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Abstract: While steady state traffic equilibrium problems have been successfully studied, the
analysis complicates when the dynamics of the vehicles is taken into account. The literature
on the topic presents a variety of models, but usually the algorithms suggested do not possess
convergence guarantees. We propose a simple game where all the vehicles travel along the same
arc and choose the starting time of their trip. Based on the first Wardrop principle, we formulate
the traffic user equilibrium as a variational inequality. Since monotonicity of the corresponding
operator guarantees convergence of gradient-based algorithms, we provide theoretical guarantees
for short time horizons, and analyze it numerically for longer ones. We conclude with simulations
showing that convergence can be achieved also in more general setups, for example with multiple
origins or destinations.
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1. INTRODUCTION

Traffic congestion is a well-recognized issue in modern so-
ciety, and the corresponding economic costs are significant,
see Arnott and Small (1994). Traffic engineers have stud-
ied the problem for decades from different perspectives,
including theoretical and numerical analysis or field ex-
periments (Geroliminis and Daganzo (2008)). Since every
driver seeks his own interest (e.g., minimizing the travel
time) and is affected by the others choices via congestion, a
classic approach is to model the traffic problem as a game
(Patriksson (2015)). Different equilibrium models have
been presented in order to predict or control congestion.
The steady state analysis has been initiated in Wardop
(1952) and it has been broadly investigated (Correa and
Stier-Moses (2011)), as well as extensively applied to real
world applications as in Sheffi (1985). Static models fail
to capture important features that are inherently time
dependent, such as queue formation or departure time
predictions. A formulation of the dynamic user equilib-
rium problem can be found in Smith (1979) and Friesz
et al. (1993) for discrete and continuous time dynamics,
respectively. Many works consider a single road network,
where the departure time is the only decision variable,
see Mahmassani and Herman (1984); Gubins and Verhoef
(2012); Fosgerau (2015). Others fix the departure time,
but allow players to choose their route, see Smith (1993);
Heydecker and Addison (1999).
Despite the variety of models studied, the authors typically
focus on existence and uniqueness issues while limiting
themselves to propose algorithms that work in practice,
but do not possess convergence guarantees as in Huang
and Lam (2002); Han et al. (2011). Inspired from the cell-
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transmission model of Daganzo (1995) and the dynamic
model of Wie et al. (1990), we describe the dynamics of
the vehicles on the network as a discrete time positive
compartmental system. We assume each user minimizes
the sum of his travel time and a discomfort term penalizing
earliness or lateness of arrival. We study the dynamic user
equilibrium problem arising from such model and allow
each user to decide both his departure time and the possi-
ble route. Our model does not enforce the well known first-
in-first-out (FIFO) condition as in Smith (1993); Ran et al.
(1996), since a trade-off has to be made between adherence
to reality and mathematical tractability. Our interest is in
providing provable guarantees for algorithmic convergence
to a traffic user equilibrium. We are particularly interested
in decentralized algorithms, as these schemes are usually
intended for large populations of users. To address the
issue, we formulate the dynamic user equilibrium as a
variational inequality problem coupled with a non linear
constraint representing the dynamic of the system. Our
preliminary results are based on monotonicity conditions
for the variational inequality operator, obtained in a sim-
plified setup where all users share the same origin and the
same destination. We note that the results of this paper
can be extended from a single arc network to a parallel
arc network, where the users share the same origin and
the same destination and they can choose between parallel
links. Even if this setup may seem highly idealized, it can
describe the daily commuting from a residential area to a
central business center, many authors have used similar
simplifications when looking at this problem, see Han
et al. (2011); Mahmassani and Herman (1984); Gubins and
Verhoef (2012); Wie (1993).
The paper is organized as follows. Section 2 formulates
the problem, Section 3 shows existence of the dynamic
user equilibrium and presents a decentralized algorithm.
Sections 4 and 5 provide guarantees for the convergence of
the algorithm. Section 6 describes numerical simulations.



