Complexity bounds from abstract categorical
models of containers

Dominic Orchard
Imperial College London

/19

Complexity bounds and optimisations

Definition
Given two programs f and g which are equivalent (f = g) then the
rewrite f ~~ g is an optimisation iff:

[g]n € O([f]n)

19

Complexity bounds and optimisations

Definition
Given two programs f and g which are equivalent (f = g) then the
rewrite f ~~ g is an optimisation iff:

[g]n € O([f]n)

for input size n

19

Complexity bounds and optimisations

Definition
Given two programs f and g which are equivalent (f = g) then the
rewrite f ~~ g is an optimisation iff:

[g]n € O([f]n)

for input size n

Hypothesis

The axioms of useful categorical structures imply general
optimisations.

19

Complexity bounds and optimisations

Definition
Given two programs f and g which are equivalent (f = g) then the
rewrite f ~~ g is an optimisation iff:

[g]n € O([f]n)

for input size n

Hypothesis

The axioms of useful categorical structures imply general
optimisations.

i.e., an axiom f = g can be oriented f ~~ g which is guaranteed to
not make the program asymptotically slower.

)

19

Functors

» Comprises object mapping F : C — C and morphism mapping:

3/19

Functors

» Comprises object mapping F : C — C and morphism mapping:

f:A— B
Ff:FA—FB

3/19

Functors

» Comprises object mapping F : C — C and morphism mapping:

f:A— B
Ff:FA—FB

Example (Lists)

Object mapping is data type [] : * — % and morphism mapping
map : Va,b.(a — b) — ([a] — [b]).

3/19

Functors

» Comprises object mapping F : C — C and morphism mapping:

f:A— B
Ff:FA—FB
» with two axioms:
[F1] Fida = idra [F2] F(gof)=FgoFf

Example (Lists)

Object mapping is data type [] : * — % and morphism mapping
map : Va,b.(a — b) — ([a] — [b]).

3/19

Functors

» Comprises object mapping F : C — C and morphism mapping:

f:A— B
Ff:FA—FB
» with two axioms:
[F1] Fida = idra [F2] F(gof)=FgoFf

» Can model element-wise (point-wise) data structure traversals

Example (Lists)

Object mapping is data type [] : * — % and morphism mapping
map : Va,b.(a — b) — ([a] — [b]).

19

Implicit complexity of functors

Q: For some f, what is the complexity of Ff?

/19

Implicit complexity of functors

Q: For some f, what is the complexity of Ff?
A: Depends on input “size”? What is the size of an FA?

19

Finite containers

5/19

Finite containers

A data type F with only strictily positive occurences of A in FA.

19

Finite containers

A data type F with only strictily positive occurences of A in FA.
Comes equipped with a natural transformation:

sizeg: FA— N

5/19

Finite containers

A data type F with only strictily positive occurences of A in FA.
Comes equipped with a natural transformation:

sizeg: FA— N

Naturality means:

5/19

Finite containers

A data type F with only strictily positive occurences of A in FA.
Comes equipped with a natural transformation:

sizeg: FA— N

Naturality means:
sizep

FA——N

Ffl /
sizeg

FB

5/19

Finite containers

A data type F with only strictily positive occurences of A in FA.
Comes equipped with a natural transformation:

sizeg: FA— N

Naturality means:
sizep

FA——N

Ffl /
sizeg

FB

Useful: functor lifting produces a size-preserving function

5/19

Implicit complexity of (container) functors
Q: For some f, what is the complexity of Ff?

/19

Implicit complexity of (container) functors

Q: For some f, what is the complexity of Ff?
A:

/19

Implicit complexity of (container) functors

Q: For some f, what is the complexity of Ff?
A: [Ff], € Q(n[f]1).

19

Implicit complexity of (container) functors

Q: For some f, what is the complexity of Ff?
A: [Ff], € Q(n[f]1).
Proof.

/19

Implicit complexity of (container) functors
Q: For some f, what is the complexity of Ff?
A: [Ff], € Q(n[f]1).
Proof.

» Size naturality, sizeg o Ff = sizes, means |inp.| = |outp.| = n.

19

Implicit complexity of (container) functors
Q: For some f, what is the complexity of Ff?
A: [Ff], € Q(n[f]1).
Proof.

» Size naturality, sizeg o Ff = sizes, means |inp.| = |outp.| = n.

o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)

19

Implicit complexity of (container) functors

Q: For some f, what is the complexity of Ff?
A: [Ff], € Q(n[f]1).
Proof.

