J \J ′ as in S. Schedule S̃ is feasible for (m,J ) and S̃ <lex S, which

contradicts the fact that S is LexOpt.985

2. We use an exchange argument. Assume for contradiction that C`(S) <
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Ci(S)− pj . Then,

C`(S) < max{C`(S) + pj , Ci(S)− pj} < Ci(S).

Consider schedule S̃ obtained from S by only moving Jj to machine M`. Schedule

S̃ has Ci(S̃) = Ci(S) − pj , C`(S̃) = C`(S) + pj , and Ci′(S̃) = Ci′(S), for Mi′ ∈
M \ {Mi,M`}. These inequalities imply that S̃ <lex S which contradicts the fact

that S is LexOpt.

3. Starting from a minimum makespan schedule S∗ for (m,J ), produce a

new schedule S̃ by moving all jobs scheduled on machines Mm−`+1, . . . ,Mm to the

remaining machines via round-robin. Specifically, for i = 1, 2, . . . , `, all content

of machine Mm−`+i is moved to machine Mi mod (m−`), where M0 corresponds to

machine Mm−`. The jobs of the ` greatest indexed machines are moved to the

m − ` smallest indexed machines. Machine Mi ∈ {M1, . . . ,Mm−`} receives jobs

from at most d`/(m− `)e machines. Clearly, S̃ is a feasible schedule for J on m− `
machines and the makespan has at most multiplied by 1 + d `

m−`e with respect to

S∗. Hence,

C∗max(J ,m−`) ≤ Cmax(S̃) ≤
(

1 +

⌈
`

m− `

⌉)
·Cmax(S∗) =

(
1 +

⌈
`

m− `

⌉)
·C∗max(J ,m)

4. Let S∗ be an optimal schedule for (m,J ) with Cmax(S∗) = C∗max(m,J ) and990

construct the feasible schedule Ŝ for (m, Ĵ ) with equivalent assignments as those

in S∗. If job with processing time pj is executed by machine Mi ∈ M in S∗, then

job with processing time p̂j is also executed by machine Mi in Ŝ. Since pj ≥ 1
f · p̂j ,

we have Ci(S
∗) ≥ 1

f ·Ci(Ŝ), for each machine Mi. Given that Ci(Ŝ) ≥ C∗max(m, Ĵ ),

the claim follows. The second inequality holds because the processing times in J995

are one-by-one smaller than the processing times in Ĵ .

Appendix J Multiple Perturbations Analysis Lemma 6 Tightness

Construct a family of makespan recovery problems instances depicted in Figure

8. Consider a makespan problem instance Iinit with m machines, (m− k) ·m jobs

of length f and k jobs of length m ·f . We suppose that f and k are asymptotically

lower than m, i.e. f, k = o(m). Schedule Sinit schedules m jobs of length f on each
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(b) Inew: recovered schedule
Srec.

f 11 1
f 11 1

f 11 1

M1
M2

Mm

(c) Inew: optimal schedule
Snew.

Figure 8: Makespan recovery instance showing the tightness of the perfor-
mance guarantee O(f · (1+d k

m−k e)) for job cancellations and processing time
reductions.

of the first m − k machines, one job of length m · f on each of the remaining k

machines, and has makespan m · f . Instance Iinit is perturbed as follows: (i) the

jobs on machines M2, . . . ,Mm−k are decreased by a factor f and become of length

1, and (ii) every job assigned to the last k machines is cancelled. The recovered

schedule has makespan Cmax(Srec) = m ·f . But in an optimal schedule Snew, every

machine executes a job of length f and m − k − 1 jobs of unit length. Therefore,

given that k, f = o(m) the performance ratio for such an instance is

Cmax(Srec)

Cmax(Snew)
=

m · f
(m− k − 1) + f

=
m · f

(m− k)
(

1 + f−1
m−k

)
Instance Iinit is constructed so that f, k = o(m). Therefore, f−1

m−k tends asymptot-

ically to zero and Cmax(Srec)
Cmax(Snew) is asymptotically equal to mf

m−k = (1 + k
m−k )f .1000

Appendix K Single Perturbation Analysis for Type 2-4 Perturbations
and Tightness

This section proves the rest of Theorem 3 by analyzing Algorithm 3 for a

single perturbation with (i) job arrival, processing time augmentation, and (ii)

machine activation, machine failure. We also show that the Theorem 3 performance1005

guarantee is tight for any perturbation type.

K.1 Job arrival, processing time augmentation

Proposition 1. A solution obtained by Algorithm 3 is 2-approximate in the case
of either a new job arrival, or a processing time augmentation.
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Proof:1010

We prove the proposition only for the case of a new job arrival. The case of job

Jj processing time augmentation holds with the same arguments by treating the

extra piece of Jj as a new job assigned to the same machine with the one of Jj in

Sinit.

