
Categorical Programming for Data Types with
Restricted Parametricity

Dominic Orchard and Alan Mycroft

Computer Laboratory, University of Cambridge
{firstname}.{lastname}@cl.cam.ac.uk

Abstract. Many concepts from category theory have proven useful tools
for program abstraction, particularly in functional programming. For ex-
ample, many parametric data types admit operations which are analo-
gous to a functor and a monad. However, some parametric data types
whose operations are restricted in their parametricity are not amenable
to traditional category-theoretic abstractions in Haskell, despite appear-
ing to have the right structure. This paper explains the limitations of
various traditional category-theoretic approaches in Haskell, giving a pre-
cise account of the category-theoretic analogy they provide and the im-
plications of restricted parametricity arising from ad-hoc polymorphism
provided by type classes in Haskell. Following from this analysis, we gen-
eralise Haskell’s notions of functors, monads and comonads, making use
of GHC’s new constraint kinds extension, providing techniques for struc-
turing programs with both unrestricted and restricted polymorphism.

Many concepts from category theory have been adopted as design patterns for
abstraction in programming; we term this approach categorical programming.
For example, the notion of a functor is used to abstract map-like operations
over parametric data types. In Haskell, “functors” are traditionally defined by a
parametric data type together with an instance of the type class Functor :

class Functor f where fmap :: (a → b)→ f a → f b

The prototypical example is the list data type with the standard map operation:

instance Functor [] where fmap = map

The categorical laws of functors must be checked by hand if functorial behaviour
is expected since Haskell has no mechanism for expressing or enforcing such laws.
In general, such laws tend to hold only for a strict subset of the language; Functor
defines a helpful analogy or model, rather than an actual mathematical functor.

Many parametric data types have a map-operation defining a valid Functor
instance. However, data types with a map-operation restricted in its parametric-
ity cannot be instances of Functor . For example, the Set data type in Haskell is
implemented efficiently using balanced binary-trees thus many of its operations
require elements of a set to be orderable such that the internal tree-representation
can be balanced [1]. Set has a map-operation of type:

Set .map :: (Ord a,Ord b)⇒ (a → b)→ Set a → Set b

where the type class constraints (Ord a,Ord b) restrict the parametricity of
Set .map to types with orderable values. Since fmap has no constraints on a and
b, the type checker rejects a Set-instance of Functor with fmap = Set .map; the
signature of fmap describes parametrically polymorphic functions whilst Set .map
is ad-hoc polymorphic, with restricted polymorphism and type-dependent be-
haviour. Many data types similarly have a functorial map-operation that cannot
define an instance of Functor because of constraints to the parameter types.

The first contribution of this paper makes precise the categorical analogies
provided by categorical programming in Haskell using functors and related struc-
tures such as monads. Section 1 provides an overview of categorical programming
and defines an interpretation for the type structure of programs, in particular for
polymorphic and restricted parametricity. The interpretation elucidates the un-
derlying mathematical mismatch between Functor and Set .map: Functor is lim-
ited to endofunctors (functors with the same source and target category) whilst
Set is a functor mapping from the Ord -subcategory of Haskell. Thus ‘Functor ’
is a misnomer, even as an analogy.

A full interpretation of ad-hoc polymorphism in Haskell is not given. Instead
we focus on the restricted parametricity provided by ad-hoc polymorphism, ig-
noring the semantics of type-dependent behaviour by considering just the types
of programs. Ad-hoc polymorphism over arbitrary higher-order kinded types is
not considered—only the subset of categorical programming with quantification
over types of kind ∗.

Following the analysis of Functor , the new constraint kinds extension to
GHC [4], coupled with Haskell’s type families, is used to define a more general
type class of functors not limited to just endofunctors but allowing functors over
subcategories, such as Set and other such restricted data types (Section 2).

Other commonly used categorical notions in Haskell built upon the concept
of functors, such as monads and comonads, similarly do not permit instances for
data types with restricted parametric operations. The usual categorical definition
of monads and comonads is in terms of endofunctors although monads can be
extended to non-endofunctors, called relative monads, as shown by Altenkirch et
al. [2, 3]. Section 3 applies the techniques of Section 2, defining classes of relative
monads and their dual relative comonads (new in this paper) with examples.
The functor and relative monad examples shown here appear elsewhere under
the names restricted functors and restricted monads [4, 22]. Our contribution
makes precise these constructions from a mathematical perspective.

Section 4 concludes with some discussion of generalisations, free theorems
that can be deduced for non-endofunctors, and related work.

Familiarity with Haskell up to type classes, and the basic concepts of category,
functor, and natural transformation, is assumed. Readers unfamiliar with the
category theory might first read an introductory text such as Fokkinga’s [7].

1 Categorical Programming in Haskell

We see two distinct approaches to applying category theory in programming:
categorical semantics and categorical (or category-oriented) programming.

Categorical semantics uses category theory as a metalanguage for defining
the semantics of a language, where terms are interpreted in a category that
has enough additional structure to satisfy the language properties. For example,
Lambek and Scott showed the semantics of well-typed terms in the simply-typed
λ-calculus can be interpreted as morphisms in a cartesian-closed category [14].

