Optimal incentives for socio-technical systems

Dario Paccagnan

UC SANTA BARBARA

Acknowledgements

Rahul Chandan

Bryce Ferguson

Jason Marden

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Social Systems \leftarrow -- Socio-technical Systems $--\rightarrow$ Engineered Systems

- Social Systems \leftarrow -- Socio-technical Systems -- \rightarrow Engineered Systems
 - ▷ Traffic
 - ▷ Energy Markets

- \triangleright Resource Allocation
- ▷ Sensor Coverage

Social Systems

- - ▷ Traffic ▷ Energy Markets

- Socio-technical Systems --→ Engineered Systems
 - ▷ Resource Allocation
 - ▷ Sensor Coverage

Central Goal: coordinate socio-technical systems to desirable behaviour

Social Systems

▷ Traffic ▷ Energy Markets

- Socio-technical Systems $- \rightarrow$ Engineered Systems
 - ▷ Resource Allocation
 - ▷ Sensor Coverage

Infrastructure

Infrastructure

+

Users Behavior

Infrastructure

+

Users Behavior

Performance

Infrastructure

+

Performance

Q: How to incentivize desirable system-level behaviour?

Q: How to incentivize desirable system-level behaviour?

Socio-technical systems are pervasive ...

Socio-technical systems are pervasive ...

Paradigm shift: technology now interacts with human users

... and come with key challenges

🎲 GOV.UK

Policy paper The Grand Challenges

Updated 13 September 2019

Artificial Intelligence and data

Contents Artificial Intellig

Clean growth

Future of mobility

The <mark>4 Grand Challenges</mark> are focused on the trends which will transform our future:

Search

- Artificial Intelligence and data
- Ageing society
- Clean growth
- Future of mobility

... and come with key challenges

GOV.UK Search Q Policy paper The Grand Challenges Updated 13 September 2019

Contents Artificial Intellig

Clean growth

Future of mobility

Artificial Intelligence and data

The <mark>4 Grand Challenges</mark> are focused on the trends which will transform our future:

- Artificial Intelligence and data
- Ageing society
- Clean growth
- Future of mobility

... and come with key challenges

Ageing society Clean growth

Future of mobility

- Artificial Intelligence and data
- Ageing society
- Clean growth
- Future of mobility

→ an interdisciplinary endeavour:

computer science, control theory, optimization, economics, social sciences, urban planning, ...

ROADMAP

- 2. Outlook and opportunities

Congestion is soaring...

New York

London

Nairobi

Congestion is s =

WSJ

asing congestion

TRANSIT

with mobility of MTA Blames Uber for Decline in New York City Subway, Bus Ridership

Usage dips for mass transit coincided with taxi and ride-hailing trips, data shows

...and tolls being proposed to alleviate the issue

The New York Times Over \$10 to Drive in Manhattan?

What We Know About the Congestion Pricing Plan

Forbes Most Cities Will Have To Introduce Congestion Charging, Say Experts At Global Transit Conference

...and tolls being proposed to alleviate the issue

▷ Current: blunt policies

...and tolls being proposed to alleviate the issue

 Ewe Jupic Kinns
 Forbes

 Oper \$10 to Drive in Manhattan?
 Most Cities Will Have To

 What We Know About the
 Congestion Pricing Plan

 Operating a state of the plane
 Charging, Say Experts At

 Global Transit Conference
 Charging, Say Experts At

 Global Transit Conference
 The wave of the plane

 Transit Conference
 The plane

 Transit Conference

▷ Current: blunt policies

 \triangleright Future: fine grained + adaptive pricing using location data

How do we design fine grained and adaptive congestion pricing?