Let Iinit = (m,J ) be an initial makespan problem instance and Sinit be the

initially computed optimal schedule for Iinit. Next, assume that Iinit is perturbed

by the arrival of new job Jn+1 with processing time pn+1. Algorithm 3 keeps

identical assignments with the ones in Sinit for jobs J1, . . . , Jn and job Jn+1 is

assigned to the machine with the minimum completion time in Sinit. Suppose that

Algorithm 3 schedules the new job Jn+1 on machine M` ∈ M. That is, M` =

arg minMi∈M{Ci(Sinit)}. Let Srec and Snew the recovered schedule and an optimal

schedule, respectively, for the perturbed instance Inew. For every machine Mi ∈M,

it clearly holds that Cmax(Snew) ≥ Ci(Snew). Since Jn+1 is executed by a single

machine in Snew, Cmax(Snew) ≥ pn+1. Consider the auxiliary schedule S̃ obtained

from Snew by removing job Jn+1 and maintaining the remaining job assignments.

Schedule S̃ is feasible for Iinit. Therefore, Cmax(Snew) ≥ Cmax(S̃) ≥ Cmax(Sinit).

Then,

Cmax(Srec) = max{C`(Sinit)+pn+1, Cmax(Sinit)} ≤ Cmax(Sinit)+pn+1 ≤ 2·Cmax(Snew).

1015

K.2 Machine activation, machine failure

Proposition 2. A solution obtained by Algorithm 3 is 2-approximate in the case
of either a machine failure, or a machine activation.

Proof:1020

Initially, consider an optimal schedule Sinit for instance Iinit = (m,J ) and suppose,

without loss of generality, that machine Mm fails. Let J ′ be the subset of jobs

assigned to Mm in Sinit. Clearly, Cm(Sinit) =
∑

Jj∈J ′ pj ≤ Cmax(Sinit). Algorithm

3 maintains the binding assignments obtained from Sinit, for the jobs in J \ J ′,
and assigns the jobs in J ′ to machines M1, . . . ,Mm−1 using the LPT algorithm.1025
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So, it produces schedule Srec with Cmax(Srec) ≤ Cmax(Sinit) +
∑

j∈J ′ pj ≤ 2 ·
Cmax(Sinit). Let Snew be an optimal schedule for Inew. Since Inew has a smaller

number of machines and the same jobs compared to Iinit, it must be the case that

Cmax(Sinit) ≤ Cmax(Snew). Hence, Cmax(Srec) ≤ 2 · Cmax(Snew).

Now consider an optimal schedule Sinit for instance Iinit = (m,J ) and suppose1030

that a new machine Mm+1 is activated. Algorithm 3 keeps identical assignments

with the ones in Sinit and machine Mm+1 empty. Let Srec and Snew be the al-

gorithm’s schedule and a minimum makespan schedule, respectively, for Inew. By

Lemma 4.2, Cmax(Srec) = C∗max(m,J ) ≤ 2 · C∗max(m+ 1,J ) = Cmax(Snew).

1035

K.3 Tightness

We show the tightness of our analysis, for each perturbation type. Initially,

consider an initial makespan problem instance Iinit = (m,J ) with n = m + 1

jobs of equal processing time p. In a LexOpt schedule Sinit, machine M1 executes

jobs J1 and J2 while machine Mi executes job Ji+1, for i = 2, 3, . . . ,m. That1040

is, Cmax(Sinit) = 2p. Next, consider that Iinit is disturbed by one the following

perturbations: (i) job Jn is removed, (ii) processing time pn is decreased down to

zero, or (iii) new machine Mm+1 is activated. In all cases, the algorithm’s schedule

has makespan Cmax(Srec) = 2p. However, an optimal schedule Snew for Inew,

assigns exactly one job of length p to each machine and has makespan Cmax(Snew) =1045

p.

Subsequently, consider an instance Iinit with one job of length p1 = m and

(m− 1) ·m jobs of unit length pj = 1, for j = 2, . . . , n, where n = 1 + (m− 1) ·m.