» Size naturality, sizeg o Ff = sizes, means |inp.| = |outp.| = n.

o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)

» [F1] Fida = idra, thus f must be applied to each element

19

Implicit complexity of (container) functors

Q: For some f, what is the complexity of Ff?
A: [Ff], € Q(n[f]1).
Proof.

» Size naturality, sizeg o Ff = sizes, means |inp.| = |outp.| = n.

o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)
» [F1] Fida = idra, thus f must be applied to each element

.o if f = id return input, otherwise do above

19

Implicit complexity of (container) functors
Q: For some f, what is the complexity of Ff?
A: [Ff], € Q(n[f]1).
Proof.

» Size naturality, sizeg o Ff = sizes, means |inp.| = |outp.| = n.

o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)
» [F1] Fida = idra, thus f must be applied to each element
M if f = id return input, otherwise do above

» Parametricity [see the work of Reynolds|
Va, b, f such that f : a — b then Ff : Fa — Fb,

6

19

Implicit complexity of (container) functors
Q: For some f, what is the complexity of Ff?
A: [Ff], € Q(n[f]1).
Proof.

» Size naturality, sizeg o Ff = sizes, means |inp.| = |outp.| = n.

.o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)
» [F1] Fida = idra, thus f must be applied to each element
Vo if f = id return input, otherwise do above

» Parametricity [see the work of Reynolds|

Va, b, f such that ¥ : a — b then Ff : Fa — Fb, therefore
f # id is undecideable (due to infinite domains)

6

19

Implicit complexity of (container) functors
Q: For some f, what is the complexity of Ff?
A: [Ff], € Q(n[f]1).
Proof.

» Size naturality, sizeg o Ff = sizes, means |inp.| = |outp.| = n.
.o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)
» [F1] Fida = idra, thus f must be applied to each element
Vo if f = id return input, otherwise do above

» Parametricity [see the work of Reynolds|

Va, b, f such that ¥ : a — b then Ff : Fa — Fb, therefore
f # id is undecideable (due to infinite domains)

’—‘619

A slight refinement...

Proposition
For any discretely finite container F, the morphism mapping
operation has lower bound complexity:

[Ff]n[Q(m)] S Q(n[f]m)

19

A slight refinement...

Proposition
For any discretely finite container F, the morphism mapping
operation has lower bound complexity:

[Ff]n[Q(m)] S Q(n[f]m)

(n[Q(m)] is a structure of size n with elements at least size m)

19

Upper bounds are more useful

Proposition
There exists terms P, and Q, > 1, parameterised by n, such that:

[Ff]n[O(m)] S O(Pn +n Qn[f]m) (1)

19

Upper bounds are more useful

Proposition
There exists terms P, and Q, > 1, parameterised by n, such that:

[Ff]n[O(m)] S O(Pn +n Qn[f]m) (1)

Proof.

Follows from lower-bound: at least n uses of f (at size at most m)

Upper bounds are more useful
Proposition
There exists terms P, and Q, > 1, parameterised by n, such that:

[Ff]n[O(m)] S O(Pn +n Qn[f]m) (1)

Proof.

Follows from lower-bound: at least n uses of f (at size at most m)
with possible additional overhead:

19

Upper bounds are more useful

Proposition
There exists terms P, and Q, > 1, parameterised by n, such that:

[Ff]n[O(m)] S O(Pn +n Qn[f]m) (1)

Proof.
Follows from lower-bound: at least n uses of f (at size at most m)
with possible additional overhead:
» P, accounts for time traversing the container to reach the
leaves (the elements) and

19

Upper bounds are more useful

Proposition
There exists terms P, and Q, > 1, parameterised by n, such that:

[Ff]n[O(m)] S O(Pn +n Qn[f]m) (1)

Proof.
Follows from lower-bound: at least n uses of f (at size at most m)
with possible additional overhead:
» P, accounts for time traversing the container to reach the
leaves (the elements) and
» @, accounts for any extraneous applications of f beyond the
linear (in n) use.
O]

For naturality

Given two functors F, G and natural transformation n4 : FA — GA:

FA—f- FB

S

19

For naturality

Given two functors F, G and natural transformation n4 : FA — GA:

FA—f- FB

S

Let sizea(na x) = k(sizea x). Then:

19

For naturality

Given two functors F, G and natural transformation n4 : FA — GA:

FA—f- FB

S

Let sizea(na x) = k(sizea x). Then:

[n8 © Ff]n[O(m)] € O([nln + P + nQn[f]m)