2. GAME FORMULATION

2.1 Variables

Let us consider a single-arc network, composed by an
originO, a destination D and a single arc, which represents
a road connecting O to D. We introduce the set W =
{1, . . . ,W} of users. Each user w ∈ W intends to send
dw ∈ R>0 vehicles from O to D. We consider a time
horizon T = {1, . . . , T} with a discretization interval
δt. Each user chooses the non-negative quantities hw(t)
representing the number of vehicles departing at time t.
As a consequence of the departures, user w possesses xw(t)
vehicles at time t on the arc. The total number of vehicles
on the arc at time t is therefore σ(t) :=

∑
w∈W xw(t).

2.2 The fundamental diagram of traffic

A key role in modelling the vehicle dynamics is played by
the so-called outflow function g(·), introduced in Daganzo
(1995), which maps the total number of vehicles on the
arc to the total outflow from the arc. Here the outflow
function is based on the fundamental diagram of traffic
which is presented in Greenshields Symposium (2011) and
experimentally justified in Li and Zhang (2011).

Given positive scalars b and c, we define the outflow func-
tion g : R≥0 → R≥0 as follows:

g(σ) :=


σ if 0 ≤ σ < σcon
−bσ + c if σcon ≤ σ ≤ σblo
0 if σ > σblo,

(1)

where σcon := c
1+b and σblo := c

b , see Figure 1.

σcon σblo σ

− bσ + cσ

g(σ)

Fig. 1. The outflow function. On the horizontal axis, the
total number of vehicles on the arc; on the vertical
axis, the total outflow of vehicles from the arc.

When 0 ≤ σ < σcon, the vehicles travel in free-flow, i.e.
their density is low enough not to slow each other down.
The free-flow part of the fundamental diagram has unitary
slope, meaning that all the vehicles present on the arc
leave it in one time interval δt. This is because we assume,
as done in Daganzo (1995), that the arc has a length δd
equal to the distance travelled at free-flow speed in one
time interval δt.
When σcon ≤ σ ≤ σblo congestion builds up and the
vehicles slow down. When σ > σblo, all the vehicles are
blocked and cannot proceed.

Field experiments conducted in Li and Zhang (2011) show
that b takes values in the range 0.08 ∼ 0.19 δd/δt, while
c takes values between 32 ∼ 39 vehicles/δt (for a time
interval of one minute).

2.3 Vehicle dynamics

The function g(·) determines the total outflow from the
arc. In the following we build upon this and derive the
dynamics of individual vehicles. To this end, let us assume
that the total outflow is split among the users proportion-
ally to their number of vehicles on the arc; consequently
the outflow at time t for user w is

g(σ(t))
xw(t)

σ(t)
.

To compactly denote g(σ)/σ, we further define f(·) as

f(σ) :=


1 if 0 ≤ σ < σcon

−b+
c

σ
if σcon ≤ σ ≤ σblo

0 if σ > σblo,

(2)

which can be used to introduce the users dynamics:

xw(t+ 1) = xw(t)− f(σ(t))xw(t) + hw(t). (3)

In words, the number of vehicles of user w on the arc
decreases due to the outflow and increases due to new
departures. We assume throughout the paper that there
are no vehicles on the arc at the beginning of the horizon,
i.e. xw(0) = 0 for all w. As a consequence, given the
departures for every user w at time t, the dynamics (3)
uniquely determine the number of vehicles for all w, t.
This correspondence can be captured defining the function
xw = χw(h), which maps the vector h stacking together
hw(t) for all w, t, to the number of vehicles xw specific
to user w, for all t. In the following we denote with σ the
vector stacking together σ(t) for all t, and we indicate with
σ(h) the σ uniquely determined by h via the dynamics (3).