LexOpt schedule Sinit assigns the long job J1 to machine M1 and exactly m unit

jobs to each machine among M2, . . . ,Mm. That is, Cmax(Sinit) = m. Suppose that1050

one of the following perturbations occurs: (i) arrival of job Jn+1 with processing

time pn+1 = m, (ii) processing time augmentation of pn up to m + 1, or (iii)

failure of machine M1. In all cases, Algorithm 3 returns schedule Srec of makespan

Cmax(Srec) = 2m. But in an optimal schedule Snew, a long job is assigned to

the same machine with at most one unit job, while every other machine contains1055

exactly m+ 1 unit jobs. Hence, Cmax(Snew) = m+ 1.
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Appendix L Multiple Perturbations Analysis for Type 2-4 Perturba-
tions

This section completes the proof of Theorem 6. We prove a positive perfor-

mance guarantee for the cases where the initial input Iinit is perturbed by (i) pro-1060

cessing time augmentations, (ii) machine activations, and (iii) job arrivals, machine

failures.

L.1 Type 2: Processing time augmentations

Proposition 3. Consider a ρ-approximate schedule Sinit for makespan problem
instance Iinit which is perturbed by processing time augmentations, where at most1065

k processing times are perturbed by a factor more than f . Then, Algorithm 3
produces an (f + k)-approximate schedule for Inew and this performance guarantee
is tight.

Proof:

Let Srec and Snew be the algorithm’s recovered schedule and a minimum makespan1070

schedule, respectively, for Inew. For each machineMi ∈M, we show that Ci(Srec) ≤
(f + k) · Cmax(Snew). Schedule Srec keeps identical assignments with the ones in

Sinit and augmented processing times. We distinguish between unstable jobs aug-

mented by a factor more that f and stable jobs whose processing time increases by

a factor no more than f . In order to bound unstable processing time augmenta-1075

tions, we denote by F be the maximum processing time in Inew. We assume that

F > f because otherwise our analysis holds by only bounding stable jobs. Since

Inew belongs to the U(f, k, δ) uncertainty set of Iinit, in the transition from Sinit

to Srec, the schedule of machine Mi is modified as follows: (i) the processing time

of at most k jobs increases up to F , and (ii) all remaining jobs are augmented by a1080

factor at most f . Therefore, Ci(Srec) ≤ f ·Ci(Sinit)+k ·F . Next, consider schedule

Snew. It clearly holds that Cmax(Snew) ≥ Cmax(Sinit) because the processing times

in Inew are one by one greater with respect to Iinit. Furthermore, given that at

least one job of length F is executed by one machine, Cmax(Snew) ≥ F . Hence,

Cmax(Srec) ≤ (f + k) · Cmax(Snew).1085

For the tightness of our analysis, consider an initial makespan problem instance

Iinit with m machines and n = m2 unit-length jobs. An optimal schedule Sinit

attains makespan Cmax(Sinit) = m and each machine executes exactly m jobs.
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Figure 9: Makespan recovery instance which shows that the performance
guarantee O(f + k) is asymptotically tight in the case of processing time
augmentations.

Suppose that the processing time of k among the jobs assigned to M1 becomes F

and that the processing time of every remaining job assigned to M1 becomes f .

Furthermore, no other processing time is augmented. Schedule Srec performs the

same job assignments with the ones in Sinit and attains makespan Cmax(Srec) =

k · F + (m− k) · f . We consider a family of makespan recovery problem instances

such that F = f +m, F = Θ(m), f = o(m) and k = o(m). The perturbed instance

Inew consists of k jobs of length F , m − k jobs of length f and m(m − 1) jobs

of unit length. An optimal schedule Snew for Inew assigns one job of length F

and k unit length jobs on machines M1, . . . ,Mk. Moreover, Snew assigns one job

of length f and m + k unit length jobs one machines Mk+1, . . . ,Mm. Therefore,

Cmax(Snew) = F + k, or Cmax(Snew) = f +m+ k. Then, we have that

Cmax(Srec)

Cmax(Snew)
=

k · F
F + k

+
(m− k) · f
f +m+ k

= k · 1

1 + k
F

+ f · 1

1 + f+2k
m−k

Since k = o(F ) and k, f = o(m), the performance guarantee k + f of our recovery

strategy is asymptotically tight.

L.2 Type 3: Machine activations

Proposition 4. Consider a ρ-approximate schedule Sinit for makespan problem1090

instance Iinit which is perturbed by k new machine activations. Let Inew be the
perturbed instance. Algorithm 3 produces a (1 + dk/me)-approximate schedule for
Inew and this performance guarantee is tight.
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Proof:

Consider the schedule Srec produced by the algorithm. We denote by Ms the set1095

of stable machines which are available in Sinit and by Mu the set new activated

machines. Our recovery strategy keeps the schedule Sinit for the machines in Ms

and leaves the machinesMu. That is, Cmax(Srec) = C∗max(m,J ). By definition, in

an optimal schedule Snew for Inew, it must be the case that Cmax(Snew) = C∗max(m+

k,J ). By Lemma 5.3, we conclude that Cmax(Srec) ≤ (1 + dk/me) · Cmax(Snew).1100

For the tightness of the analysis, we consider an initial makespan problem in-

stance with m machines and n = m·(m+k) unit jobs. Initial optimal schedule Sinit

executes m+ k unit jobs on each machine and has makespan Cmax(Sinit) = m+ k.

