
Effects in a pi - !
using session types as an

effect system

Dominic Orchard, Nobuko Yoshida

dorchard.co.uk

http://dorchard.co.uk

λ-calculus π-calculus
A Calculus of Mobile Processes (part 1), (1992)

 Milner, Parrow, Walker Church (1930s)

⊑
Functions as processes, Milner (1992)

session types
Language primitives and type disciplines for

structured communication-based programming
Honda, Vasconcelos, Kubo (1998)

⊆

simple types
→

Church (1940)

⊆

⊑

Functions as session-typed processes,
Tohninho, Caires, Pfenning (2012)

This talk

what

how

what & how

effect systems
Integrating functional and imperative programs
Gifford, Lucassen (1986)

+

CCS
A Calculus of Communicating Processes, Milner (1980)

⊆

work in progress

π-calculus recap
c!⟨V⟩.P send V on c then act as P
c?(x).P receive on c, bind to x, then act as P
P | Q do P and Q in parallel

(c?(x).P | c!⟨V⟩.Q) → (P[V/x] | Q) (β reduction)

channel creation/binding [restriction]νc (P)
process replication! P
inactive process0

P | Q = Q | P
(commutativity)

P | (Q | R) = (P | Q) | R
(associativity)

νc (P | Q) = νc (P) | Q (if c#Q)
(scope extrusion)

Session primitives primer
c ▷ {L1 : P1, …, Ln : Pn} offer n choices

(c ▷ {L1 : P1, …, Ln : Pn} | c ◁ Li . Q) (β reduction)

c ◁ Li . P select label i then act as P

dual end-point

(c?(x).P | c!⟨V⟩.Q) → (P[V/x] | Q) (β reduction)

→ (Pi | Q)

dual end-point

Session types primer
 Γ ; Δ ⊢ P

session environment
 c1 : S1, …, cn : Sn

value environment
 x1 : A1, …, xn : An

 Δ, c : S ⊢
 Δ, c : ?[A].S ⊢

Γ, x : A ;
Γ ;

P
c?(x).P

(recv)

 Δ, c : S ⊢ P
c!⟨V⟩.P

(send) Γ ;
Γ ;

 Γ; . ⊢ V
 Δ, c : ![A].S ⊢

: A

Session types primer (2)

ensures absence of communication errors

 Δ, c : S, c : S ⊢
 Δ ⊢

Γ ;
Γ ;

P
νc.P

(restr)

dual session type

?[A].S = ![A].S ![A].S = ?[A].S

 Γ; c : end ⊢ 0(inact)

Duality:

end = end

c!⟨0⟩.c!⟨1⟩ | c?(x) e.g.

 Γ ; Δ1 ⊢ P Γ ; Δ2 ⊢ Q
(par)

 Γ ; Δ1 ⊙ Δ2 ⊢ P | Q

c!⟨0⟩ | c?(x).c?(y) | c!⟨1⟩

Duality:

Session types primer (2)

ensures absence of communication errors

 Δ, c : S, c : S ⊢
 Δ ⊢

Γ ;
Γ ;

P
νc.P

(restr)

?[A].S = ![A].S ![A].S = ?[A].S

 Γ; c : end ⊢ 0(inact)

Duality:

end = end

c!⟨0⟩.c!⟨1⟩ | c?(x) e.g.

 Γ ; Δ1 ⊢ P Γ ; Δ2 ⊢ Q
(par)

 Γ ; Δ1 ⊙ Δ2 ⊢ P | Q

c!⟨0⟩ | c?(x).d?(y) | d !⟨1⟩ ✔

dual session type

Session types primer (3)

 Δ, c : S ⊢
 Δ, c : ⊕[l : S] ⊢
Γ ;

Γ ;
P
c ◁ l .P

(select)

 Δ, c : &[l0 : S0 … ln : Sn] ⊢ Γ ;
c ▷ {l0 : P0 … ln : Pn}

(branch)
 Δ, c : S0 ⊢ Γ; Δ, c : Sn ⊢ Γ;P0 … Pn

&[l0 : S0 … ln : Sn] = ⊕[l0 : S0 … ln : Sn]
⊕[l0 : S0 … ln : Sn] = &[l0 : S0 … ln : Sn]

Duality:

Effects in a π : Variable agent

Store⟨c , x⟩P

x

get

put

V

Store⟨c , x⟩

c

def Store(c, x) = c ▷ {get : c!⟨x⟩.Store⟨c, x⟩,
 put : c?(y).Store⟨c, y⟩,
 stop : 0} in Store⟨c , i⟩

Store⟨c , V⟩P

x

get

put

Store⟨c , V⟩ Store⟨c , x⟩

cV

Effects in a π : Variable agent

def Store(c, x) = c ▷ {get : c!⟨x⟩.Store⟨c, x⟩,
 put : c?(y).Store⟨c, y⟩,
 stop : 0} in Store⟨c , i⟩

Server

get(c)(x).P = (c ◁ get).c?(x).P
!

Client

(get(c)(x).put(c)⟨x+1⟩.0 | Store⟨c , i⟩)
e.g. increment store

Effects in a π : Variable agent

c : ⊕[get : ?[Z]. ⊕[put : ![Z].end]] ⊢

describes effect interaction

!

put(c)⟨V⟩.P = (c ◁ put).c!⟨V⟩.P
stop = (c ◁ stop).0

get(c)(x).put(c)⟨x+1⟩.0

session types
c : ⊕[put : ![A]. S]
c : ⊕[get : ?[A]. S]

Effect system
(F,•,∅)monoid

 Γ ⊢ M : !

Γ, x : σ ⊢ M : !
Γ ⊢ λx.M : σ → !

abs
x : σ ∈ Γ
Γ ⊢ x : σ

var
Γ ⊢ M : σ → !

Γ ⊢ M N : !
Γ ⊢ N : σ

app

Γ ⊢ M : T F σ
Γ ⊢ : T (F • G) !

Γ, x : σ ⊢ N : T G ! Γ ⊢ M : !
Γ ⊢<M> : T ∅ !

return

The marriage of effects and monads, Wadler & Thieman (1992)

Γ ⊢ M : σ → !, F
Γ ⊢ M N : !, F • G • H

H Γ ⊢ N : σ, GΓ, x : σ ⊢ M : !, F
Γ ⊢ λx.M : σ → !, ∅F

Analysis style [Gifford, Lucassen (1986), etc.]

bind
let x ⇐ M in N

e.g. increment store

let x ⇐ get in put (x + 1)

Effect system for state

put : ! → T [put !] ()
get : T [get !] !

Γ ⊢ : T [get Z, put Z] ()

[get Z, put Z]≃
get(c)(x).put(c)⟨x+1⟩.0c : ⊕[get : ?[Z]. ⊕[put : ![Z].end]] ⊢

(List {put t, get t | t ∈ !}, ++, [])Effect monoid:
Effect operations:

cf. session-typed π-calculus version

Sessions as effects
!

• Effect handler process [e.g., variable agent]!

 [cf. Bauer, Pretnar “Progamming with algebraic effects and handlers.”]!

• Effect channel [a session channel for communicating with handler]!

 !! … whose session type is (encoding of) effect annotation!

• “Threading” effect channel through control flow of encoding!

 [cf. state ⟨e, s⟩ → ⟨e’, s’⟩ or monadic semantics a → M b]

Sessions as effects
!

• Encoding of general effect sequential composition!

• Parameterised, for a particular notion of effect by:!

• Effect handler [variable agent]!

• Interpretation of effects annotations into sessions!

! ! ! ! ! ⟦ [] ⟧ = end
 ⟦ (get !) : F ⟧ = ⊕[get : ?⟦!⟧. ⟦ F ⟧]
 ⟦ (put !) : F ⟧ = ⊕[put : !⟦!⟧. ⟦ F ⟧] !

• Encoding of operations [get, put] !

• using get(c)(x).P = (c ◁ get).c?(x).P etc.

⟦ Γ ⊢ M : T F τ ⟧
r

eff
= ⟦ Γ ⟧, r : !⟦τ⟧, eff : ⟦ F ⟧ ⊢ …

Embedding

⟦ Γ ⊢ let x ⇐ M in N : T F τ ⟧ r =
eff

νs . (⟦ M ⟧s | s?(x).⟦ N ⟧r)

both using eff

Not well-typed wrt. sessions!