Lemma 1. (Dynamics factorization). There exists a ma-
trix M(h) whose entries depend on h such that for each
w

χw(h) = M(h) · hw. (4)

Proof. Based on the dynamics (3), the expression for
M(h) is
xw(1)
xw(2)
xw(3)

...
xw(T )

=


1 0 0 0 . . . 0

(1 − f1) 1 0 0 . . . 0
(1 − f1)(1 − f2) (1 − f2) 1 0 . . . 0

...
(1 − f1) · · · (1 − fT−1) . . . 1


︸ ︷︷ ︸

M(h)


hw(0)
hw(1)
hw(2)

...
hw(T−1)

,

(5)

where we denoted ft := f(σ(t)). 2

2.4 Cost function

The goal of each user is to minimize selfishly his own cost,
which we model as linear function of xw:

c̃w(xw) :=
∑
t∈T

αw(t)xw(t) := 〈αw, xw〉 , (6)

where αw and xw are the stacked vectors of cost coefficients
and number of vehicles of user w for all t. We assume
throughout the paper that αw(t) ≥ 0.

This cost, although simple, can describe a range of impor-
tant objectives, among which:

• total travel time: if αw = 1T (vector of unit entries),
then c̃w(xw) represents the total travel time of the
vehicles of user w;



• arrival time preference: to approximate the discom-
fort term penalizing for early or late arrivals with
respect to a desired time window, one can select
the coefficients with a profile as in the solid line of
Figure 2.

Note that in the cost (6) it is possible to account for both
the total travel time and the arrival time preference by
defining the coefficients αw to be a weighted average of
the coefficients corresponding to the cases just discussed.

desired
arrival

window

1

t

total travel time
arrival time preference

α ( t)

Fig. 2. Two possible choices of the cost coefficients αw.

By substituting the dynamics (3) into the cost function (6),
we obtain the cost as a function of h

cw(h) := c̃w(χw(h)) = 〈αw, χw(h)〉 .
The factorization (4) of Lemma 1 can be used to define
the function Cw(·):
cw(h) = 〈αw, χw(h)〉 = 〈αw,M(h) · hw〉 := 〈Cw(h), hw〉 ,

(7)

where
Cw(h) := M(h)T · αw. (8)

The cost cw(h) can thus be expressed as the scalar product
between the actions hw of user w, and the function Cw(h),
which contains all the non-linearity of the dynamics and
the interactions among the different users. In the following
we refer to Cw(h) as cost per action. Note that, if the
dynamics (3) were linear, Cw(h) would be constant in h.

2.5 Game primitives and user equilibrium

We model the non-cooperative environment described in
the previous subsections as a game, which is defined by
the following primitives:

• users:W = {1, . . . ,W}; (9a)
• individual constraint of user w:

Hw :=

{
hw
∣∣∣hw(t) ≥ 0,

∑
t∈T

hw(t) = dw
}

; (9b)

• cost of user w: cw(h) = 〈Cw(h), hw〉. (9c)

A key concept in traffic equilibrium is the dynamic user
equilibrium (DUE), which is defined as in the following.

Definition 1. A set of strategies h? = [h1?, . . . , hW?] is a
dynamic user equilibrium of the game in (9) if for all users
w ∈ W it holds hw? ∈ Hw and

〈Cw(h?), hw?〉 ≤ 〈Cw(h?), hw〉 , ∀hw ∈ Hw. 2

Intuitively, a set of strategies h? is a DUE if it satisfies
the individual constraints and, considering the cost per
action as a fixed quantity, no user can improve his cost
by unilaterally deviating from his own strategy. One can
show that Definition 1 is equivalent to the following more

classic Definition 2, which is based on Ran et al. (1996).
The proof can be found in Dafermos (1980) for the static
user equilibrium problem, but the extension to our setup
is straightforward.

Definition 2. At dynamic user equilibrium, user w sends
vehicles at time t, i.e. sets hw?(t) > 0, if the corresponding
cost per action in (7) is minimum. As a consequence, the
actions used (i.e., those with positive vehicle departures)
have equal costs, and the actions with higher costs will not
be used. 2

3. EXISTENCE AND DECENTRALIZED
ALGORITHM

In order to study existence of a DUE we define the set H
and the operator C(·) as follows:

H := H1 × · · · × HW , C(h) := [C1(h), . . . , CW (h)]>.
(10)

Proposition 1. The game (9) admits a dynamic user equi-
librium.