Since we only consider machine activations, there are no free decisions and the

recovered schedule Srec is the same with Sinit except that there are k additional1105

empty machines. That is, Cmax(Srec) = m+ k. But an optimal schedule Snew for

Inew assigns exactly m jobs on each machine and has makespan Cmax(Snew) = m.

Thus, Cmax(Srec)
Cmax(Sinit)

= 1 + k
m .

L.3 Type 4: Job arrivals & machine failures1110

Proposition 5. Consider a ρ-approximate schedule Sinit for makespan problem
instance Iinit which is perturbed by new job arrivals and machine failures. Algo-
rithm 3 produces a max{2, ρ}-approximate schedule for the perturbed instance Inew
and this performance guarantee is tight.

Proof:1115

Initial schedule Sinit does not provide any assignment for the jobs whose machine

has failed in Inew. Therefore, these assignments together with the ones of the

newly arrived jobs are treated as free decisions and are performed by our recovery

strategy using Longest Processing Time (LPT) first.

Consider the recovered schedule Srec by Algorithm 3. We partition the machines1120

into the set Ms of stable machines, which are not assigned any free jobs, and the

set Mu of unstable machines, which are assigned at least one new free job. We

distinguish two cases based on whether there is a critical machine in Ms, or not.

In the former case, the makespan of schedule Srec is equal to the one of the

initial schedule Sinit, i.e. Cmax(Srec) = Cmax(Sinit). Let Snew be an optimal sched-1125
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ule for the perturbed instance Inew. Because Sinit is ρ-approximate for Iinit and

Inew contains all jobs in Iinit as well as some additional new jobs and the same

number of machines, it must be the case that Cmax(Sinit) ≤ ρ ·Cmax(Snew). Thus,

Cmax(Srec) ≤ ρ · Cmax(Snew).

In the latter case, we proceed similarly to the standard list scheduling analysis1130

by [27]. More specifically, let Jj be a job which completes last in Srec. Due to

our hypothesis, it must be the case that Jj is among the incoming jobs and is

assigned to a machine using LPT. Since Jj was not scheduled earlier than its begin

time bj , all processors are occupied until bj in Srec. Thus, Cmax(Srec) = bj + pj ≤
1
m

∑
Jj′∈Jnew

pj′ + pj ≤ 2 · Cmax(Snew).1135

The tightness of our analysis is derived based on two observations. In the case

where ρ > 2, we may design a makespan problem instance such that the arrival of

a new job with a small processing time has the effect that the recovered schedule

remains ρ-approximate. In the case where ρ ≤ 2, Algorithm 3 cannot be better

than 2-approximate as LPT is known to be tightly 2-approximate when the initial1140

instance Iinit is empty without jobs [27].

L.4 Tightness

For the tightness of our analysis, we pick an instance with k jobs of processing

time p and (m − k) · p unit-length jobs. The fraction (m − k)/m is integer. In1145

schedule S∗n, the machines M1,M2, . . . ,Mm−k contain p unit-length jobs each one

while every other machine contains exactly one job of processing time p. That is,

Cmax(S∗n) = p. Then, assume that the k jobs of processing time p are cancelled.

Clearly, the algorithm’s schedule has makespan Cmax(Salg) = p. On the other

hand, in S∗n−k, each machine Mi ∈M is assigned exactly (m−km ) · p unit jobs.1150

For the tightness of the analysis, we consider an initial job set with m jobs;

one job of processing time p and m− 1 unit-length jobs. Then, k new jobs arrive

so that exactly k/m jobs are assigned to each machine. Among all k jobs, k/m

have processing time p (the jobs Jn+1, Jn+m+1,Jn+2m+1, . . .) and (m − 1)(k/m)

jobs are of unit length. In the algorithm’s schedule, all 1 + k/m jobs of processing1155

time p are executed by machine M1, while every other processor executes 1 + k/m

unit jobs. That is, Cmax(Salg) = (1 + k/m)p. In the optimal schedule S∗n+k,

A19



each machine executes exactly one job of processing time p and m− 1 unit-length

jobs. Therefore, its makespan is Cmax(S∗n+k) = p+ (m− 1) which implies that the

algorithm’s performance ratio is Ω(k/m) for appropriate values of k and p.1160

Appendix M Extended Numerical Results

Section M.1 describes the system specifications and benchmark instances. Sec-

tion M.2 evaluates the exact methods. Section M.3 discusses generating the per-

turbed instances. Section M.4 evaluates the recovery strategies and the impact of