> Problem: collective behaviour of selfish agents is often inefficient

> Problem: collective behaviour of selfish agents is often inefficient

> Problem: collective behaviour of selfish agents is often inefficient

> Problem: collective behaviour of selfish agents is often inefficient

System cost: 2 + 1 = 3

> Problem: collective behaviour of selfish agents is often inefficient

Congestion pricing: influence behavior to minimize total traveltime

> Problem: collective behaviour of selfish agents is often inefficient

Congestion pricing: influence behavior to minimize total traveltime

Selfish routing + tolls $\tau(x) = x$

> Problem: collective behaviour of selfish agents is often inefficient

Congestion pricing: influence behavior to minimize total traveltime

> Problem: collective behaviour of selfish agents is often inefficient

Congestion pricing: influence behavior to minimize total traveltime

> Problem: collective behaviour of selfish agents is often inefficient

Congestion pricing: influence behavior to minimize total traveltime

Q: how to compute "optimal" tolls?

- graph

- graph
- agent *i*, $\{O_i, D_i\}$

- graph
- agent i, $\{O_i, D_i\} \Rightarrow$ set of paths \mathcal{P}_i

- graph
- agent i, $\{O_i, D_i\} \Rightarrow$ set of paths \mathcal{P}_i
- latency functions $\ell_e(|p|_e)$

- graph
- agent *i*, $\{O_i, D_i\} \Rightarrow$ set of paths \mathcal{P}_i
- latency functions $\ell_e(|p|_e)$

 $\mathsf{agents' costs}$ $C_i(p) = \sum_{e \in p_i} \ell_e(|p|_e)$

- graph
- agent *i*, $\{O_i, D_i\} \Rightarrow$ set of paths \mathcal{P}_i
- latency functions $\ell_e(|p|_e)$

agents' costs $C_i(p) = \sum_{e \in p_i} \ell_e(|p|_e)$

total traveltime $\mathcal{TT}(p) = \sum_{e \in E} |p|_e \ell_e(|p|_e)$

- graph
- agent *i*, $\{O_i, D_i\} \Rightarrow$ set of paths \mathcal{P}_i
- latency functions $\ell_e(|p|_e)$

agents' costs $C_i(p) = \sum \ell_e(|p|_e)$ e∈pi

total traveltime $TT(p) = \sum |p|_e \ell_e(|p|_e)$ e∈F

total travel time in worst equilibrium minimum total travel time

Inefficiency =

- graph
- agent *i*, $\{O_i, D_i\} \Rightarrow$ set of paths \mathcal{P}_i
- latency functions $\ell_e(|p|_e)$

agents' costs $C_i(p) = \sum_{e \in p_i} \ell_e(|p|_e)$

total traveltime $TT(p) = \sum_{e \in E} |p|_e \ell_e(|p|_e)$

 $\label{eq:integration} {\sf Inefficiency} \quad = \max_{{\sf set of instances}} \frac{{\sf total travel time in worst equilibrium}}{{\sf minimum total travel time}}$

- graph
- agent *i*, $\{O_i, D_i\} \Rightarrow$ set of paths \mathcal{P}_i
- latency functions $\ell_e(|p|_e)$

agents' costs $C_i(p) = \sum_{e \in p_i} \ell_e(|p|_e)$

total traveltime $TT(p) = \sum_{e \in E} |p|_e \ell_e(|p|_e)$

 $\label{eq:Price} \mbox{Price of Anarchy} \; = \; \max_{\mbox{set of instances}} \; \frac{\mbox{total travel time in worst equilibrium}}{\mbox{minimum total travel time}}$

- graph
- agent *i*, $\{O_i, D_i\} \Rightarrow$ set of paths \mathcal{P}_i
- latency functions $\ell_e(|p|_e)$

 $\begin{array}{l} \text{agents' costs} \\ C_i(p) = \sum_{e \in p_i} \ell_e(|p|_e) + \tau_e(|p|_e) \end{array}$

total traveltime $\mathcal{TT}(p) = \sum_{e \in E} |p|_e \ell_e(|p|_e)$

 $\label{eq:Price} \mbox{Price of Anarchy} \; = \; \max_{\mbox{set of instances}} \; \frac{\mbox{total travel time in worst equilibrium}}{\mbox{minimum total travel time}}$