⟦ Γ ⊢ M : T F τ ⟧
r

eff
= ⟦ Γ ⟧, r : !⟦τ⟧, eff : ⟦ F ⟧ ⊢ …

νei, eo . (| ei!⟨eff⟩.eo(eff’))

∀g . r
ei,eo⦇ Γ ⊢ M : T F τ ⦈ =

Embedding

send effect channel

 ei : ?⟦ F • g ⟧, eo : !⟦ g ⟧ ⊢ …

receive effect channel

⟦ Γ ⊢ run M : ! ⟧r

= νeff . (⟦ Γ ⊢ M : T F ! ⟧ | H(eff))
r

eff

⟦ Γ ⟧, r : !⟦τ⟧,

r
ei,eo⦇ Γ ⊢ M : T F ! ⦈

⦇ Γ ⊢ let x ⇐ M in N : T (F • G) ! ⦈ =r
ei,eo

⦇ Γ ⊢ <M> : T ∅ ! ⦈ =r
ei,eo ei?(c). ⦇ M ⦈r .eo!⟨c⟩

ν q, a . (⦇ M ⦈ | q?(x).⦇ N ⦈)q
ei, a

r
a, eo

⟦ Γ ⟧; r : !⟦τ⟧, ei : ?⟦ g ⟧, eo : !⟦ g ⟧ ⊢ ei?(c). ⦇ M ⦈r .eo!⟨c⟩∀g . where

q : !⟦σ⟧, ei : ?⟦ F • h ⟧, a : !⟦ h ⟧ ⊢ ⦇ M ⦈
q
ei, a∀h . where

r
a, eox : ⟦σ⟧; r : !⟦τ⟧, a : ?⟦ G • h’ ⟧, eo : !⟦ h’ ⟧ ⊢ ⦇ N ⦈∀h’ .

h → G • h’

Embedding

⦇ Γ ⊢ let x ⇐ M in N : T (F • G) ! ⦈ =r
ei,eo

⦇ Γ ⊢ <M> : T ∅ ! ⦈ =r
ei,eo ei?(c). ⦇ M ⦈r .eo!⟨c⟩

ν q, a . (⦇ M ⦈ | q?(x).⦇ N ⦈)q
ei, a

r
a, eo

⟦ Γ ⟧; r : !⟦τ⟧, ei : ?⟦ g ⟧, eo : !⟦ g ⟧ ⊢ ei?(c). ⦇ M ⦈r .eo!⟨c⟩∀g . where

q : !⟦σ⟧, ei : ?⟦ F • G • h’ ⟧, a : !⟦ G • h’ ⟧ ⊢ ⦇ M ⦈
q
ei, a∀h . where

r
a, eox : ⟦σ⟧; r : !⟦τ⟧, a : ?⟦ G • h’ ⟧, eo : !⟦ h’ ⟧ ⊢ ⦇ N ⦈∀h’ .

h → G • h’

Embedding

Example

⟦ Γ ⊢ let x ⇐ get in put (x + 1) : T [get Z, put Z] Z ⟧
r

eff
 ⟦ Γ ⟧, r : !⟦int⟧, eff : ⟦ [get Z, put Z] ⟧ ⊢

r

eff
 = νeff . (⟦ Γ ⊢ M : T F !⟧ | Var(eff, 0))⟦ Γ ⊢ run M : ! ⟧ r

Soundness
Γ ⊢ M = N : T F !

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

With e↵ects E↵ectful computations are embedded by interactions with a side-e↵ect handling
agent over a session channel. The embedding, written J�Ke↵r , maps a judgement � `M : ⌧, F to
a session type judgement with channels � = (r : !J⌧K.end, e↵ : JF K) i.e., the e↵ect annotation
F is interpreted as the session type of channel e↵ . For state, this interpretation is defined as
in eq. (6). The embedding first requires an intermediate step, written L� Mer:

L� `M : ⌧, F Mer = J�K; (r : !J⌧K.end, e : ?JF •GK.!JGK.end) ` LM Mer (11)

where e is a channel over which channels for e↵ects are communicated: e receives a session
channel of session type JF •GK (i.e., capable of carrying out e↵ects F •G) and sends a session
channel of session type JGK (capable of carrying out e↵ects G). Here the e↵ect G is universally
quantified at the meta level. This provides a way to thread a channel for e↵ect interactions
through a computation, such as in the case of let-binding. The interpretation is then defined:

L letx M inN Mer = ⌫q, e1, e2.(LM Me1q | q?(x).LN Me2r | e?(b).e1!hbi.e1?(c).e2!hci.e2?(d).e!hdi)
Lx Mer = e?(c).r!hxi.e!hci
LC Mer = e?(c).JCKr.e!hci (when C is pure)

L opM Mer = e?(c).JopMKr.e!hci (when op is pure) (12)

The let case resembles the pure embedding but threads through an e↵ect-carrying session chan-
nel. Channels e1, e2 are introduced, over which e↵ect channels are passed from the embedding
of M to N ; e1 sends LM Me1q the incoming session channel b and then receives the returned
channel c which e2 sends to LN Me2r and then receives the outgoing channel d. The embedding
of variables is straightforward, where the channel c for carrying out e↵ects is received and sent
without use. Embedding pure operations/constants is similar, reusing the pure embedding (9).

The get and put operations of our state e↵ects are embedded similarly to in (3) (page 2),
but with the passing of the session channel which interacts with the store:

L get Mer = e?(c).c� get . c?(x).r!hxi.e!hci
L putM Mer = ⌫q. (JMKq | e?(c).q?(x).c� put . c!hxi.r!huniti.e!hci) (13)

The embedding of get receives channel c over which it performs its e↵ect by selecting the
get branch and receiving x which is sent as the result on r before sending back c. The put

embedding is similar to get and let, but using the pure embedding JMKq since M is pure. The
full embedding is then defined in terms of the intermediate as follows:

J� `M : ⌧, F Ke↵r = J�K; (r : !J⌧K.end, e↵ : JF K) ` ⌫e. (L� `M : ⌧, F Mer | e!he↵ i.e?(c)) (14)

where e↵ is the free session channel over which e↵ects are performed.
Finally, the embedded program is composed in parallel with the variable agent, for example:

def Store(c, x) = . . . (see (2)) in Storehe↵ , 0i | Jletx get in put (sucx)Ke↵r (15)

3.1 Soundness The e↵ect calculus exhibits the equational theory defined by the rela-
tion ⌘ in Figure 3, which enforces monoidal properties on e↵ects and the e↵ect algebra (as-
soc),(unitL),(unitR), and which allows pure computations to commute with e↵ectful ones
(comm). Our embedding is sound with respect to these equations and the weak bisimulation
relation of the ⇡-calculus with sessions (see [4]). Appendix C provides the proof.

Theorem (Soundness). If � `M ⌘ N : ⌧, F then J�K; (r :!J⌧K.end, e : JF K) ` JMKer ⇡ JNKer

5

⟹

let x ⇐ M in <x> = M (left unit)
let x ⇐ <v> in M = M[v/x] (right unit)

 let x ⇐ M in (let y ⇐ N1 in N2) =#
 let y ⇐ (let x ⇐ M in N1) in N2

(associativity)
[if x#N1]

Completeness
⟦ Γ ⟧, r : !⟦τ⟧, eff : ⟦ F ⟧ ⊢ ⟦M ⟧r ≈ ⟦N ⟧r

eff eff

⟹ Γ ⊢ M ≃ N : T F !

Application

• Effect-informed optimisations, e.g. implicit parallelism

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

L letx M in (let y N inP) Mei,eor = ⌫ q, s, eb. (JMKq | LN Mei,ebs | q?(x).s?(y).LP Meb,eor)

This alternate encoding introduces the opportunity for parallel evaluation of M and N . It is
enabled by the e↵ect system (which annotates M with I) and it is sound: it is weakly bisimilar
to the usual encoding (which follows from the soundness proof of (comm) in Appendix C and
the pure encoding lemma 1).

5 Summary and further work

This paper showed that sessions and session types are expressive enough to encode stateful
computations with an e↵ect system. We formalised this via a sound embedding of a simple, and
general, e↵ect calculus into the session calculus. Whilst we have focussed on causal state e↵ects,
our e↵ect calculus and embedding can also be instantiated for I/O e↵ects, where input/output
operations and e↵ects have a similar form to get/put. We considered only state e↵ects on a
single store, but traditional e↵ect systems account for multiple stores via regions. Our approach
could be extended with a store and session channel per region. Other instantiations of our e↵ect
calculus/embedding are further work, for example, for set-based e↵ects.