Categorical programming uses category-theoretic concepts as design patterns
and analogies for organising, structuring, and abstracting programs, simplifying
both definitions and reasoning. For example, the concept of a monad is used in
functional programming to abstract the composition of effect-producing expres-
sions. Whilst categorical semantics provides a categorical interpretation to both
the type and term structure of a program, categorical programming instead
provides a shallow category-theoretic interpretation of just the type structure,
providing a framework for structuring programs using category-theoretic con-
cepts.

Most languages do not have a well-defined categorical semantics but still
admit some form of categorical programming, albeit with some approximation
to the expected axioms. However, a language with a well-defined categorical
semantics will likely yield a more precise form of categorical programming, in
terms of correctness and reasoning, where the categorical laws of the semantics
transfer to the categorical concepts used in programs.

For Haskell, Danielsson et al. showed that a subset of monomorphic programs,
without general recursion (i.e. without ⊥) and without advanced features such
as a type classes, has a categorical semantics in terms of bicartesian-closed cat-
egories (bcccs) providing an account of functions, products, and sums [6]. Since
non-productive non-termination is usually unintended within a program, the ax-
ioms of a bccc may be assumed for the majority of programs in the full Haskell
language. Coupled with its applicative syntax and powerful abstraction mech-
anisms, Haskell is therefore well-suited to categorical programming. However,
to be clear, the categorical programming technique frequently deals in analogy
rather than actual mathematics.

A categorical interpretation for categorical programming in Haskell is now
defined, allowing traditional category-theoretic structures used in Haskell to be
analysed in Section 1.2 and suitably generalised in Section 2.

1.1 Categorical interpretation for categorical programming

Notation: for a category C, its collections of objects and morphisms are C0 and
C1. In Haskell types, universal quantification will be explicit, σ and τ range over
types, a ranges over type variables (potentially subscripted) and vector notation
denotes multiple syntactic elements e.g. a is a group of type variables a0 . . . a|a|.

The traditional approach of categorical semantics interprets types as objects
of a category and well-typed terms, in a free-variable context, as morphisms from

the type of the context to the type of the expression’s result [14]. For categori-
cal programming, we instead provide a more shallow interpretation of the type
structure of programs into an imaginary category, Hask, with (monomorphic)
Haskell types (of kind ∗) as objects and Haskell functions as morphisms (any
non-function expression is taken as a morphism from the unit value/type ()).
The interpretation, given by J−K, thus maps types to Hask0 and functions to
Hask1 such that Jf :: σ → τK : JσK→ JτK ∈ Hask1 where JσK, JτK ∈ Hask0.

Note that Haskell does not provide an actual category Hask (with its functions
as morphisms) as the axioms of a category are frequently violated in the presence
of general recursion (infinite behaviour). We take Hask to be our analogy for
categorical programming purposes, but readers should not think that Haskell
readily provides such a category in precise terms.

In Hask, every pair of objects (i.e., types) a, b has an object of the type
of functions from a to b called the hom-object, denoted Hask(a, b). A category
with hom-objects for every pair of objects is called closed. Such categories allow
higher-order functions to be interpreted as morphisms from hom-objects.

For constant, tuple, and function types, J−K is defined recursively:

JcK = c : Hask0
Jσ → τK = Hask(JσK, JτK) : Hask0 iff JσK : Hask0 ∧ JτK : Hask0
J(σ, τ)K = JσK× JτK : Hask0 iff JσK : Hask0 ∧ JτK : Hask0

(1)

Parametric Polymorphism Many category-theoretic concepts are defined
universally over the objects of a category i.e. “for every object X in C [...].”
Since the objects of Hask are Haskell types, parametric polymorphism is cen-
tral to categorical programming, providing universal quantification over types.
Accordingly, only polymorphism over types of kind ∗ will be considered here.

The polymorphic λ-calculus can be given a categorical semantics in terms of
indexed categories, giving a semantics to type abstraction and application [21].
For our purposes, expanding upon an entire categorical semantics for polymor-
phism in Haskell is not necessary. Instead, polymorphic types will be interpreted
by indexed families.1 An X-indexed family of Y (written X 7→ Y) has an X-
element associated to each Y -element in the image. A family f : X 7→ Y will be
defined as fx = y, where x is a variable of an X-element and y is a Y -element.

The interpretation of polymorphic types is provided at the top-level by J−K∀
and within the binding scope of the universal quantifier by J−KΓ parameterised
by a sequence Γ of indices for each free variable of the type it interprets (with
some arbitrary canonical order). The definition of J−KΓ is the same as J−K in (1),
with Γ passed to recursive sub-terms, with an additional rule for type variables:

JaKΓ = a : Hask0 iff a ∈ Γ
J∀a . τK∀ = JτK : (

∏
a Hask)0 7→ Hask0 iff JτKa : Hask0

(2)

1 Indexed families here differ to the notion of type families in GHC/Haskell, which are
partial and where the types in the image are potentially unrelated by any common
structure; they are not parametric in the sense of Reynolds [20].

where (
∏
a Hask) is the product category (Hask × . . . × Hask) for the |a|-times

product of Hask. The full definition of a product category is irrelevant here since
only objects are used. Most importantly, product categories have the property
that (C×D)0 ≡ (C0×D0) thus a multi-variable polymorphic type is interpreted
as family indexed by a product (tuple) of types.