- graph
- agent *i*, $\{O_i, D_i\} \Rightarrow$ set of paths \mathcal{P}_i
- latency functions $\ell_e(|p|_e)$

 $\begin{array}{l} \text{agents' costs} \\ C_i(p) = \sum_{e \in p_i} \ell_e(|p|_e) + \tau_e(|p|_e) \end{array}$

total traveltime $\mathcal{TT}(p) = \sum_{e \in E} |p|_e \ell_e(|p|_e)$

 $Price of Anarchy = \max_{set of instances} \frac{total travel time in worst equilibrium}{minimum total travel time}$

- graph
- agent *i*, $\{O_i, D_i\} \Rightarrow$ set of paths \mathcal{P}_i
- latency functions $\ell_e(|p|_e)$

 $\begin{array}{l} \text{agents' costs} \\ C_i(p) = \sum_{e \in p_i} \ell_e(|p|_e) + \tau_e(|p|_e) \end{array}$

total traveltime $\mathcal{TT}(p) = \sum_{e \in E} |p|_e \ell_e(|p|_e)$

 $\frac{\text{Price of Anarchy}}{\text{set of instances}} = \max_{\text{set of instances}} \frac{\text{total travel time in worst equilibrium}}{\text{minimum total travel time}}$

12

- graph
- agent i, $\{O_i, D_i\} \Rightarrow$ set of paths \mathcal{P}_i
- latency functions $\ell_e(|p|_e)$

agents' costs $C_i(p) = \sum_{e \in p_i} \ell_e(|p|_e) + \tau_e(|p|_e)$ total traveltime $\mathcal{TT}(p) = \sum_{e \in E} |p|_e \ell_e(|p|_e)$

Price of Anarchy $= \max_{\text{set of instances}}$

total travel time in worst equilibrium

minimum total travel time

Goal: design tolls that minimize price of anarchy

full info: $\tau_e = T(\{O_i, D_i\}, \{\ell_e\}, \text{graph})$

full info: $\tau_e = T(\{O_i, D_i\}, \{\ell_e\}, \text{graph})$

full info: $\tau_e = T(\{O_i, D_i\}, \{\ell_e\}, \text{graph})$

full info: $\tau_e = T(\{O_i, D_i\}, \{\ell_e\}, \text{graph})$

full info: $\tau_e = T(\{O_i, D_i\}, \{\ell_e\}, \text{graph})$

- + more performance
- requires more computation
- not robust

full info: $\tau_e = T(\{O_i, D_i\}, \{\ell_e\}, \text{graph})$

- + more performance
- requires more computation
- not robust

- less performance
- + simpler computation
- + robust

Congestion games (Rosenthal 1973)

▷ Congestion games (Rosenthal 1973)

applied to: road-traffic, electricity markets, load balancing, network

design, sensor allocation, wireless data networks

Congestion games (Rosenthal 1973)

applied to: road-traffic, electricity markets, load balancing, network

design, sensor allocation, wireless data networks

Price of anarchy (Koutsoupias, Papadimitriou 1999)

Congestion games (Rosenthal 1973)

applied to: road-traffic, electricity markets, load balancing, network

design, sensor allocation, wireless data networks

Price of anarchy (Koutsoupias, Papadimitriou 1999)

Congestion games (Rosenthal 1973)

applied to: road-traffic, electricity markets, load balancing, network

design, sensor allocation, wireless data networks

Price of anarchy (Koutsoupias, Papadimitriou 1999)

Congestion games (Rosenthal 1973)

applied to: road-traffic, electricity markets, load balancing, network

design, sensor allocation, wireless data networks

Price of anarchy (Koutsoupias, Papadimitriou 1999)

Congestion games (Rosenthal 1973)

applied to: road-traffic, electricity markets, load balancing, network

design, sensor allocation, wireless data networks

Price of anarchy (Koutsoupias, Papadimitriou 1999)

