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Complexity bounds and optimisations

Definition
Given two programs f and g which are equivalent (f = g) then the
rewrite f ~~ g is an optimisation iff:

[g]n € O([f]n)

for input size n

Hypothesis

The axioms of useful categorical structures imply general
optimisations.

i.e., an axiom f = g can be oriented f ~~ g which is guaranteed to
not make the program asymptotically slower.

)
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Functors

» Comprises object mapping F : C — C and morphism mapping:

f:A— B
Ff:FA—FB
» with two axioms:
[F1] Fida = idra [F2] F(gof)=FgoFf

» Can model element-wise (point-wise) data structure traversals

Example (Lists)

Object mapping is data type [] : * — % and morphism mapping
map : Va,b.(a — b) — ([a] — [b]).
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Implicit complexity of functors

Q: For some f, what is the complexity of Ff?
A: Depends on input “size”? What is the size of an FA?

19



Finite containers

5/19



Finite containers

A data type F with only strictily positive occurences of A in FA.

19



Finite containers

A data type F with only strictily positive occurences of A in FA.
Comes equipped with a natural transformation:

sizeg: FA— N

5/19



Finite containers

A data type F with only strictily positive occurences of A in FA.
Comes equipped with a natural transformation:

sizeg: FA— N

Naturality means:

5/19



Finite containers

A data type F with only strictily positive occurences of A in FA.
Comes equipped with a natural transformation:

sizeg: FA— N

Naturality means:
sizep

FA——N

Ffl /
sizeg

FB

5/19



Finite containers

A data type F with only strictily positive occurences of A in FA.
Comes equipped with a natural transformation:

sizeg: FA— N

Naturality means:
sizep

FA——N

Ffl /
sizeg

FB

Useful: functor lifting produces a size-preserving function

5/19
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A slight refinement...

Proposition
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A slight refinement...

Proposition
For any discretely finite container F, the morphism mapping
operation has lower bound complexity:

[Ff]n[Q(m)] S Q(n[f]m)

(n[Q(m)] is a structure of size n with elements at least size m)
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Upper bounds are more useful

Proposition
There exists terms P, and Q, > 1, parameterised by n, such that:

[Ff]n[O(m)] S O(Pn +n Qn[f]m) (1)

Proof.
Follows from lower-bound: at least n uses of f (at size at most m)
with possible additional overhead:
» P, accounts for time traversing the container to reach the
leaves (the elements) and
» @, accounts for any extraneous applications of f beyond the
linear (in n) use.
O]
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For naturality

Given two functors F, G and natural transformation n4 : FA — GA:

FA—'.FB

S

Let sizea(na x) = k(sizea x). Then:

[n8 © Ff]n[O(m)] € O([nln + P + nQn[f]m)
[GF o nalsjom) € Onln + Piny + k(1) Qu(n)[f1m)

Therefore, if n € O(k(n)) then (Gf ona) ~ (ng o Ff), otherwise
the converse.
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Constant factors and suggested optimisations

A common operation T4: A — FA promotion, natural in A:

f

A——B

W |

FA—~FB
Ff

v

v

o [1e of]n € O([f]n) and [Ffo Ta]ln € O(m][f]s).

Since m is a constant, no asymptotic improvment.

v

v

But suggestion that Ffo Tp~»1g of.

Parametricity implies that k(n) = m for some constant m.

10/19



Stencil Computations
B

RO (EIS Ol MR I<N At
for (3=0; j<M; Jj++)
B[i][]J] = £(A[1][]], A[l N3] AFLY],
Al 3=i], AL} )e

Wednesday, 14 September 2011



Comonads - context-wise application

f:A— B

o A FB
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Comonads - context-wise application

functo f:A—>B cooadg:FA—>B
nctor ——————— monad ————
) Ff:FA—FB gl :FA—FB
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Example comonad: Array