19

For naturality

Given two functors F, G and natural transformation n4 : FA — GA:

FA—f- FB

S

Let sizea(na x) = k(sizea x). Then:

[n8 © Ff]n[O(m)] € O([nln + P + nQn[f]m)
[GF o nalsjom) € Onln + Piny + k(1) Qu(n)[f1m)

For naturality

Given two functors F, G and natural transformation n4 : FA — GA:

FA—'.FB

S

Let sizea(na x) = k(sizea x). Then:

[n8 © Ff]n[O(m)] € O([nln + P + nQn[f]m)
[GF o nalsjom) € Onln + Piny + k(1) Qu(n)[f1m)

Therefore, if n € O(k(n)) then (Gf ona) ~ (ng o Ff), otherwise
the converse.

Constant factors and suggested optimisations

A common operation T4: A — FA promotion, natural in A:

10/19

Constant factors and suggested optimisations

A common operation T4: A — FA promotion, natural in A:

f

A——B

W |

FA——FB
Ff

10/19

Constant factors and suggested optimisations

A common operation T4: A — FA promotion, natural in A:

f

A——B

W |

FA——FB
Ff

» Parametricity implies that k(n) = m for some constant m.

10/19

Constant factors and suggested optimisations

A common operation T4: A — FA promotion, natural in A:

f

A——B

W |

FA——FB
Ff

» Parametricity implies that k(n) = m for some constant m.

» . [t of]n € O([f],) and [Ffo 4], € O(m[f],).

10/19

Constant factors and suggested optimisations

A common operation T4: A — FA promotion, natural in A:

f

A——B

W |

FA——FB
Ff

» Parametricity implies that k(n) = m for some constant m.

» . [t of]n € O([f],) and [Ffo 4], € O(m[f],).

» Since m is a constant, no asymptotic improvment.

10/19

Constant factors and suggested optimisations

A common operation T4: A — FA promotion, natural in A:

f

A——B

W |

FA—~FB
Ff

v

v

o [1e of]n € O([f]n) and [Ffo Ta]ln € O(m][f]s).

Since m is a constant, no asymptotic improvment.

v

v

But suggestion that Ffo Tp~»1g of.

Parametricity implies that k(n) = m for some constant m.

10/19

Stencil Computations
B

RO (EIS Ol MR I<N At
for (3=0; j<M; Jj++)
B[i][]J] = £(A[1][]], A[l N3] AFLY],
Al 3=i], AL})e

Wednesday, 14 September 2011

Comonads - context-wise application

f:A— B

o A FB

12 /19

Comonads - context-wise application

functo f:A—>B cooadg:FA—>B
nctor ——————— monad ————
) Ff:FA—FB gl :FA—FB

12 /19

Example comonad: Array

Array is an array with a cursor

aa|aja
aja,aja
a/a|a|a
ajaja|a

f:Arraya — b

Q| | | Q

Q| Q| R | Q
Q| QR | Q
Q| R |Q

[see “Ypnos: Declarative, Parallel Structured Grid Programming”, Orchard, Bolingbroke, Mycroft’ | 0]

Monday, 16 May 2011

Example comonad: Array

()7 : (Array a — b) — (Array a — Arrayb)

Q| Q| Q
Q| QI | Q
Q| Q| Q| Q

Q| _RI_Q|Q

\
S o O O

o S S O

S oS S O

o O O O

f
| e
A
f

alalala ajajaia

alal a ajajaja

faaaa ala faaaa

ajaljaja a ajaja|a

ajajlaja aajaja ajajlaja
ajal|a ajajaja

aafaaaa f

a ajajaja

a
faa
a| a|a
aaja|a
aaja|a
faaaa
aja a a

Generalised-map on arrays (e.g. convolution)

Monday, 16 May 2011

Comonads

(Co)unit
c: Da— a

Extract the value at the “current context’

€ : Arraya — a

Q| Q| Q| _
Q| I |R_

QIR |_|R

Q| QI QR

Monday, 16 May 2011

Comonads

[CI] € =id
[C2] eofl =f
[C3] (gofHi=g"of

Comonads - context-wise application

13/19

Comonads - context-wise application

» Provides a model for gathers/context-dependent traversals

13/19

Comonads - context-wise application

» Provides a model for gathers/context-dependent traversals

» Comprises object mapping F : C — C and lifting:

13 /19

Comonads - context-wise application

» Provides a model for gathers/context-dependent traversals

» Comprises object mapping F : C — C and lifting:

f:FA— B
fl:FA>FB

13 /19

Comonads - context-wise application

» Provides a model for gathers/context-dependent traversals

» Comprises object mapping F : C — C and lifting:

f:FA— B
fl:FA—FB

> extract operation €4 : FA — A

13 /19

Comonads - context-wise application

v

Provides a model for gathers/context-dependent traversals

v

Comprises object mapping F : C — C and lifting:

f:FA— B
fl:FA—FB

v

extract operation €4 : FA — A

with three axioms:

v

[C1] e = id [C2] coff=F [C3] gl ofl = (gofh)t

13 /19

Axiom [C3], associativity

f:FA—B g:FB—=C
fl:FA—-FB gi:FB—=FC _
ghoft:FA—FC -

14 /19

Axiom [C3], associativity

fFASB
f:FASB g:FB>C fiFafg 87— C
fl:FA—-FB gi:FB—=FC _ goff:FA— C
gloft :FA—=FC N (goff)f:FA—=FC

Compare:

14 /19

Axiom [C3], associativity

f:FA—B
f:FA>B g:FB-»C fi FaofFg S TBC
ff:FA—-FB gf:FB—FC _ goff:FA— C
gloft :FA—=FC (goff)f:FA—=FC

Compare:
for i =1..n

for j=1 .. m

B(i, j) =£f (4, i, j)
fori=1..n

for j=1 .. m

¢, j) =g(B, i,)

14 /19

Axiom [C3], associativity

f:FA—B _

f:FASB g:FB>C fiFafg 87— C
fl:FA—-FB gi:FB—=FC _ goff:FA— C

gloft :FA—=FC N (goff)f:FA—=FC
Compare:
for i =1..n
for j=1 .. m

B(i, j) =£f (4, i, j)
fori=1..n v
for j=1 .. m

c(i, j) =g(B, i, j)

14 /19

Axiom [C3], associativity

f:FA—>B
f:FA>B g:FB-»C fi FaofFg S TBC
ff:FA—-FB gf:FB—FC _ goff:FA— C
gloff :FA—=FC ~ (gofH:FASFC
Compare:
for i =1..n for i =1..n
for j=1 .. m for j =1..m
B(i, j) = £ (A, i, j) for u=1..n
fori=1..n v forv=1..m
for j=1 .. m B(u, v) = f (A, u, v)
c@, j) =gCB, i,) c@, j) =g B, i, J)

14 /19

Axiom [C3], associativity

f:FA—B

f:FA>B g:FB-»C fi FaofFg S TBC
ff:FA—-FB gf:FB—FC _ goff:FA— C
gloff :FA—=FC ~ (gofH:FASFC
Compare:
for i =1..n for i =1..n
for j=1 .. m for j =1..m
B(i, j) = £ (A, i, j) for u=1..n
fori=1..n v forv=1..m
for j=1 .. m B(u, v) = f (A, u, v)
c@, j) =gCB, i,) c@, j) =g B, i, J)

Q: s (g o f1)f ~ gt o ft always asymptotically better?

14 /19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of fi?

15/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of fi?
A:

15/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of fi?
A: [fT]n € O(Pp + nQp[f]n)-

15/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of fi?
A: [fT]n € O(Pp + nQp[f]n)-

Proof.

15/19

Implicit complexity of (container) comonads
Q: For some f, what is the complexity of fi?
A: [fT], € O(P, + nQn[f]n).
Proof.

» Size naturality, sizeg o T = sizea:

15/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of fi?
A: [fT]n € O(Pp + nQp[f]n)-
Proof.

» Size naturality, sizeg o T = sizea:

sizeB o fT

15/19

Implicit complexity of (container) comonads
Q: For some f, what is the complexity of fi?
A: [fT], € O(P, + nQn[f]n).
Proof.

» Size naturality, sizeg o T = sizea:

sizeB o fT
= sizeoFlgo T {size naturality}

15/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of fi?
A: [fT]n € O(Pp + nQp[f]n)-

Proof.

» Size naturality, sizeg o T = sizea:

sizeB o fT
= sizeoFlgo T {size naturality}
= sizejo(Igof)l {follows from [C1-3]}

15/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of fi?
A: [fT]n € O(Pp + nQp[f]n)-

Proof.

» Size naturality, sizeg o T = sizea:

sizeB o fT
= sizeoFlgo T {size naturality}
= sizejo(Igof)l {follows from [C1-3]}
= sizego(lagoe)l {l4 naturality}

15/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of fi?
A: [fT]n € O(Pp + nQp[f]n)-

Proof.