Congestion games (Rosenthal 1973)

applied to: road-traffic, electricity markets, load balancing, network

design, sensor allocation, wireless data networks

Price of anarchy (Koutsoupias, Papadimitriou 1999)

$\geq 6000~\text{citations}$

Congestion games (Rosenthal 1973)

applied to: road-traffic, electricity markets, load balancing, network

design, sensor allocation, wireless data networks

Price of anarchy (Koutsoupias, Papadimitriou 1999)

$\geq 6000~\text{citations}$

 → quantification: Papadimitriou, Tardos, Roughgarden, Nisan, Suri, Vazirani, Stier-Moses, Anshelevich, Christodoulou, Aland, Gairing, ...
→ optimization: Wierman, Roughgarden, Marden, Caragiannis, Gairing, Biló, ... 14

Main result: first solution to design of optimal tolls in congestion games (via linear programming)

Main result: first solution to design of optimal tolls in congestion games (via linear programming)

 \triangleright **Example**: prices of anarchy for polynomial latencies of degree *d*

Main result: first solution to design of optimal tolls in congestion games (via linear programming)

 \triangleright **Example**: prices of anarchy for polynomial latencies of degree *d*

d	Untolled	
	[1, 2, 3,]	
1	2.50	
2	9.58	
3	41.54	
4	267.64	
5	1513.57	

Main result: first solution to design of optimal tolls in congestion games (via linear programming)

 \triangleright **Example**: prices of anarchy for polynomial latencies of degree *d*

d	Untolled		
	[1, 2, 3,]		
1	2.50		
2	9.58		
3	41.54		
4	267.64		
5	1513.57		

 \sim Approach recovers altogether [1, 2, 3, ...] + produces novel results

Main result: first solution to design of optimal tolls in congestion games (via linear programming)

 \triangleright **Example**: prices of anarchy for polynomial latencies of degree d

d	Untolled	Lower bound	Ĩ	
	[1, 2, 3,]	full info [4, 5]		
1	2.50	2		
2	9.58	5		
3	41.54	15		
4	267.64	52		
5	1513.57	203		

 \sim Approach recovers altogether [1, 2, 3, ...] + produces novel results

Main result: first solution to design of optimal tolls in congestion games (via linear programming)

 \triangleright **Example**: prices of anarchy for polynomial latencies of degree d

d	Untolled	Lower bound	ľ k	Optimal toll		
	[1, 2, 3,]	full info [4, 5]		local info	1	
1	2.50	2		2.01		
2	9.58	5		5.10)	
3	41.54	15		15.55	5	
4	267.64	52		55.45	5	
5	1513.57	203		220.40)	

 \sim Approach recovers altogether [1, 2, 3, ...] + produces novel results

Main result: first solution to design of optimal tolls in congestion games (via linear programming)

 \triangleright **Example**: prices of anarchy for polynomial latencies of degree d

d	Untolled	Lower bound	ľ k	Optimal toll		
	[1, 2, 3,]	full info [4, 5]		local info	1	
1	2.50	2		2.01		
2	9.58	5		5.10)	
3	41.54	15		15.55	5	
4	267.64	52		55.45	5	
5	1513.57	203		220.40)	

→ Approach recovers altogether [1, 2, 3, ...] + produces novel results → Tolls based on local info \approx tolls with full info

Main result: first solution to design of optimal tolls in congestion games (via linear programming)

 \triangleright **Example**: prices of anarchy for polynomial latencies of degree d

d	Untolled	Lower bound	ľ,	Optimal toll	Optimal toll
	[1, 2, 3,]	tull into [4, 5]	3	local into	local into & constant
1	2.50	2		2.01	2.15
2	9.58	5		5.10	5.33
3	41.54	15		15.55	18.36
4	267.64	52		55.45	89.41
5	1513.57	203		220.40	469.74

 \rightsquigarrow Approach recovers altogether [1, 2, 3, ...] + produces novel results \rightsquigarrow Tolls based on local info \approx tolls with full info