Array is an array with a cursor

aa|aja
aja,aja
a/a|a|a
ajaja|a

f:Arraya — b

Q| | | Q

Q| Q| R | Q
Q| QR | Q
Q| R |Q

[see “Ypnos: Declarative, Parallel Structured Grid Programming”, Orchard, Bolingbroke, Mycroft’ | 0]

Monday, 16 May 2011



Example comonad: Array

()7 : (Array a — b) — (Array a — Arrayb)

Q| Q| Q
Q| QI | Q
Q| Q| Q| Q

Q| _RI_Q|Q

\
S o O O

o S S O

S oS S O

o O O O

f
| e
A
f

alalala ajajaia

alal a ajajaja

faaaa ala faaaa

ajaljaja a ajaja|a

ajajlaja aajaja ajajlaja
ajal|a ajajaja

aafaaaa f

a ajajaja

a
faa
a| a|a
aaja|a
aaja|a
faaaa
aja a a

Generalised-map on arrays (e.g. convolution)

Monday, 16 May 2011




Comonads

(Co)unit
c: Da— a

Extract the value at the “current context’

€ : Arraya — a

Q| Q| Q| _
Q| I |R_

QIR |_|R

Q| QI QR

Monday, 16 May 2011



Comonads

[CI] € =id
[C2] eofl =f
[C3] (gofHi=g"of




Comonads - context-wise application
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Comonads - context-wise application

v

Provides a model for gathers/context-dependent traversals

v

Comprises object mapping F : C — C and lifting:

f:FA— B
fl:FA—FB

v

extract operation €4 : FA — A

with three axioms:

v

[C1] e = id [C2] coff=F [C3] gl ofl = (gofh)t

13 /19



Axiom [C3], associativity

f:FA—B g:FB—=C
fl:FA—-FB gi:FB—=FC _
ghoft:FA—FC -
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Axiom [C3], associativity

f:FA—>B
f:FA>B g:FB-»C fi FaofFg S TBC
ff:FA—-FB gf:FB—FC _ goff:FA— C
gloff :FA—=FC ~ (gofH:FASFC
Compare:
for i =1..n for i =1..n
for j=1 .. m for j =1..m
B(i, j) = £ (A, i, j) for u=1..n
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Axiom [C3], associativity

f:FA—B

f:FA>B g:FB-»C fi FaofFg S TBC
ff:FA—-FB gf:FB—FC _ goff:FA— C
gloff :FA—=FC ~ (gofH:FASFC
Compare:
for i =1..n for i =1..n
for j=1 .. m for j =1..m
B(i, j) = £ (A, i, j) for u=1..n
fori=1..n v forv=1..m
for j=1 .. m B(u, v) = f (A, u, v)
c@, j) =gCB, i, ) c@, j) =g B, i, J)

Q: s (g o f1)f ~ gt o ft always asymptotically better?
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Q: For some f, what is the complexity of fi?
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Proof.

» Size naturality, sizeg o T = sizea:

sizeB o fT

sizel o FIB o er
sizep o (lgof)T
sizel o (lA o €)T
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sizeg o Flx
sizep

{size naturality}
{follows from [C1-3]}
{14 naturality}
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Q: For some f, what is the complexity of 12
A: [fT]n € O(Py + nQulf]n).

Proof.

» Size naturality, sizeg o f = sizes: means |inp.| = |outp.| = n.
o apply f to one element and copy n times . [Ff], € Q(n+ [f]1)
» [C1] 5; = idra, thus f must be applied to each element
M if f = id return input, otherwise do above
» Parametricity [Reynolds]

Va, b, f such that f : Fa — b then f1 : Fa — Fb, therefore

f # id is undecideable (due to infinite domains)

Vo Pass (asympotitcally larger) x : FA to f : FA — B at each context.
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Implicit complexity of (container) comonads
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» Sometimes only a 'constant’ factor

» Todo: Formalise proofs further (see Reynolds)

» Todo: Tighter bounds via (bounded) linear typing:

(=) :1,(1,FA = B) — (FA— FB)

implies [fT], € O(P, + n[f],)
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