LexOpt on the recovered solution quality.1165

M.1 System Specification and Benchmark Instances

We ran all computations on an Intel Core i7-4790 CPU 3.60GHz with a 15.6

GB RAM running a 64-bit Ubuntu 14.04. Our implementations use Python 2.7.6

and Pyomo 4.4.1 [31, 30] and solve the MILP models with CPLEX 12.6.3 and

Gurobi 6.5.2. The source code and test cases are available [34]. We have generated1170

random LexOpt scheduling instances. Well-formed instances admit an optimal

solution close to a perfect solution which has all machine completion times equal,

i.e. Ci = Ci′ for each i, i′ ∈M. Degenerate instances have a less-balanced optimal

solution.

For randomly-generated makespan scheduling with b-bit integers, instances with1175

small κ = b/n values are easier to solve than instances with larger κ values [4]. The

phase transition from “easy” to “hard” instances becomes sharper as n increases

and occurs at threshold value κ∗ = log2m
m−1 . Small κ exhibits exponentially many

perfect solutions, but for κ larger than the critical value κ∗, the expected number

of perfect solutions becomes exponentially small. Similar phase transitions exist,1180

e.g. in satisfiability [39] and the traveling salesman problem [24], where instances

near the threshold tend to be the most difficult.

We generate well-formed instances by varying three parameters: (i) the num-

ber m of machines, (ii) the number n of jobs, and (iii) a processing time seed

q. The well-formed test set, summarized in Table 3a, consists of moderate, inter-1185

mediate, and hard instances. For each combination of m, n and q, we generate

three instances by selecting ~p using three distributions parameterized by q. Each

processing time is rounded to the closest integer. Uniform distribution selects
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Instances m n q
Moderate 3, 4, 5, 6 20, 30, 40, 50 100, 1000

Intermediate 10, 12, 14, 16 100, 200, 300, 400 10000, 100000
Hard 10, 15, 20, 25 200, 300, 400, 500 10000, 100000

(a) Well-formed Instances
Instances m n q

Moderate

3 20, 25, 30, 35 215, 219, 223, 227

4 25, 30, 35, 40 216, 220, 223, 226

5 30, 35, 40, 45 217, 220, 223, 226

6 35, 40, 45, 50 218, 220, 223, 225

Intermediate

10 40, 50, 60, 70 214, 218, 222, 225

12 45, 55, 65, 75 214, 217, 221, 224

14 55, 65, 75, 85 216, 219, 221, 224

16 60, 70, 80, 90 216, 218, 221, 224

(b) Degenerate Instances

Table 3: Instance Sizes

pj ∼ U({1, . . . , q}). Normal distribution chooses pj ∼ N (q, q/3) and guarantees

that 99.7% of the values lie in interval [0, 2q]. Symmetric of normal distribution1190

samples p ∼ N (q, q/3) and selects pj = q − p if p ∈ [0, q], or pj = 2q − (p − q)
if pj ∈ (q, 2q]. Normal and symmetric normal processing times outside [0, 2q] are

rounded to the closest of 0 and 2q.

Following [4], we produce the degenerate instances, summarized in Table 3b,

by choosing the processing times randomly from {1, . . . , q}, where q = 2bκ(m)·nc
1195

and κ(m) = (log2m)/(m− 1). We select the number of jobs so that the processing

time parameter q = 2bκ(m)·nc does not lead to CPLEX precision issues (the 64-bit

CPLEX version stores 32-bit integers). For each combination of m and n with

the corresponding q = 2bκ(m)·nc, we generate three instances similarly to the well-

formed test set using the uniform, normal and symmetric of normal distributions.1200

M.2 LexOpt Scheduling

This section discusses implementing the Section 3 LexOpt methods and eval-

uates them numerically. The sequential, highest-rank objective, and weighting

methods require solving MILP instances. We run Algorithms 4-6 and our branch-

and-bound algorithm with termination criteria: (i) 103 CPU seconds, and (ii) 10−4
1205

relative error tolerance, where the relative gap (Ub−Lb)/Ub is computed using the

best-found incumbent Ub and the lower bound Lb. The sequential method solves

a sequence of minimum makespan MILP models each one with 10−4 makespan
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relative error tolerance. The simultaneous method solves one minimum makespan