Main result: first solution to design of optimal tolls in congestion games (via linear programming)

 \triangleright **Example**: prices of anarchy for polynomial latencies of degree d

Untolled [1, 2, 3,]	Lower bound full info [4, 5]	Ļ.	Optimal toll local info	Optimal toll local info & constant
2.50	2		2.01	2.15
9.58	5		5.10	5.33
41.54	15		15.55	18.36
267.64	52		55.45	89.41
1513.57	203		220.40	469.74
	Untolled [1, 2, 3,] 2.50 9.58 41.54 267.64 1513.57	UntolledLower bound[1, 2, 3,]full info [4, 5]2.5029.58541.5415267.64521513.57203	Untolled Lower bound [1, 2, 3,] full info [4, 5] 2.50 2 9.58 5 41.54 15 267.64 52 1513.57 203	Untolled Lower bound Optimal toll local info [1, 2, 3,] full info [4, 5] Image: Constraint of the second seco

→ Approach recovers altogether [1, 2, 3, ...] + produces novel results → Tolls based on local info \approx tolls with full info → Tolls based on local info & constant do not lose much

How did we obtain this result?

- 1. Structure of optimal tolls: optimal tolls are linear
- 2. LP to characterize efficiency of linear tolls
- 3. LP to compute optimal tolls
$PoA = \sup_{\text{set of instances}} \left(\frac{\text{total traveltime in worst equilibrium}}{\text{minimum total traveltime}} \right)$

 $PoA = \sup_{\text{set of instances}} \left(\frac{\text{total traveltime in worst equilibrium}}{\text{minimum total traveltime}} \right)$

 $PoA = \sup_{\text{set of instances}} \left(\frac{\text{total traveltime in worst equilibrium}}{\text{minimum total traveltime}} \right)$

Set of instances:

- any graph

PoA =	sup
	set of instances

 $\left(\frac{\text{total traveltime in worst equilibrium}}{\text{minimum total traveltime}}\right)$

Set of instances:

- any graph, any pairs (O_i, D_i)

$PoA = \sup_{set of instances}$	(total traveltime in worst equilibrium)
	minimum total traveltime

Set of instances:

- any graph, any pairs (O_i, D_i), any # of agents $|N| \leq n$

 $PoA = \sup_{\text{set of instances}} \left(\frac{\text{total traveltime in worst equilibrium}}{\text{minimum total traveltime}} \right)$

Set of instances:

- any graph, any pairs (O_i, D_i), any # of agents $|N| \le n$
- any latency $\ell \in \mathcal{L}$

 $PoA = \sup_{\text{set of instances}} \left(\frac{\text{total traveltime in worst equilibrium}}{\text{minimum total traveltime}} \right)$

Set of instances:

- any graph, any pairs (O_i, D_i), any # of agents $|N| \leq n$
- any latency $\ell \in \mathcal{L} = \{\sum_{j=1}^m lpha_j \cdot b_j(x), \quad lpha_j \geq 0\}$

 $PoA = \sup_{\text{set of instances}} \left(\frac{\text{total traveltime in worst equilibrium}}{\text{minimum total traveltime}} \right)$

Set of instances:

- any graph, any pairs (O_i, D_i), any # of agents $|N| \leq n$

- any latency $\ell \in \mathcal{L} = \{\sum_{j=1}^{m} \alpha_j \cdot b_j(x), \quad \alpha_j \ge 0\}$ for given bases in $B = \{b_1(x), \dots, b_m(x)\}$

 $PoA = \sup_{\text{set of instances}} \left(\frac{\text{total traveltime in worst equilibrium}}{\text{minimum total traveltime}} \right)$

Set of instances:

- any graph, any pairs (O_i, D_i), any # of agents $|N| \leq n$

- any latency $\ell \in \mathcal{L} = \{\sum_{j=1}^{m} \alpha_j \cdot b_j(x), \quad \alpha_j \ge 0\}$ for given bases in $B = \{b_1(x), \dots, b_m(x)\}$