E↵ect reasoning is di�cult in higher-order settings as the e↵ects of abstracted computations
are locally unknown. E↵ect systems account for this by annotating function types with the
latent e↵ects of a function which are delayed till application. A possible encoding of a function
type with latent e↵ects into a session type could be following:

J� F�! ⌧K = !J�K . ![?JF •GK] . ![!JGK] . ![!J⌧K]

i.e., a channel over which four things can be sent: a J�K value for the function argument, a
channel which can receive a further channel capable of simulating e↵ects F •G, a channel which
can send a channel capable of simulating e↵ects G, and a channel which can send a J⌧K for the
result. Thus, the encoding of a function receives e↵ect handling channels which have the same
form as the e↵ect channels for first-order term encodings. A full, formal treatment of e↵ects in
a higher-order setting is forthcoming work.

E↵ects systems also commonly include a (partial) ordering on e↵ects, which describes how
e↵ects can be overapproximated [3]. For example, causal state e↵ects are ordered by prefix
inclusion, thus an expression M with judgement � ` M : ⌧, [G ⌧] might have its e↵ects over-
approximated (via a subsumption rule) to � ` M : ⌧, [G ⌧,P ⌧ 0]. It is possible to account for
(some) sube↵ecting using subtyping of sessions. Formalising this is further work.

Whilst we have embedded e↵ects into sessions, the converse seems possible: to embed ses-
sions into e↵ects. Nielson and Nielson previously defined an e↵ect system for higher-order
concurrent programs which resembles some aspects of session types [6]. Future work is to ex-
plore mutually inverse embeddings of sessions and e↵ects. Relatedly, further work is to explore
whether various kinds of coe↵ect system (which dualise e↵ect systems, analysing context and
resource use [7]) such as bounded linear logics, can also be embedded into session types.

Acknowledgements Thanks to Tiago Cogumbreiro and the anonymous reviewers for their
feedback. The work has been partially sponsored by EPSRC EP/K011715/1, EP/K034413/1,
and EP/L00058X/1, and EU project FP7-612985 UpScale.

8

Using session types as an e↵ect system Dominic Orchard and Nobuko Yoshida

L letx M in (let y N inP) Mei,eor = ⌫ q, s, eb. (JMKq | LN Mei,ebs | q?(x).s?(y).LP Meb,eor)

This alternate encoding introduces the opportunity for parallel evaluation of M and N . It is
enabled by the e↵ect system (which annotates M with I) and it is sound: it is weakly bisimilar
to the usual encoding (which follows from the soundness proof of (comm) in Appendix C and
the pure encoding lemma 1).

5 Summary and further work

This paper showed that sessions and session types are expressive enough to encode stateful
computations with an e↵ect system. We formalised this via a sound embedding of a simple, and
general, e↵ect calculus into the session calculus. Whilst we have focussed on causal state e↵ects,
our e↵ect calculus and embedding can also be instantiated for I/O e↵ects, where input/output
operations and e↵ects have a similar form to get/put. We considered only state e↵ects on a
single store, but traditional e↵ect systems account for multiple stores via regions. Our approach
could be extended with a store and session channel per region. Other instantiations of our e↵ect
calculus/embedding are further work, for example, for set-based e↵ects.

E↵ect reasoning is di�cult in higher-order settings as the e↵ects of abstracted computations
are locally unknown. E↵ect systems account for this by annotating function types with the
latent e↵ects of a function which are delayed till application. A possible encoding of a function
type with latent e↵ects into a session type could be following:

J� F�! ⌧K = !J�K . ![?JF •GK] . ![!JGK] . ![!J⌧K]

i.e., a channel over which four things can be sent: a J�K value for the function argument, a
channel which can receive a further channel capable of simulating e↵ects F •G, a channel which
can send a channel capable of simulating e↵ects G, and a channel which can send a J⌧K for the
result. Thus, the encoding of a function receives e↵ect handling channels which have the same
form as the e↵ect channels for first-order term encodings. A full, formal treatment of e↵ects in
a higher-order setting is forthcoming work.