MILP model with 10−4 makespan error tolerance and populates the solution pool1210

with 2000 solutions. The weighting method and our branch-and-bound method

terminate with 10−4 weighted value error tolerance, where the upper bound Ub is

the weighted value W (S) =
∑m

i=1B
m−i · Ci(S) of the returned schedule S. Here

B = 2, see Section B.2. We compute Lb by similarly weighting the global vectorial

lower bound.1215

The sequential method solves m MILP instances, each computing one objective

value in the LexOpt solution. We implement the method with repeated CPLEX

calls and the CPLEX reoptimize feature which exploits information obtained from

solving higher ranked objectives. If the method exceeds 103 CPU seconds in total,

it terminates when the ongoing MILP run is completed. Each individual MILP is1220

run with the termination criteria mentioned earlier. We implement the weighting

method using Pyomo and solve the MILP with CPLEX and Gurobi. As discussed in

Section B.2, the method sets parameter B = 2. The highest-rank objective method

uses the CPLEX solution pool feature in two phases. The first phase solves the

standard makespan MILP model. The second continues the tree exploration and1225

generates solutions using information stored in the initial phase. We set the solution

pool capacity to 2000 and choose as replacement strategy removing the solution

with the worst objective value.

The Figure 10 performance profiles compare the LexOpt methods with respect

to elapsed times and best found solutions on the well-formed instances [19]. In1230

terms of running time and number of solved instances, sequential method per-

forms similarly to weighting method on moderate and intermediate instances, and

slightly better on hard instances. But the sequential method produces slightly

worse feasible solutions than weighting method since lower-ranked objectives are

not optimized in case of a sequential method timeout.1235

The highest-rank objective method has worse running times than sequential

and weighting methods on moderate instances since the solution pool populate

time is large compared to the overall solution time. On intermediate and hard test

cases, populating the solution pool is only a fraction of the global solution time

and highest-rank objective method attains significantly better running times than1240
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sequential and weighting methods. The highest-rank objective method does not

prove global optimality: it only generates 2000 solutions. But, in terms of solution

quality, the highest-rank objective method produces the best heuristic results for

most test cases.

The branch-and-bound method with vectorial lower bounds, obtains good so-1245

lutions with the LPT heuristic, and avoids populating the entire solution pool.

Figure 10 shows that our method guarantees global optimality more quickly than

the other approaches for test cases where it converges. Branch-and-bound con-

verges for > 60% of the moderate test cases, and > 30% of intermediate and hard

instances. Branch-and-bound consistently produces a good heuristic, i.e. better1250

than sequential and weighting methods, in intermediate and hard instances.

Figure 11 compares the LexOpt methods on the degenerate instances. These

instances are indeed significantly harder to solve than well-formed instances of

identical size. No solver converges for any intermediate degenerate instance, while

every solver converges for > 30% of the intermediate well-formed instances. The1255

solvers also struggle on moderate degenerate instances. In terms of solver compar-

ison, we derive similar results those obtained for the well-formed instances. The

weighting method slightly dominates the sequential method. The highest-rank ob-

jective method produces the best heuristic results. Our branch-and-bound method

produces the second best heuristic result in the majority of degenerate test cases1260

and converges to global optimality quickly for instances where it converges.

M.3 Generation of Initial Solutions and Perturbed Instances

This section describes generating the benchmark instances for the makespan

recovery problem. An instance is specified by: (i) an initial makespan problem

instance Iinit, (ii) an initial solution Sinit to Iinit, and (iii) a perturbed instance Inew.1265

Recall that the recovery problem transforms solution Sinit to a feasible solution

Snew for instance Inew using the recovery strategies.

The initial makespan problem instances are the 384 Section M.1 instances. For

each instance Iinit, we generate a set S(Iinit) of at least 50 diverse solutions by solv-

ing Iinit using the CPLEX solution pool feature and the Section M.2 termination1270

criteria. A key property is that the obtained solutions have, in general, different

weighted values, i.e. for many pairs of solutions S1, S2 ∈ S(Iinit), W (S1) 6= W (S2),
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(a) Moderate instances: time (s) on log2 scale (left), upper bounds on [1, 1.009] (right).
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(b) Intermediate instances: time (s) on log2 scale (left), upper bounds on [1, 1.1] (right).
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(c) Hard instances: time (s) on log2 scale (left), upper bounds on [1, 2] (right).

Figure 10: Performance profiles for the well-formed test set, 103 s timeout.
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(a) Moderate instances: time (s) on log2 scale (left), upper bounds on [1, 1.008] (right).
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(b) Intermediate instances: upper bounds on [1, 1.1]. No solver converges for any interme-
diate degenerate instance within the specified time limit.