Local tolling scheme: $au_e = T(\ell_e)$

 $PoA(B, n, T) = \sup_{\text{set of instances}} \left(\frac{\text{total traveltime in worst equilibrium}}{\text{minimum total traveltime}} \right)$

Set of instances:

- any graph, any pairs (O_i, D_i) , any # of agents $|N| \leq n$

- any latency $\ell \in \mathcal{L} = \{\sum_{j=1}^{m} \alpha_j \cdot b_j(x), \alpha_j \ge 0\}$ for given bases in $B = \{b_1(x), \ldots, b_m(x)\}$

Local tolling scheme: $\tau_e = T(\ell_e)$

 $PoA(B, n, T) = \sup_{\text{set of instances}} \left(\frac{\text{total traveltime in worst equilibrium}}{\text{minimum total traveltime}} \right)$

Set of instances:

- any graph, any pairs (O_i, D_i), any # of agents $|N| \leq n$

- any latency $\ell \in \mathcal{L} = \{\sum_{j=1}^{m} \alpha_j \cdot b_j(x), \quad \alpha_j \ge 0\}$ for given bases in $B = \{b_1(x), \dots, b_m(x)\}$

Local tolling scheme: $au_e = T(\ell_e)$

Claim: There exists a local optimal tolling T^{opt} that is linear, i.e., $T^{\text{opt}}(\ell_e) = T^{\text{opt}}\left(\sum_j \alpha_j^e \cdot b_j\right) = \sum_j \alpha_j^e \cdot T^{\text{opt}}(b_j)$

 $PoA(B, n, T) = \sup_{\text{set of instances}} \left(\frac{\text{total traveltime in worst equilibrium}}{\text{minimum total traveltime}} \right)$

Set of instances:

- any graph, any pairs (O_i, D_i), any # of agents $|N| \leq n$
- any latency $\ell \in \mathcal{L} = \{\sum_{j=1}^{m} \alpha_j \cdot b_j(x), \quad \alpha_j \ge 0\}$ for given bases in $B = \{b_1(x), \dots, b_m(x)\}$

Local tolling scheme: $au_e = T(\ell_e)$

Claim: There exists a local optimal tolling T^{opt} that is linear, i.e., $T^{\text{opt}}(\ell_e) = T^{\text{opt}}\left(\sum_j \alpha_j^e \cdot b_j\right) = \sum_j \alpha_j^e \cdot T^{\text{opt}}(b_j)$

 \triangleright finding $T^{opt}(b_i)$ is sufficient!

[Paccagnan, et al.]

Theorem: given $b_1(x), \ldots, b_m(x)$, and linear tolls T, let $f_j = b_j + T(b_j)$.

[Paccagnan, et al.]

Theorem: given $b_1(x), \ldots, b_m(x)$, and linear tolls T, let $f_j = b_j + T(b_j)$. PoA $(B, n, T) = 1/C^*$

[Paccagnan, et al.]

Theorem: given $b_1(x), \ldots, b_m(x)$, and linear tolls T, let $f_j = b_j + T(b_j)$. $PoA(B, n, T) = 1/C^*$ $C^* = \max_{\nu \in \mathbb{R}_{>0}, \rho \in \mathbb{R}} \rho$

Theorem: given $b_1(x), \ldots, b_m(x)$, and linear tolls T, let $f_j = b_j + T(b_j)$. $PoA(B, n, T) = 1/C^*$ $C^* = \max_{\nu \in \mathbb{R} \ge 0, \rho \in \mathbb{R}} \rho$ s.t. $b_j(x+z)(x+z) - \rho b_j(x+y)(x+y) + \nu [f_j(x+y)y - f_j(x+y+1)z] \ge 0$

```
[Paccagnan, et al.]
```