E↵ects systems also commonly include a (partial) ordering on e↵ects, which describes how
e↵ects can be overapproximated [3]. For example, causal state e↵ects are ordered by prefix
inclusion, thus an expression M with judgement � ` M : ⌧, [G ⌧] might have its e↵ects over-
approximated (via a subsumption rule) to � ` M : ⌧, [G ⌧,P ⌧ 0]. It is possible to account for
(some) sube↵ecting using subtyping of sessions. Formalising this is further work.

Whilst we have embedded e↵ects into sessions, the converse seems possible: to embed ses-
sions into e↵ects. Nielson and Nielson previously defined an e↵ect system for higher-order
concurrent programs which resembles some aspects of session types [6]. Future work is to ex-
plore mutually inverse embeddings of sessions and e↵ects. Relatedly, further work is to explore
whether various kinds of coe↵ect system (which dualise e↵ect systems, analysing context and
resource use [7]) such as bounded linear logics, can also be embedded into session types.

Acknowledgements Thanks to Tiago Cogumbreiro and the anonymous reviewers for their
feedback. The work has been partially sponsored by EPSRC EP/K011715/1, EP/K034413/1,
and EP/L00058X/1, and EU project FP7-612985 UpScale.

8

then

Γ ⊢ M : T ∅ σ if Γ ⊢ N : T F tand

• Semantics of concurrent effects!
• e.g., non-interference, atomicity via sessions

Use session-π as intermediate language

Effects as sessions (summary)
• Sessions and session types expressive enough to encode

effects with a causal effect system!

• Per effect notion [e.g., state, counting, I/O]:!
 effect mapping, handler, encoding operations!

• Extended to case and fix effect-control-flow operator

• Set-based effect systems recovered by transforming causal

Details see dorchard.co.uk:!
“Using session types as an effect system” (Orchard, Yoshida, PLACES 2015)!

Effects as sessions
⟦ Γ ⊢ M : T F τ ⟧

r

eff
 ⟦ Γ ⟧, r : !⟦τ⟧, eff : ⟦ F ⟧ ⊢ P

Sessions as effects?
 Γ; Δ ⊢ P ⟦ Γ ⟧ ⊢ M : T ⟦ Δ ⟧ unit

• Reuse existing effect-system approaches:!

• Embedding effect systems in Haskell (Orchard, Petricek, 2014)!

• Session types for existing libraries (e.g., CloudHaskell)

λ-calculus π-calculus
A Calculus of Mobile Processes (part 1), (1992)

 Milner, Parrow, Walker
Church (1930s)

⊑
Functions as processes, Milner (1992)

session types
Language primitives and type disciplines for

structured communication-based programming
Honda, Vasconcelos, Kubo (1998)

⊆

simple types
→

Church (1940)

⊆

⊑

Functions as session-typed processes,
Tohninho, Caires, Pfenning (2012)

effect systems
Integrating functional and imperative programs
Gifford, Lucassen (1986)

This work

what

how

what & how

Conclusion

• Shows the expressive power of session types!
• Incorporate effect information into specifications (e.g. Scribble)!
• Use pi-calculus as intermediate language

Effects into sessions

Sessions into effects (work in progress)
• Embed session types into existing languages!
• Shows the expressive power of effect typing!

• “Type & Effect system: Behaviours for concurrency” Amtoft, Nielson, Nielson 1999

the tale of two type systems
one

?

Thanks!!!

Other things I do…

• Coeffects [dual to effects, contextual effects]

(i+j) A → i j A 0A → A i(A → B) → iA → iB

Theory

[thesis,ICALP’13,ICFP’14] with Alan Mycroft, Tomas Petricek
[w.i.p] with Marco Gaboardi, Shinya Katsumata

• Models/analysis of timed, communicating processes [for music!]!
! [FARM’14,w.i.p] with Sam Aaron

∀i. i

!
• Languages and tools for computational science!

[thesis,FLOPS’10,IFL’12,ICFP’13,Haskell’14]
with Alan Mycroft, Tomas Petricek, Neal Glew, Leaf Petersen, Tom Schrijvers

[WRT’13,ICCS’13,ICCS’14] with Andy Rice

• Haskell type system and compiler!
Applications

SSI Fellowship (2015)