If a = ∅ then
∏
∅ Hask = 1, where 1 is the unit category with a single object

and 10 7→ Hask0 ∼= Hask0. Thus for a type with no type variables the polymorphic
interpretation collapses to the monomorphic.

As an example, the polymorphic type of the fst function is interpreted:

J∀a b . a→ (a, b)K∀x,y = Hask(x, (x, y)) : (Hask× Hask)0 7→ Hask0

Polymorphic functions are interpreted as indexed families of morphisms:

Jf :: ∀a . σ → τK∀a = J∀a . σKa → J∀a . τKa : (
∏
|a| Hask)0 7→ Hask1 (3)

Parametric type constructors We consider only parametric types with a
single parameter, e.g. data F a = ... defining a type constructor F of kind
∗ → ∗ i.e. F maps a type, of kind ∗, to another type. Parametric polymorphic
type constructors will be interpreted similarly to universally quantified types:

JF KΓ = F : Hask0 7→ Hask0 iff data F a = . . .
Jσ τKΓ = JσKΓ JτKΓ : Hask0 iff JσKΓ : Hask0 7→ Hask0 ∧ JτKΓ : Hask0

(4)

We will treat data types as abstract since we are not concerned with the
properties of particular data types, only the type constructors.

Type classes and ad-hoc polymorphism Rather than give a precise categor-
ical semantics for type classes in general we distinguish two specific uses of type
classes relevant to this paper: single parameter type classes parameterised by 1).
nullary types of kind ∗ and 2). type constructors of kind ∗ → ∗. Classes parame-
terised by nullary types are pertinent as they provide type class constraints over
Hask objects. Classes parameterised by type constructors are used to abstractly
define concepts such as functors, monads, etc. in Haskell.

1). Classes parameterised by nullary types The instances of a type class, class S a
(where a has kind ∗), define a subset of Hask objects: the types which have an
instance of S . A polymorphic type variable with a type class constraint, e.g.,
∀ a . S a ⇒ τ , is therefore restricted in its quantification. Such types will be in-
terpreted as an indexed family S0 7→ Hask0 where S is the subcategory of Hask
whose objects are only those with an instance of S and whose morphisms are
between types with instances of S . The corresponding subcategory of a type
class will be written in sans font. Formally subcategories are defined:

Definition 1. For a category C, a subcategory S of C comprises a subclass of
the objects of C and a subclass of the morphisms of C such that:

– for every morphism f : X → Y ∈ S1 then X,Y ∈ S0;

– for every morphism pair f : X → Y, g : Y → Z ∈ S1 then g◦f : X → Z ∈ S1;

– for every object X ∈ S0 there is an identity morphism idX : X → X ∈ S1.

The parameters of a type class can be constrained, with so-called superclass
constraints, implying a partial ordering relation v between the corresponding
subcategories, for which Hask is the upper bound. For example, the definition of
Ord has a superclass constraint: class Eq a ⇒ Ord a where.... thus any type
that is an instance of Ord must be an instance of Eq , i.e., Eq is the superclass of
Ord thus Ord v Eq v Hask. Every subcategory S of C has an inclusion functor
I : S→ C mapping objects and morphisms into its supercategory.

A type with multiple constraints e.g. ∀a . (Sa, Ta)⇒ τ will be interpreted as
an (S ∩ T)0 7→ Hask0 family, where S ∩ T is the intersection category which has
only the objects and morphisms that are in both S and T.

Using subcategories to interpret restricted (ad-hoc) polymorphism, the full
interpretation of restricted polymorphic types is provided at the top-level by
J−K∀⇒ and within the binding of the universal quantifier and type constraints
by J−K∆|Γ where ∆τ is the set of type classes for which there are type class
constraints over τ in the interpreted type. The definition of J−K∆|Γ is given in
Figure 1 where (

⋂
S∈∆τ S) is the intersection subcategory S0 ∩ . . . ∩ Sn for each

class Si ∈ ∆τ , i.e., the intersection category of all subcategories corresponding
to class constraints on τ . If ∆τ = ∅ i.e. τ is unconstrained, then

⋂
S∈∅ S =

Hask. Thus for a type with no constraints, the ad-hoc polymorphic interpretation
collapses to the polymorphic interpretation.

JaK∆|Γ = a : (
⋂
S∈∆a S)0 iff a ∈ Γ (5)

JcK∆|Γ = c : (
⋂
S∈∆c S)0 (6)

J(σ, τ)K∆|Γ = JσK× JτK : (
⋂
S∈∆(σ,τ) S)0 iff JσK∆|Γ : C0 ∧ JτK∆|Γ : D0 (7)

Jσ → τK∆|Γ = (C u D)(JσK∆|Γ , JτK∆|Γ) : (
⋂
S∈∆(σ→τ) S)0

iff JσK∆|Γ : C0 ∧ JτK∆|Γ : D0 (8)

Jσ τK∆|Γ = JσK∆|Γ JτK∆|Γ : (
⋂
S∈∆(σ τ) S)0

iff JσK∆|Γ : Hask0 7→ Hask0 ∧ JτK∆|Γ : C0 (9)

Fig. 1. Categorical interpretation of ad-hoc polymorphic types in Haskell.