Proof. Using Definition 1 it is straightforward to show
that h? is a DUE if and only if h? is a solution of the
variational inequality VI(H,C(h)) 1 . The existence result
follows by (Facchinei and Pang, 2000, Corollary 2.2.5),
upon noticing that H is compact and convex by (9b), and
C(h) is a continuous function of h. 2

In general the DUE is not unique. While a large number of
algorithms have been proposed in order to solve the varia-
tional inequality problem, their convergence is often based
on modifications of the concept of monotone operators.
To achieve a DUE, we introduce the extragradient algo-
rithm (Facchinei and Pang, 2000, Algorithm 12.1.9). We
point out that this is one of many algorithms of (Facchinei
and Pang, 2000, Chapter 12), and any of them would work.

Algorithm 1 Extra-gradient algorithm

Initialization Set k ← 0. Choose τ > 0 (step size) small
enough, ε > 0 (a tolerance threshold), h[k] ∈ H (initial
condition).
while ‖h[k] − h[k−1]‖ < ε do
hwtemp ← ProjHw(hw[k] − τ Cw(h[k])) for all w
hw[k+1] ← ProjHw(hw[k] − τ Cw(htemp)) for all w
k ← k + 1

Since Cw(·) can be expressed as a function of the sole
σ via (8) and (4), and since ProjHw can be decoupled
into individual projections, the previous algorithm can be
decentralized (parallelized). If a central agent gathers the
departures of all the users and broadcasts the resulting σ,
each user can independently update his actions.
To establish conditions for the convergence of Algorithm 1,
we introduce the definition of monotone operator.

Definition 3. The operator C(·) is monotone on H if and
only if

〈C(h)− C(ĥ),h− ĥ〉 ≥ 0, ∀ h, ĥ ∈H. 2

Proposition 2. Assume that the operator C(·) is monotone
and τ < 1

LC
, with LC being the Lipschitz constant of C.

1 For a definition of variational inequality, see (Facchinei and Pang,
2000, Definition 1.1.1).



Then the extra-gradient algorithm converges to a dynamic
user equilibrium of the game (9).

The proof can be found in (Facchinei and Pang, 2000,
Theorem 12.1.11).

4. REDUCTION TO THE CONGESTED REGION

This section, along with the next one, is devoted to
the derivation of conditions on the non-negative cost
coefficients αw in (6) under which the operator C(·) in (10)
is monotone. We assume in Sections 4 and 5 that each
user features the same cost coefficients αw = α in (6). As
a consequence, all users w have the same cost per action
Cw = C (see (7)). The users are still heterogeneous, as
they might differ in the demands dw. We intend to show
that the cost per action vector is a sole function of the
sum of the vehicle injections. To this end, let us define
s :=

∑
w∈W hw.

Lemma 2. The operator C(·) can be expressed as

C(h) = 1W ⊗ C(s), (11)

where, for any user w, C(·) is the cost per action of player
w as in (8), which is the same for all w and depends on s.

Proof. Homogeneity of the users’ cost coefficients α guar-
antees that the cost per action does not depend on the
specific player w, and so C(·) can be expressed as the
vertical repetition of the same vector C. By (8), C(·) is a
linear combination of the entries of M(h) in (5), hence we
are left to show that M(h) depends on s only. Since every
entry of M(h) is a function of {ft}t∈T , and ft = f(σ(t)),
the proof is concluded if we show that any σ(t) is a sole
function of s. Summing (5) over all users w, and denoting
ft := f(σ(t)), one obtains

σ(1)
σ(2)
σ(3)

...
σ(T )

=


1 0 0 0 . . . 0

(1 − f1) 1 0 0 . . . 0
(1 − f1)(1 − f2) (1 − f2) 1 0 . . . 0

...
(1 − f1) · · · (1 − fT−1) . . . 1




s(0)
s(1)
s(2)

...
s(T−1)

,
(12)

expressing the fact that σ(t+ 1) depends only on σ(t) and
s(t). By induction one proves that σ(t) is a function of s
only, as required. 2

Since we are interested in guaranteeing monotonicity of
C(·) under conditions that are independent from the de-
mands {dw}w∈W , in the following we study montonicity of
C(·) in RW ·T ·A≥0 , which ensures monotonicity in H.