Figure 11: Performance profiles for the degenerate test set with 103 s timeout.

where W (S) =
∑m

i=1B
m−i ·Ci(S). Using the weighted value as a distance measure

from the LexOpt solution, we evaluate a recovered solution’s quality as a function

of the initial solution distance from LexOpt.1275

For each makespan problem instance Iinit, we construct a perturbed instance

Inew by generating random disturbances. A job disturbance is (i) a new job arrival,

(ii) a job cancellation, (iii) a processing time augmentation, or (iv) a processing

time reduction. A machine disturbance is (i) a new machine activation, or (ii) a

machine failure. To achieve a bounded degree of uncertainty, i.e. a bounded num-1280

ber k of unstable jobs and number δ of additional machines in the uncertainty set

U(f, k, δ), we generate dn = d0.2 · ne job disturbances and dm = d0.2 ·me machine

perturbations. To obtain a different range of perturbation factor values, we disturb

job processing times randomly. The type of each job disturbance is chosen uniformly

at random among the four options (i) - (iv). A new job arrival chooses the new job1285

processing time according to U({1, . . . , q}), where q is the processing time parame-
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ter used for generating the original instance. A job cancellation deletes one among

the existing jobs chosen uniformly at random. A processing time augmentation

of job Jj ∈ J chooses a new processing time uniformly at random with respect

to U({pj + 1, . . . , 2 · q}). Analogously, a processing time reduction of job Jj ∈ J1290

chooses a new processing time at random with respect to U({1, 2, . . . pj − 1}). The

type of a machine disturbance is chosen uniformly at random among options (i) -

(ii). A new machine activation increases the number of available machines by one.

A machine cancellation deletes an existing machine chosen uniformly at random.

M.4 Rescheduling1295

This section compares the recovered solution quality to the LexOpt using the

Section M.3 initial solutions and perturbed instances. Recall that weighted value

W (S) =
∑m

i=1B
m−i · Ci(S) measures the distance of schedule S from LexOpt.

For each instance Iinit, we recover every solution Sinit ∈ S(Iinit) by applying both

binding and flexible recovery strategies from Sections 4.1 and G, respectively. For1300

flexible recovery, we set g = 0.1n, i.e. at most 10% of the binding decisions may

be modified. The flexible recovery MILP model is run with termination criteria of:

(i) 100 CPU seconds timeout, and (ii) 10−4 relative error tolerance.

The Figure 12a and 13a scatter plots correlate the binding recovered solution

quality to the initial solution distance from the LexOpt solution on well-formed and1305

degenerate instances. Figures 12b and 13b are the corresponding scatter plots of

the flexible recovery strategy. We specify each scatter plot point by the normalized

weighted value of an initial solution Sinit ∈ S(Iinit) and the normalized makespan

of the corresponding recovered solution Srec. The normalized weighted value of

Sinit is WN (Sinit) = W (Sinit)
W ∗(Iinit)

, where W ∗(Iinit) is the best weighted value in the1310

CPLEX solution pool for instance Iinit. Similarly, the normalized makespan of Srec

is CN (Srec) = Cmax(Srec)
C∗max(Inew) , where C∗max(Inew) is the makespan of the best binding

or flexibly recovered schedule for instance Inew. There are 384 initial instances

and solution pool generates at least 50 diverse solutions, so there is significant

computational overhead in recovering all ≈ 2 × 104 solutions. Figures 12a and1315

13a plot 5 randomly-selected instances of each among the classes: well-formed

moderate, well-formed intermediate, degenerate moderate, degenerate intermediate

and we recover all their initial solutions.

A26



1.0 1.5 2.0 2.5 3.0
Normalized planning weighted value

1

2

3

4

5
N

or
m

al
iz

ed
 re

co
ve

re
d 

m
ak

es
pa

n

(a) Binding Recovery

1.0 1.5 2.0 2.5 3.0
Normalized planning weighted value

1

2

3

4

5

N
or

m
al

iz
ed

 re
co

ve
re

d 
m

ak
es

pa
n

(b) Flexible Recovery

Figure 12: Well-formed instances scatter plots illustrating the recovered so-
lution makespan with respect to the initial solution weighted value.
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(b) Flexible Recovery

Figure 13: Degenerate instances scatter plots illustrating the recovered solu-
tion makespan with respect to the initial solution weighted value.