Interpretations of type variables (5), constant types (6), and tuple types (7)
resemble the monomorphic and polymorphic interpretations, but now each type
is an object of a subcategory corresponding to its constraints. Constraints over
type constructors are not interpreted, since we consider only constraints over
types of kind ∗, thus the interpretation of type constructors is as before (4).
Type constructor application (9) is interpreted as an object of a subcategory,
but the type constructor is still a Hask0 7→ Hask0 family.

For tuples (7) and constructor applications (9), the subcategories of the sub-
types σ and τ do not affect the subcategory of the constructed type since the con-
structors apply to any objects in Hask thus any objects of any Hask-subcategory.

For function types with source and target types in the same subcategory, the
hom-object interpretation can be refined from Hask (as in (1)) to the subcategory
in which both objects reside. The interpretation of function types (8) generalises
further, where a function type with source in C and target in D is a hom-object
of C uD, the least upper bound category as defined by v where C u C = C. Note
that a hom-object of a subcategory is not necessarily in the subcategory itself.

Restricted (ad-hoc) polymorphic functions are interpreted similarly to poly-
morphic functions (3) as indexed families of morphisms:

Jf :: ∀a . S τ ′ ⇒ σ → τK∀⇒a = J∀a . S τ ′ ⇒ σKa : C0 → J∀a . S τ ′ ⇒ τKa : D0

: (
∏
a∈a

⋂
S∈∆a S)0 7→ (C u D)1 (10)

2). Type classes parameterised by type constructors Type classes with a single
parameter, e.g. class F f , where f :: ∗ → ∗ will be treated, more informally
than the other concepts in this section, as meta-mathematical definitions of an
abstract F -structure comprising an indexed family f : Hask0 7→ Hask0 together
with some indexed families of morphisms (the class methods) related to the
parameter indexed family.2 An instance of the class provides an instance of the
structure by providing an indexed family and instances of the operations.

1.2 Interpretation of Functor and restricted map-operations

Functor Since Functor is parameterised by a type constructor f of kind ∗ → ∗
it is interpreted as a meta definition, thus class Functor f where fmap :: (a →
b)→ f a → f b defines the Functor -structure comprising:

– an indexed family f : Hask0 7→ Hask0;
– an indexed family of morphisms fmap:

JfmapK∀⇒a,b = Hask(a, b)→ Hask(f a, f b) : (Hask× Hask)0 7→ Hask1 (11)

In comparison, a category-theoretic functor F : C → D is defined by:

– an object mapping F0 : C0 → D0 mapping all objects A ∈ C0 to F0A ∈ D0;
– and a morphism mapping F1 : C1 → D1 mapping all morphisms f : X →
Y ∈ C1 to F1 f : F0X → F0 Y ∈ D1

with the usual functorial axioms. An object mapping is equivalent to an object-
indexed family of objects, thus in the interpretation of Functor , the class param-
eter f matches the object mapping in the categorical definition where C = D =
Hask. The interpretation of fmap is a morphism in Hask over Hask hom-objects,
analogous to the morphism mapping in the categorical definition but embedded
within Hask. The embedding of a functor into a category is captured by the
notion of enriched, or strong [13], functors [11]. The enriched explanation is not

2 In Haskell, the type of each class method must use the class parameter so that a use
of a class method can be statically resolved to a particular class instance.

discussed here for space reasons; details can be found in the author’s upcom-
ing thesis. In brief, a strong (equivalently enriched) endofunctor F on a closed
(equivalently self-enriched) category C has an object mapping F0 : C0 → C0

and an indexed family of morphisms:

Fx,y = C(x, y)→ C(F0 x, F0 y) : (C0 × C0) 7→ C1

corresponding exactly to the interpretation of fmap here, where C = Hask.
Thus, Functor models strong endofunctors on Hask.

Restricted map-operations The introduction gave the type of the Set .map
function which is constrained in the parameter types to the Ord class. The
general form of the signature is, for some data type F and class S :

F .map :: (S a,S b)⇒ (a → b)→ F a → F b

which is interpreted as JF K∀⇒ : Hask0 7→ Hask0 and:

JF .mapK∀⇒a,b = S(a, b)→ Hask(F a, F b) : (S× S)0 7→ Hask1 (12)

Thus F .map maps from morphisms of the subcategory S. Although the type
constructor F is the family Hask0 7→ Hask0, the interpretation of F .map implies
that F is essentially a strong functor F : S → Hask, i.e., not an endofunctor
on Hask as captured by Functor . Thus F .map cannot be used to define an F -
instance of Functor due to the mismatch between (11) and (12).

The next section generalises Functor to non-endofunctors using recent fea-
tures added to GHC/Haskell. The (non-standard) term exofunctor is used for
emphasis to describe functors that need not be endofunctors.

2 Generalising Functor from endofunctors to exofunctors

A general class of exofunctors for Haskell requires an operation which maps
between arbitrary subcategories of Hask in both the source (as in the Set .map)
and in the target, i.e. an operation with the following interpretation:

JexfmapK∀⇒a,b = S(a, b)→ T(f a, f b) : (S × S)0 7→ Hask1 (13)

A general class of such structures requires parameters for the source and tar-
get subcategories associated with the type constructor f . These subcategory
parameters will be expressed using type-indexed constraints in Haskell.