Lemma 3. The operator C(·) is monotone in RW ·T≥0 if and

only if the operator C(·), is monotone in RT≥0.

Proof. The decomposition of C(·) in (11) yields

〈C(h)− C(ĥ),h− ĥ〉 = 〈1W ⊗ (C(s)− C(ŝ)) ,h− ĥ〉 =

〈C(s)−C(ŝ),
W∑
w=1

(hw−ĥw)〉=〈C(s)−C(ŝ), s−ŝ〉.

Using definition 3, one concludes the proof. 2

We proceed to study monotonicity of C(·) in RT≥0. We

introduce the subscript T as in CT (·) to highlight the
length T of the time horizon.

To study monotonicity of CT (·), we note that at any time
instant the arc can be either in free flow (0 ≤ σ ≤ σcon),

congested (σcon ≤ σ < σblo) or blocked (σ ≥ σblo), hence
we express RT≥0 as the union of 3T closed regions: RT≥0 =

3T⋃
r=1
Rr. Based on this, the next lemma gives a necessary

and sufficient condition for monotonicity of CT (·).
Lemma 4. The operator CT (·) is monotone in RT≥0 if and
only if it is monotone in every region Rr.

Proof. According to the definition of subgradient in
Schaible et al. (1996), monotonicity in RT≥0 is equivalent

to positive semi-definiteness of the subgradients of CT (·)
in every point s ∈ RT≥0. This, in turn, is equivalent to

having the subgradients of CT (·) positive-semidefinite in
the interior of every region Rr, which is equivalent to
monotonicity of CT (·) in Rr. 2

As in the proof of Lemma 2, we denote ft := f(σ(t)).
According to (8), the operator CT (s) can be expressed as
M(h)>α, where M(h) is defined in (5). This yields

CT (s)=


1 (1−f1) (1−f1)(1−f2) . . . (1−f1)· · ·(1−fT−1)
0 1 (1 − f2) . . . 0

.

..
0 0 0 . . . 1



α1

α2

...
αT



=



α1 + α2(1 − f1) + α3(1 − f1)(1 − f2) + . . .+
αT (1 − f1) . . . (1 − fT−1)

α2 + α3(1 − f2) + . . .+ αT (1 − f2) . . . (1 − fT−1)
α3 + α4(1 − f3) + . . .+ αT (1 − f3) . . . (1 − fT−1)
...
αT−1 + αT (1 − fT−1)
αT

(13)

To state the next theorem, let us introduce the sets

RCON := {s ∈ RT≥0|σcon ≤ σ(t) ≤ σblo,∀t ∈ T } (14a)

AT := {α ∈ RT≥0|CT (s) is MON,∀s ∈ RT≥0} (14b)

Acon
T := {α ∈ RT≥0|CT (s) is MON,∀s ∈ RCON}.(14c)

The following theorem gives conditions on the cost vector
αT which guarantee monotonicity of CT (s).

Theorem 3. The coefficient vector αT = [α1, . . . , αT ] ∈
AT if and only if the following two conditions hold for all
t1, t2 such that 0 ≤ t1 ≤ t2 ≤ T :

i) [αt1 , . . . , αt2 ] ∈ Acon
t2−t1+1;

ii) [αt1 , . . . , αt2−1, αt2 + αt2+1 + · · ·+ αT ] ∈ Acon
t2−t1+1.

Proof. We only prove that α ∈ AT ⇒ i) and ii) as the
other implication requires a more cumbersome notation.