Figures 12a and 13a indicate that LexOpt facilitates the Algorithm 3 binding

recovery strategy, i.e. the expected recovered solution improves if the initial sched-1320

ule weighted value decreases. This trend is also verified in Figures 12b and 13b

related to the flexible recovery strategy. Flexible decisions accomplish more efficient

recovery. These findings highlight the importance of LexOpt towards more efficient

reoptimization. They also motivate efficient solution methods for scheduling with

uncertainty where the planning and recovery phases are investigated together.1325

Appendix N Table of Notation

Name Description

Indices
i, q, µ Machine indices (q, µ typically used as auxiliary machine indices)
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j, h, ` Job indices (h, ` typically used as auxiliary job indices)

Makespan problem input
I = (m,J ) Makespan problem instance
m Number of machines
Mi ∈M Set M = {M1, . . . ,Mm} of machines contains each machine Mi indexed by i
n Number of jobs
Jj ∈ J Set J ∈ {J1, . . . , Jn} of jobs with processing times ~p contains each job Jj indexed by j
~p, pj Vector ~p = (p1, . . . , pn) of job processing times contains processing times pj of job Jj

Makespan problem variables
Cmax Makespan
Ci Variable corresponding to machine Mi completion time
xi,j Binary variable indicating assignment of job Jj to machine Mi

Ki Subset of jobs assigned to machine Mi (schedule component)
K∗ Critical component attaining the makespan

Further scheduling notation

S = (~y, ~C), S′, S̃ Schedules (S′, S̃ typically used as auxiliary schedules)
S∗ LexOpt schedule
S Set of all feasible schedules

LexOpt scheduling problem
≤lex Lexicographic comparison operator
Fi Objective function indexed by i, i.e. i-th greatest completion time
~F Vector (F1, . . . , Fm) of objective values
v∗i Value of Fi in LexOpt schedule S∗

~v∗ Vector of objective values in LexOpt schedule S∗

Tq Set of tuples (i1, . . . , iq) with q pairwise disjoint machine indices
wi Weight of objective function Fi in weighting method
P Solution pool in highest-rank objective method

Branch-and-Bound
Q Stack with visited, unexplored nodes
I Incumbent, i.e. lexicographically best-found solution
u, v, r Branch-and-bound tree nodes (r typically used as the root node)
S(u) Branch-and-bound feasible solutions below node u
` Branch-and-bound tree level, i.e. job index
ti Partial machine Mi completion time at a branch-and-bound node
R Subset of jobs scheduled below a branch-and-bound node
~L,Li Vectorial lower bound ~L = (L1, . . . , Lm) contains each component Li
~U,Ui Vectorial upper bound ~U = (U1, . . . , Um) contains each component Ui
τ Time point
p̃j Piece of job Jj
λ,Λ Amount of processing time load

Recoverable robustness model and rescheduling problem
Iinit Initial instance (minit,Jinit)
Inew Perturbed instance (mnew,Jnew)
Sinit Initial optimal schedule for Iinit
Srec Recovered schedule for Inew
Snew Optimal schedule for Inew
ρ Approximation ratio

Uncertainty modeling
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U(f, k, δ) Uncertainty set
f Perturbation factor
k Number of unstable jobs
δ Number of new machines
C∗max(m,J ) Optimal objective value of makespan problem instance (m,J )
fa, fr Perturbation factor of processing time augmentations (fa) and reductions (fr)
ka, kr Number of unstable processing time augmentations (ka) and reductions (kr)
δ+ max{δ, 0}

Recovery with binding decisions
T Target makespan for makespan problem instance I
Tnew Target makespan for perturbed makespan problem instance Inew
M′ Subset of machines
m′ Number of machines in M ′

J ′ Subset of jobs
η Processing time decrease of job Jj
(m̂, Ĵ ) Neighboring instance of (m,J )

p̂j Job Jj processing time in (m̂, Ĵ )
Ms,Mu Stable machines Ms, i.e. assigned only stable jobs, unstable machines Mu =M\Ms

ms,mu Number of stable (ms) and unstable (mu) machines
J sinit Subset of stable jobs in Iinit
J snew Subset of stable jobs in Inew
F Maximum processing time in Inew

Flexible recovery
JBi Binding jobs originally assigned to machine Mi

JB ,J F Subset of binding (JB) and free (J F = J \ JB) jobs
µj Machine executing job Jj in Sinit
g Limit on binding job migrations

Numerical results
κ Phase transition parameter
κ∗ Phase transition parameter critical value
b Number of bits for processing time generation
q Processing time parameter
U Discrete uniform distribution
N Normal distribution
W Weighted value, i.e. weighted sum of objective functions
Ub, Lb Best-found incumbent (Ub) and lower bound (Lb)
dm, dn Number of machine (dm) and job (dn) disturbances
WN Normalized weighted value
W ∗ Best computed weighted value
CNmax Normalized makespan
C∗max Best recovered makespan

Table 4: Nomenclature
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