2.1 Type-indexed constraints and RFunctor

Type classes in Haskell fix the types of their methods with type signatures in
the class declaration. The type families extension to GHC allows types of a class
method to vary per-instance of a class by defining a family of types associated

with the class, indexed by its parameter, and using the family in method sig-
natures [5]. The analogous concept of a constraint family has been previously
proposed, allowing the constraints of a class method to vary per-instance by
defining a family of constraints associated with a class, indexed by the class pa-
rameter [18]. Constraint families provide a solution to the Set-Functor problem.

A recent extension to GHC subsumes the constraint family proposal by re-
defining constraints as types with a distinct constraint kind, thus type families
may return types of kind Constraint. The constraint kinds extension,3 imple-
mented by Bolingbroke [4], negates the need for a syntactic and semantic ex-
tension to the type checker to add constraint families. Under the extension, a
class constructor, e.g. Ord , is a type constructor of kind ∗ → Constraint . De-
pending on the context, tuples can be types or constraints i.e. (,) :: ∗ → ∗ → ∗
or (,) :: Constraint → Constraint → Constraint (conjunction of constraints) and
() :: ∗ or () :: Constraint for the unit type or empty (true) constraint.

The Functor class can therefore be generalised using an (associated) type
family of constraint-kinded types:4

class RFunctor f where
type SubCats f a :: Constraint
type SubCats f a = ()
rfmap :: (SubCats f a,SubCats f b)⇒ (a → b)→ f a → f b

which includes a default empty constraint. Instances for Set and lists are:

instance RFunctor Set where
type SubCats Set a = Ord a
rfmap = Set .map

instance RFunctor [] where
type SubCats [] a = ()
rfmap = map

The interpretation of RFunctor depends on the constraints specified by SubCats
which vary per-instance of the class and permit constraints over a and b as well
as f a and f b, for both the source and target functions. For example:

instance RFunctor Foo where
type SubCats Foo a = (S a,T (Foo a))

defines subcategories for both the source and target providing an interpretation
to rfmap as described by (13). For Set , the interpretation of rfmap is:

JrfmapK∀⇒a,b = Ord(a, b)→ Hask(Set a,Set b) : (Ord× Ord)0 7→ Hask1 (14)

Another example exofunctor is the UArray type of unboxed arrays which
constrains its elements to primitive types (Int , Float etc.) for which there is an
efficient, unboxed storage representation. UArray has a map operation:

3 Constraint kinds are enabled by the pragma {-# LANGUAGE ConstraintKinds #-}.
At the time of writing it is also necessary to import GHC .Prim.

4 This definition is the constraint-kinds analogue of the Set-Functor solution shown
by Orchard and Schrijvers using constraint families [18].

amap :: (IArray UArray e ′, IArray UArray e, Ix i)⇒
(e ′ → e)→ UArray i e ′ → UArray i e

Thus, UArray i (for some index type i) is an exofunctor (IArray UArray)→ Hask
with the following instance of RFunctor :

instance Ix i ⇒ RFunctor (UArray i) where
type SubCats (UArray i) a = IArray UArray a
rfmap = amap

The category-theoretic structures of monads and comonads are defined over
endofunctors together with some operations (natural transformations). The next
section generalises monads and comonads to exofunctors.

3 Relative Monads and Comonads

Relative Monads Monads in Haskell are traditionally defined by the class:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

satisfying various laws [26]. The Monad class models a monad in Kleisli triple
form defined over an object mapping m : C0 → C0 [15]. An equivalent presenta-
tion defines monads in terms of an endofunctor which can be derived from the
Kleisli triple form with the following construction of the morphism mapping:

instance Monad m ⇒ Functor m where
fmap f x = x >>= (return ◦ f)

Since monads are endofunctors, data types that are not endofunctors are not
monads. However, data types that are exofunctors may be relative monads, a
generalisation of monads for functors J : J→ C where J and C may be distinct [3].

Definition 2. A relative monad over categories J and C comprises:

– a functor J : J→ C
– an object mapping T : J0 → C0

– a natural transformation (unit) ηX : JX → TX (analogous to return)
– a natural transformation (extend) (−)∗X,Y : (JX → TY) → (TX → TY)

(analogous to >>= but in prefix form)

with the usual monad laws (modulo the presence of J in the types) [2, 3].

Relative monads can be defined in Haskell similarly to exofunctors:

class RMonad t where
type RSubCats t x :: Constraint

unit :: (RSubCats t x)⇒ x → t x
extend :: (RSubCats t x ,RSubCats t y)⇒ (x → t y)→ t x → t y

As with RFunctor , the exact interpretation of RMonad depends on the con-
straints specified by RSubCats which define both the subcategories J and C.
The indexed family t : Hask0 7→ Hask0 of RMonad corresponds to the object
mapping T of relative monads, and is constrained to t : J0 7→ C0 in the types
of unit and extend by RSubCats. The two indexed families of morphisms, unit
and extend , correspond to the natural transformations in the categorical defi-
nition, since natural transformations can be understood as indexed families of
morphisms. For RMonad , the J functor of a relative monad is the inclusion func-
tor I : J → C, thus J v C. The inclusion functor I is implicit and elided in the
type signatures for RMonad since an inclusion functor between a subcategory
and supercategory does not affect the types. The property J v C affects the in-
terpretation of an RMonad instance in two ways depending on the relationship
between J and C. Consider an instance of RMonad :

instance RMonad Foo where
type RSubCats Foo x = (J x ,C (Foo x))