“α ∈ AT ⇒ i)”: Consider σ(t) ∈ CON := {σ ∈ R≥0|σcon ≤
σ ≤ σblo} for all t, except for t̃, where σ(t̃) ∈ FREE :=
{σ ∈ R≥0|0 ≤ σ < σcon}. Since ft̃ = 1, CT (s) in (13)
becomes

CT (s)=



α1 + α2(1 − f1) + α3(1 − f1)(1 − f2) + . . .+
αt̃(1 − f1) . . . (1 − ft̃−1)

α2 + α3(1 − f2) + . . .+ αt̃(1 − f2) . . . (1 − ft̃−1)
...
αt̃−1 + αt̃(1 − ft̃−1)
αt̃
αt̃+1 + αt̃+2(1 − ft̃+1) + . . .+

αT (1 − ft̃+1) . . . (1 − fT )
...
αT


.



The vector CT (s) can be split into two subvectors: one
obtained with the first t̃ components of CT (s), and the
other with the last T − t̃ components of CT (s). The
first subvector depends on [σ1, . . . , σt̃−1] and thus only
on [s0, . . . , st̃−2], due to (12). The fact that ft̃ = 1
makes σt̃+1 independent from st̃−1 (see (12)), hence the
second subvector depends only on [st̃, . . . , sT−1]. From the
definition of monotonicity of CT (·), it follows that

• the first subvector must be MON in [s0, . . . , st̃−1],
hence it is necessary [α1, . . . , αt̃] ∈ Acon

t̃
;

• the second subvector must be MON in [st̃, . . . , sT ],
hence it is necessary [αt̃+1, . . . , αT ] ∈ Acon

T−t̃.

This proves “α ∈ AT ⇒ i)” for t1 = 1, t2 = t̃, and for
t1 = t̃+ 1, t2 = T . Generalizing to arbitrary t1, t2 is easy.

“α ∈ AT ⇒ ii)”: Consider σ(t) ∈ CON for t < t̃ and
σ(t̃) ∈ BLO := {σ ∈ R≥0|σblo < σ}. Since ft̃ = 0, one can
show that ft̃+1 = · · · = fT = 0. Hence, CT (s) becomes

CT (s)=



α1 + α2(1 − f1) + α3(1 − f1)(1 − f2) + . . .+(
αt̃ + αt̃+1 + . . .+ αT

)
(1 − f1) . . . (1 − ft̃−1)

α2 + α3(1 − f2) + . . .+(
αt̃ + αt̃+1 + . . .+ αT

)
(1 − f2) . . . (1 − ft̃−1)

...

αt̃−1 +
(
αt̃ + αt̃+1 + . . .+ αT

)
(1 − ft̃−1)

αt̃ + αt̃+1 + . . .+ αT

αt̃+1 + αt̃+2 + . . .+ αT.
..
αT


.

The vector CT (s) can thus be split into two subvectors: one
obtained with the first t̃ components (that only depend on
[s0, . . . , st̃−2]) of CT (s), and the other with the last T−t̃+1
components of CT (s) (that are constant in s). From the
definition of monotonicity of CT (·), it follows that the first
subvector must be monotone in [s0, . . . , st̃−1], hence it is
necessary that [α1, . . . , αt̃−1, αt̃+αt̃+1 + . . .+αT ] ∈ Acon

t̃−1.

This proves “α ∈ AT ⇒ ii)” for t1 = 1, t2 = t̃. It is
straightforward to generalize to any arbitrary t1, t2. 2

5. MONOTONICITY FOR HORIZONS OF LENGTH
UP TO 3

We provide conditions on the cost coefficients α that
guarantee monotonicity of CT (·) in the congested region
RCON. Conditions for monotonicity in RT≥0 can be then

derived by using Theorem 3. The operator CT (·) is contin-
uously differentiable in RCON, hence its monotonicity is
equivalent to the positive semi-definiteness of its Jacobian
∇sCT (s), for all s ∈ RCON, as proved in (Schaible et al.,
1996, Proposition 2.1). For all σcon ≤ σ(t) ≤ σblo, we

denote f ′t := ∂f(σ)
∂σ |σ=σ(t).