» Size naturality, sizeg o T = sizea:

sizeB o fT

size; o Flg o fT {size naturality}
sizey o (Ig o f)T {follows from [C1-3]}
size; o (I40¢e)t {14 naturality}

sizeg oFlpaoel {follows from [C1-3]}

15/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of fi?
A: [fT]n € O(Pp + nQp[f]n)-

Proof.

» Size naturality, sizeg o T = sizea:

sizeB o fT
sizel o FIB o er
sizep o (lgof)T
sizel o (lA o €)T
sizeg o Flqoef
sizeg o Flx

{size naturality}
{follows from [C1-3]}
{14 naturality}
{follows from [C1-3]}
c1]

15/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of fi?
A: [fT]n € O(Pp + nQp[f]n)-

Proof.

» Size naturality, sizeg o T = sizea:

sizeB o fT

sizel o FIB o er
sizep o (lgof)T
sizel o (lA o €)T
sizeg o Flqoef
sizeg o Flx
sizep

{size naturality}
{follows from [C1-3]}
{14 naturality}
{follows from [C1-3]}
c1]

{size naturality}

15/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of 12
A: [fT]n € O(Pp + nQp[f]n)-
Proof.

» Size naturality, sizeg o f1 = size4: means |inp.| = |outp.| = n.

16/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of 12
A: [fT]n € O(Pp + nQp[f]n)-
Proof.

» Size naturality, sizeg o f1 = size4: means |inp.| = |outp.| = n.

o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)

16/19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of 12
A: [fT]n € O(Pp + nQp[f]n)-
Proof.

» Size naturality, sizeg o f1 = size4: means |inp.| = |outp.| = n.
o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)

» [C1] 5; = idra, thus f must be applied to each element

16 /19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of 12
A: [fT]n € O(Pp + nQp[f]n)-
Proof.

» Size naturality, sizeg o f1 = size4: means |inp.| = |outp.| = n.
o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)
» [C1] 52 = idra, thus f must be applied to each element

M if f = id return input, otherwise do above

16/19

Implicit complexity of (container) comonads
Q: For some f, what is the complexity of 12
A: [fT]n € O(Py + nQulf]n).

Proof.

» Size naturality, sizeg o f1 = size4: means |inp.| = |outp.| = n.
o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)
» [C1] 5; = idra, thus f must be applied to each element
M if f = id return input, otherwise do above

» Parametricity [Reynolds]
Va, b, f such that f : Fa — b then f1: Fa — Fb,

16

19

Implicit complexity of (container) comonads
Q: For some f, what is the complexity of 12
A: [fT]n € O(Py + nQulf]n).

Proof.

» Size naturality, sizeg o f = sizes: means |inp.| = |outp.| = n.
o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)
» [C1] 5; = idra, thus f must be applied to each element
M if f = id return input, otherwise do above

» Parametricity [Reynolds]

Va, b, f such that f : Fa — b then f1 - Fa — Fb, therefore
f # id is undecideable (due to infinite domains)

16

19

Implicit complexity of (container) comonads
Q: For some f, what is the complexity of 12
A: [fT]n € O(Py + nQulf]n).

Proof.

» Size naturality, sizeg o f = sizes: means |inp.| = |outp.| = n.
o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)
» [C1] 5; = idra, thus f must be applied to each element
M if f = id return input, otherwise do above
» Parametricity [Reynolds]

Va, b, f such that f : Fa — b then f1 : Fa — Fb, therefore

f # id is undecideable (due to infinite domains)

Vo Pass (asympotitcally larger) x : FA to f : FA — B at each context.

16

19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of 12
A: [fT]n € O(Pp + nQp[f]n)-
Proof.

17 /19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of 12
A: [fT],, € O(Pp + nQp[f]n)-

Proof.
o

> [C2] e o fT = f therefore ¢ o size);, = sizea. Therefore at
current context size is preserved.

17 /19

Implicit complexity of (container) comonads

Q: For some f, what is the complexity of 12
A: [fT],, € O(Pp + nQp[f]n)-

Proof.
o

> [C2] e o fT = f therefore ¢ o size);, = sizea. Therefore at
current context size is preserved.

Vo Pass (asympotitcally larger) FA to f : FA — B at all but

current context.

17 /19

Implicit complexity of (container) comonads
Q: For some f, what is the complexity of 12
A: [fT]n € O(Pn + nQn[f]n)-
Proof.