There are two interpretations for unit and extend , depending on J and C:

– if J v C therefore J u C = C:

unita = a→ Foo a :: J0 7→ C1

extenda,b = C(a,Foo b)→ C(Foo a,Foo b) : (J× J)0 7→ Hask1

– if J 6v C therefore J u C = Hask:

unita = a→ Foo a :: J0 7→ Hask1

extenda,b = Hask(a,Foo b)→ C(Foo a,Foo b) : (J× J)0 7→ Hask1

In the first case, the relative monad is over a functor J→ C and in the second over
a functor J→ Hask. In terms of programming, this subtlety in the interpretation
does not affect the expressivity of the pattern nor introduce added complexity.

As an example instance, Set is a relative monad where the object mapping
T is given by Set and RSubCats specifies that J = Ord and C = Hask:

instance RMonad Set where
type RSubCats Set x = Ord x
unit x = Set .singleton x
extend f x = Set .unions (Prelude.map f (Set .toList x))

Similarly to the definition of a functor from a monad, an exofunctor can be
constructed from a relative monad:

instance RMonad m ⇒ RFunctor m where
type SubCats m a = RSubCats m a
rfmap f = extend (unit ◦ f)

Relative comonads Comonads are the dual structure to monads and have
been used in functional programming for structuring dataflow programming and
streams [24], array computations [17], context-dependent computation [23], and
more [12]. However, comonads are less well-known in programming than monads.

Comonads can be defined in Haskell via the following type class:

class Comonad c where
coreturn :: c a → a
(=�) :: c a → (c a → b)→ c b

with dual laws to those of monads [23, 24], where =� is pronounced cobind.
Since comonads are less widely-used than monads we provide some intuition

and a more involved example. A useful intuition for comonads is of the type
c a representing a context-dependent computation, where coreturn evaluates the
computation at a default or known “current” context and cobind takes a function
c a → b of an operation on a local context and applies it globally, at all contexts.

For example, the pointed array comonad comprises an array paired with a
particular array index known as the cursor which denotes the current context of
execution [17]; coreturn returns the array element pointed to by the cursor, and
cobind provides a higher-order convolution-like operation, applying a function
to an array at every possible index, calculating a new value for each index:

data Arr i a = Arr (Array i a) i

instance Ix i ⇒ Comonad (Arr i) where
coreturn (Arr arr c) = arr ! c
(Arr x c) =� f = let es ′ = map (λi → (i , f (Arr x i))) (indices x)

in Arr (array (bounds x) es ′) c

For example, the following defines a discrete Laplace operator which is applied
over a one-dimensional array using cobind (where inputData :: [(Int ,Float)]):

laplace1D (Arr a i) = if (i > 0 ∧ i < (n − 1))
then a ! (i − 1)− 2 ∗ (a ! i) + a ! (i + 1) else 0.0

n = length inputData
x = Arr (array (0,n) inputData) 0
x ′ = x =� laplace1D

The definition of cobind uses various methods of the IArray class, which
provides an interface on array data types, for example:

(!) :: (IArray a e, Ix i)⇒ a i e → i → e

For the boxed array data type Array used above, there is an instance of IArray
which is polymorphic in the element type (instance IArray Array e). Thus
Array is an endofunctor Hask→ Hask and is also a monad and a comonad.

However, the unboxed array type UArray seen earlier does not have an in-
stance of IArray polymorphic in the element type, but has a limited number of

monomorphic instances for primitive types. UArray is thus restricted and is an
exofunctor (IArray UArray)→ Hask, therefore cannot be a comonad. However, as
with monads, comonads can be generalised to relative comonads on exofunctors.

Definition 3. A relative comonad dualises a relative monad, and is defined
over categories K and C, comprising:

– a functor K : K→ C

– an object mapping D : K0 → C0

– a natural transformation (counit): εX : DX → KX

– a natural transformation (coextend): (−)†X,Y : (DX → KY)→ (DX → DY)

with the usual comonad laws (modulo the presence of K in the types).

Relative comonads can be defined in Haskell similarly to relative monads:

class RComonad d where
type RCSubCats d x :: Constraint
counit :: RCSubCats d x ⇒ d x → x
coextend :: (RCSubCats d x ,RCSubCats d y)⇒ (d x → y)→ d x → d y

As with relative monads, the functor K in the categorical definition is taken as
the inclusion functor K→ C in RComonad and is implicit in the type signatures
as before. The previous analysis for RMonad dualises for RComonad .

Unboxed arrays can be defined as a relative comonad thus:

data UArr i a = UArr (UArray i a) i

instance Ix i ⇒ RComonad (UArr i) where
type RCSubCats (UArr i) x = IArray UArray x
counit (UArr arr c) = ... -- same as coreturn for the Arr comonad
coextend f (UArr x c) = ... -- same as (=�) for the Arr comonad

As another example, the notion of a pointed set common in topology, com-
prising a set s with a distinguished element x ∈ S, can be defined as a relative
comonad on the efficient Set data type:

data PSet a = PSet (Set a) a
instance RComonad PSet where

type RCSubCats PSet x = Ord x
counit (PSet s a) = a
coextend f (PSet s a) =

PSet (Set .map (λa ′ → f (PSet (Set .delete a ′ s) a ′)) s) (f (PSet s a))

where coextend applies its function to every possible combination of a set and a
distinguished element, with the distinguished element removed from the set.