5.1 Horizon of length T = 1 and horizon of length T = 2

In the case T = 1, expression (13) becomes CT (s) = α1.
Since CT (s) is constant, it is clearly monotone for all α1.

In the case T = 2, expression (13) becomes CT (s) =

[α1 + α2(1− f1), α2]
T

and therefore

∇sCT (s) =

[
α2(−f ′1) 0

0 0

]
� 0,

since, by definition (2), f ′t(σ) ≤ 0, for all σ ≥ 0 (and in
particular for σ ∈ CON) and for all t (and in particular
for t = 1). Consequently CT (·) is monotone independently
from [α1, α2].

5.2 Horizon of length T = 3
In the case T = 3, expression (13) becomes

CT (s) =

[
α1 + α2(1− f1) + α3(1− f1)(1− f2)
α2 + α3(1− f2)
α3

]
.

Simple algebraic computations lead to

∇sCT (s) =

 (−f ′1)(α2 + α3(1 − f2))+
α3(−f ′2)(1 − f1) 0

α3(−f ′2)(−f ′1)σ1(1 − f1)

α3(−f ′2)(−f ′1)σ1 α3(−f ′2) 0
0 0 0

 .
It is enough to study the 2× 2 top-left matrix. Note that

• the trace is non-negative since f ′t(σ) ≤ 0,∀ σ ≥ 0,∀ t;
• the determinant is non-negative if and only if

4(α2 + α3(1− f2)) ≥ α3f
′
2f
′
1σ

2
1 (15)

holds for all σ1, σ2 ∈ CON; algebraic operations show

(15) holds for σ1 = σ2 = σCON ⇒
(15) holds for all σ1, σ2 ∈ CON,

where σCON = c
1+b , according to the outflow (1).

It follows that, to guarantee ∇sCT (s) for all s ∈ RCON,
it suffices to check condition (15) for only one point,
namely [σ1, σ2] = [σCON, σCON]. Inserting σCON = c

1+b

into condition (15) results in the following proposition.

Proposition 4. For the case T = 3, CT (·) is monotone if
and only if the following condition on [α1, α2, α3] holds:

α2

α3
≥ (1 + b)2

4
, �

6. SIMULATIONS
The game in (9) can be extended to consider a more
general network topology. Despite the lack of convergence
guarantees, we consider the network of Figure 3 and 3 users
willing to travel from Ow to Dw, each with a demand of
d = 250. The dynamics are the natural extension of (3)
to the network setup. The time horizon is T = 55, but
users are not allowed to send vehicles after t = 40 in
order to empty the network before the end. Each road
features the same outflow parameters b = 0.2 and c = 40.
Each user’s cost takes into account both time spent on the
network and the discomfort for early or late arrival, with
the coefficients of the arrival time preference in Figure 2
imposed only on the last arc before Dw. The desired arrival
windows are respectively [18, 22], [21, 25] and [16, 20]. A
stopping criterion of

∑
w 〈Cw(h)−minp [Cw(h)] 1, hw〉 ≤

10−6‖h‖ ‖C(h)‖ was set. We used this criterion since, by
Definition 2, the left-hand side tends to zero if and only if
we approach a dynamic user equilibrium. The algorithm
ran 6657 iterations with a step size of τ = 0.5. The time
evolution of σ(t) on the links is represented in Figure 3,
while the departures and the cost per actions of user 3 are
depicted in Figure 4. Figure 4 indicates that the vehicles
injection of user 3 occurs when the cost per action is
minimal, in accordance with the definition of DUE. Note
that he manages to get at the destination before the end
of his arrival window t = 20, which is not the case for the
other users, as per Figure 3. To achieve this, user 3 leaves
earlier than he would have without congestion.
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Fig. 3. Evolution of vehicle densities over time. Green tones represent free flow condition, while red indicates congestion.
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Fig. 4. Cost per action (dashed) and vehicle injections
(solid) for user 3 on his two feasible paths (red and
blue), as functions of time.

7. CONCLUSIONS

Future work includes theoretical and numerical study of
more general networks and longer time horizons.
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