» [C2] o ff = f therefore € o sizeL = sizes. Therefore at

current context size is preserved.
Vo Pass (asympotitcally larger) FA to f : FA — B at all but

current context.

» By [C3],[C1], apply the above at every context:

Cc3
EN © sizeh)f [E] el osizel
A N

A

mne

! sizeL

Therefore, extension size preserving at all contexts

17 /19

Implicit complexity of (container) comonads
Q: For some f, what is the complexity of 12
A: [fT]n € O(Pn + nQn[f]n)-
Proof.

» [C2] o ff = f therefore € o sizeL = sizes. Therefore at

current context size is preserved.
Vo Pass (asympotitcally larger) FA to f : FA — B at all but

current context.

» By [C3],[C1], apply the above at every context:

Cc3
EN © sizeh)f [E] el osizel
A N

A

mne

! sizeL

Therefore, extension size preserving at all contexts

’—‘17 19

Axiom [C3], associativity

f.FASB
f:FA>B g:FB—»C fi FaofFg S TBC
fl:FA-FB gi:FB—FC _ goff:FA— C

ghoff :FA—FC N (gofH)f : FA— FC

18 /19

Axiom [C3], associativity

fFASB
f:FA>B g:FB—»C fi FaofFg S TBC
fl:FA-FB gi:FB—FC _ goff:FA— C
ghoff :FA—FC N (gofH)f : FA— FC

Therefore:

18 /19

Axiom [C3], associativity

f-FA5B
f.FASB g:FB>C fi.rasfg 8 FB—C
fl:FA-FB gi:FB—FC _ goff:FA— C
ghoff :FA—FC N (gofH)f : FA— FC
Therefore:
Proposition

Axiom [C3] can be oriented as (g o 1) ~ gl o 1 guaranteeing an
asymptotic improvement.

Proof.
From the above:

DlS 19

Axiom [C3], associativity

f-FA5B
f:FA>B g:FB—»C fi FaofFg S TBC
fl:FA-FB gi:FB—FC _ goff:FA— C
ghoff :FA—FC N (gofH)f : FA— FC
Therefore:
Proposition

Axiom [C3] can be oriented as (g o 1) ~ gl o 1 guaranteeing an
asymptotic improvement.

Proof.
From the above:

[g]L © fT]n € O(Pn + nQn[g]n + nQn[f]n)

DlS 19

Axiom [C3], associativity

f-FA5B
f:FA>B g:FB—»C fi FaofFg S TBC
fl:FA-FB gi:FB—FC _ goff:FA— C
ghoff :FA—FC N (gofH)f : FA— FC
Therefore:
Proposition

Axiom [C3] can be oriented as (g o 1) ~ gl o 1 guaranteeing an
asymptotic improvement.

Proof.
From the above:

[g]L © fT]n € O(Pn + nQn[g]n + nQn[f]n)
[(gOfT)T]n € O(Pn + nQn([g]n + Pn + nQn[f]n))
€ O(Pn + nQnlgln + (nQn)?[fln + nQnPn)

DlS 19

Conclusions & further work

19/19

Conclusions & further work

» From axioms and parametricity, conditions for asymptotic
optimisations

19/19

Conclusions & further work

» From axioms and parametricity, conditions for asymptotic
optimisations

» Sometimes only a 'constant’ factor

19/19

Conclusions & further work

» From axioms and parametricity, conditions for asymptotic
optimisations

» Sometimes only a 'constant’ factor

» Todo: Formalise proofs further (see Reynolds)

19/19

Conclusions & further work

» From axioms and parametricity, conditions for asymptotic
optimisations

v

Sometimes only a 'constant’ factor

Todo: Formalise proofs further (see Reynolds)

v

v

Todo: Tighter bounds via (bounded) linear typing:

19/19

Conclusions & further work

» From axioms and parametricity, conditions for asymptotic
optimisations

v

Sometimes only a 'constant’ factor

Todo: Formalise proofs further (see Reynolds)

v

v

Todo: Tighter bounds via (bounded) linear typing:

(=) :1,(1,FA = B) — (FA— FB)

19/19

Conclusions & further work

» From axioms and parametricity, conditions for asymptotic
optimisations

» Sometimes only a 'constant’ factor

» Todo: Formalise proofs further (see Reynolds)

» Todo: Tighter bounds via (bounded) linear typing:

(=) :1,(1,FA = B) — (FA— FB)

implies [fT], € O(P, + n[f],)

19/19