4 Discussion

Generalisations The constraints RSubCats and RCSubCats for relative mon-
ads and comonads permit subcategory definitions of a particular style. However,
RMonad and RComonad can be generalised to allow more interesting subcate-
gories. For example, RComonad can be generalised to:

class RComonad d where
type RObjs d x :: Constraint
type RMorphs d x y :: Constraint
counit :: RObjs d x ⇒ d x → x
coextend :: (RMorphs d x y ,RObjs d x ,RObjs d y)⇒ (d x → y)→ d x → d y

where the specification of categories K and C is split between families RObjs and
RMorphs. Since counit involves just objects of K and C the single parameter
RObjs is used, specifying objects of the subcategories. However, for coextend ,
involving objects and morphisms of J and C, RMorphs offers greater flexibility
for specifying the morphisms of subcategories, allowing constraints relating the
source and target types of morphisms, since it is parameterised by both types.
For example, a comonad D can be defined on the subcategory of endomorphisms
(with the same source and target object) of Hask using an equality constraint [5]:

type RMorphs D x y = x∼y

An example comonad on the subcategory of endomorphisms is an array with
regions of interior and exterior elements, where coextend applies an operation
over just the interior elements of the array. Such array operations need not
perform bounds-checking because any out-of-bound values are provided by the
exterior elements. Since the exterior elements are not transformed by coextend ,
the comonad can only be defined on the subcategory of endomorphisms so that
type safety is preserved, where all elements in the array are of the same type.

Functors can be generalised to allow constraints relating the source and target
types of a morphism, similarly to RMorphs, yielding a generalisation of functors
to semi-categories (categories without identities).

Naturality and Free Theorems Building on Reynold’s analysis of paramet-
ric polymorphism using relations as types [20], Wadler showed that, in pure
functional languages, theorems can be deduced about parametrically polymor-
phic operations from their types alone; thus “theorems for free” [25]. One such
theorem is, for a polymorphic function of type r :: [a]→ [a] and any f :: x → y :

r ◦ (map f) = (map f) ◦ r

The theorem generalises to operations on data types which are functors, so that
given r :: F a → G a where Functor F and Functor G , for any f :: x → y :

r ◦ (fmap f) = (fmap f) ◦ r

The occurrence of fmap on the left is for the data type G and that on the right
for the data type F and r is instantiated at different types on the left- and right-
hand sides. This theorem corresponds to the naturality condition of a natural
transformation mapping between two functors.

Wadler’s technique includes free theorems for parametric operations with
their polymorphism restricted by class constraints [25, §3.4]. For example, sort ::
Ord a ⇒ [a]→ [a] has the free theorem, for any f :: a → b:

(fmap f) ◦ sort = sort ◦ (fmap f) iff ∀x, y :: a .x 6 y ⇒ (f x) 6 (f y)

The side condition states that f is monotonic with respect to the Ord a and
Ord b orderings. De Bruijn included such constraints in his account of naturality
from polymorphism, referring to this property as restricted naturalness [19].

The same approach can be applied for exofunctors taking into account the
constraints specifying subcategories. The free theorem for the Set exofunctor
with a natural operation has the monotonicity side condition:

Given an operation r :: Set a → Set a then ∀f :: (Ord a,Ord b)⇒ a → b

r ◦ (fmap f) = (fmap f) ◦ r iff ∀x, y :: a . x 6 y ⇒ (f x) 6 (f y)

For example, the operation deleteMin :: Set a → Set a is only natural with
respect to monotonic functions since it does not compare elements itself, but
simply uses the internal binary tree structure of Set to remove the least element
(the left-most element). Thus a non-monotonic function prevents the naturality
property holding, as it changes the structure of the tree.

For operations r :: (Functor f)⇒ Set a → f a and r :: (Functor f)⇒ f a →
Set a the same free theorem as above holds, plus any additional restrictions to
naturality provided by the functor f .

Related Work Type classes have often been explained as describing sets of
types (for example [10]). Nogueira discussed briefly the interpretation of type
classes as subcategories [16], looking at data types which are “mappable”, noting
that they may be constrained in their source to a subcategory S and thus are
functors S → ADT (where ADT denotes some category of (algebraic) data
types). A general definition of functors over subcategory was not provided.

Hughes tackled similar issues to those dealt with by constraint families,
proposing that constraints on a data type be given along with its definition [9],
e.g., (data Ord a ⇒ Set a = ...). Consequently, the Ord constraint need not
appear in the types of operations, e.g., Set .map :: (a → b) → Set a → Set b.
Hughes’ proposal is subsumed by constraint families which provide greater flexi-
bility for specifying constraints. A categorical interpretation of Hughes’ approach
would likely show his approach equivalent to that using constraint families.

The RMonad library by Sittampalam and Gavin [22] provided restricted al-
ternatives to functor and monad classes, requiring manual encoding and passing
of constraints using GADTs. The names RFunctor and RMonad are used in their
library, which have the same structure as our definitions although the use of con-
straint families here is much more succinct. The mathematical understanding of
these structures was not previously identified.

Our interpretation of the type structure for polymorphic and ad-hoc poly-
morphic types was inspired by the work of Seely using indexed categories for the
second-order λ-calculus [21], and the use of indexed families in other polymorphic
semantics, such as in the work of Gunter [8].

Concluding remarks The categorical programming approach, as a form of
design pattern, is increasingly popular both inside and outside of functional
programming. However, the approach is largely informal, usually proceeding
by vague mathematical analogy, with little analysis. This paper elucidated the
categorical programming approach more formally, linking programming language
features with categorical concepts, thus providing a framework explaining the
power and limitations of Haskell functors (and related structures) as design
patterns. This account led to generalisations of Haskell functors, monads, and
comonads, allowing categorical programming with data types whose operations
are restricted in their parametricity by ad-hoc polymorphic definitions.

Acknowledgments Thanks to Robin Message, Tomas Petricek, and anonymous
reviewers for comments on an earlier version of this paper. Thanks to Max
Bolingbroke for his implementation of constraint kinds in GHC. This work was
supported by an EPSRC Doctoral Training Award.

References

1. Adams, S. Functional Pearls: Efficient sets–a balancing act. Journal of Functional
Programming 3, 4 (1993), 553–562.

2. Altenkirch, T., Chapman, J., and Uustalu, T. Relative monads formalised.
To appear in the Journal of Formalized Reasoning. Final version pending .

3. Altenkirch, T., Chapman, J., and Uustalu, T. Monads need not be endo-
functors. Foundations of Software Science and Computational Structures (2010),
297–311.

4. Bolingbroke, M. Constraint Kinds for GHC, 2011. http://blog.omega-prime.
co.uk/?p=127 (Retreived 14/09/11).

5. Chakravarty, M. M. T., Keller, G., and Jones, S. P. Associated type syn-
onyms. In ICFP ’05 (2005), ACM, pp. 241–253.

6. Danielsson, N., Hughes, J., Jansson, P., and Gibbons, J. Fast and loose
reasoning is morally correct. In POPL ’06 (2006), ACM, pp. 206–217.

7. Fokkinga, M. A Gentle Introduction to Category Theory-the calculational ap-
proach. University of Utrecht, 1992.

8. Gunter, C. Semantics of Programming Languages: Structures and Techniques.
Foundations of Computing. Mit Press, 1992.

9. Hughes, J. Restricted Data Types in Haskell. In Proceedings of the 1999 Haskell
Workshop. Technical Report UU-CS-1999-28 (Utrecht, 1999).

10. Jones, M. A system of constructor classes: overloading and implicit higher-order
polymorphism. In Proceedings of the Conference on Functional Programming Lan-
guages and Computer Architecture (1993), ACM, pp. 52–61.

11. Kelly, G. Basic concepts of enriched category theory, vol. 64. Cambridge Univ
Pr, 1982.

12. Kieburtz, R. B. Codata and Comonads in Haskell, 1999.
13. Kock, A. Strong functors and monoidal monads. Archiv der Mathematik 23, 1

(1972), 113–120.
14. Lambek, J., and Scott, P. Introduction to higher order categorical logic. Cam-

bridge University Press, 1988.
15. Manes, E. Algebraic theories. Springer, 1976.
16. Nogueira, P. When is an abstract data type a functor? Trends in Functional

Programming 7 (2007), 217–231.
17. Orchard, D., Bolingbroke, M., and Mycroft, A. Ypnos: Declarative, Par-

allel Structured Grid Programming. In DAMP ’10: Proceedings of workshop on
Declarative aspects of multicore programming (NY, USA, 2010), ACM, pp. 15–24.

18. Orchard, D., and Schrijvers, T. Haskell Type Constraints Unleashed. Func-
tional and Logic Programming (2010), 56–71.

19. Peter, J. d. B. Naturalness of polymorphism. Tech. rep., Technical Report CS
8916, Rijksuniversiteit Groningen, The Netherlands, 1989.

20. Reynolds, J. Types, abstraction and parametric polymorphism. In Information
Processing (1983), R. Mason, Ed., Elsevier Science Publishers B.V.

21. Seely, R. Categorical semantics for higher order polymorphic lambda calculus.
Journal of Symbolic Logic (1987), 969–989.

22. Sittampalam, G., and Gavin, P. rmonad: Restricted monad library, 2008. http:
//hackage.haskell.org/package/rmonad.

23. Uustalu, T., and Vene, V. Comonadic Notions of Computation. Electron. Notes
Theor. Comput. Sci. 203, 5 (2008), 263–284.

24. Uustalu, T., and Vene, V. The Essence of Dataflow Programming. Lecture
Notes in Computer Science 4164 (Nov 2006), 135–167.

25. Wadler, P. Theorems for free! In Proceedings of the fourth international con-
ference on Functional programming languages and computer architecture (1989),
ACM, pp. 347–359.

26. Wadler, P. Monads for functional programming. Advanced Functional Program-
ming (1995), 24–52.