Theorem: given $b_1(x), \ldots, b_m(x)$, and linear tolls T, let $f_j = b_j + T(b_j)$. $PoA(B, n, T) = 1/C^*$ $C^* = \max_{\nu \in \mathbb{R}_{\geq 0}, \rho \in \mathbb{R}} \rho$ s.t. $b_j(x+z)(x+z) - \rho b_j(x+y)(x+y) + \nu [f_j(x+y)y - f_j(x+y+1)z] \ge 0$ $\forall j \in \{1, \ldots, m\}$

```
[Paccagnan, et al.]
```

Theorem: given $b_1(x), \ldots, b_m(x)$, and linear tolls T, let $f_j = b_j + T(b_j)$. $PoA(B, n, T) = 1/C^*$ $C^* = \max_{\nu \in \mathbb{R}_{\geq 0}, \rho \in \mathbb{R}} \rho$ s.t. $b_j(x+z)(x+z) - \rho b_j(x+y)(x+y) + \nu [f_j(x+y)y - f_j(x+y+1)z] \ge 0$ $\forall j \in \{1, \ldots, m\}, \quad \forall (x, y, z) \in \mathbb{N}^3 \text{ with } x + y + z \le n$

Theorem: given $b_1(x), \ldots, b_m(x)$, and linear tolls T, let $f_j = b_j + T(b_j)$. $PoA(B, n, T) = 1/C^*$ $C^* = \max_{\nu \in \mathbb{R}_{\geq 0}, \rho \in \mathbb{R}} \rho$ s.t. $b_j(x+z)(x+z) - \rho b_j(x+y)(x+y) + \nu [f_j(x+y)y - f_j(x+y+1)z] \ge 0$ $\forall j \in \{1, \ldots, m\}, \quad \forall (x, y, z) \in \mathbb{N}^3 \text{ with } x + y + z \le n$

 $arphi |\mathcal{I}| = \mathcal{O}(n^3)$, but suffices $\mathcal{O}(n^2)$

Theorem: given $b_1(x), \ldots, b_m(x)$, and linear tolls T, let $f_j = b_j + T(b_j)$. $PoA(B, n, T) = 1/C^*$ $C^* = \max_{\nu \in \mathbb{R}_{\geq 0}, \rho \in \mathbb{R}} \rho$ s.t. $b_j(x+z)(x+z) - \rho b_j(x+y)(x+y) + \nu [f_j(x+y)y - f_j(x+y+1)z] \ge 0$ $\forall j \in \{1, \ldots, m\}, \quad \forall (x, y, z) \in \mathbb{N}^3 \text{ with } x + y + z \le n$

▷ $|\mathcal{I}| = \mathcal{O}(n^3)$, but suffices $\mathcal{O}(n^2)$ ▷ gives worst-case instance

$$PoA = \sup_{set of instances} \left(\frac{1}{2} \right)$$

 $\left(\frac{\text{total travel time in worst equilibrium}}{\text{minimum total travel time}}\right)$

$$\mathrm{PoA} = \sup_{\mathcal{G} \in \mathcal{G}} \left(\frac{\text{total travel time in worst equilibrium}}{\text{minimum total travel time}} \right)$$

$$PoA = \sup_{G \in \mathcal{G}} \left(\frac{\max_{p \in NE(G)} TT(p)}{\text{minimum total travel time}} \right)$$

$$PoA = \sup_{G \in \mathcal{G}} \left(\frac{\max_{p \in NE(G)} TT(p)}{\min_{p \in \mathcal{P}} TT(p)} \right)$$

$$PoA = \sup_{G \in \mathcal{G}} \left(\frac{\max_{p \in NE(G)} TT(p)}{\min_{p \in \mathcal{P}} TT(p)} \right)$$

Key idea: transform the definition of PoA itself into a linear program

$$PoA = \sup_{G \in \mathcal{G}} \left(\frac{\max_{p \in NE(G)} TT(p)}{\min_{p \in \mathcal{P}} TT(p)} \right)$$

Key idea: transform the definition of PoA itself into a linear program

1. reduce to only two allocations: optimal o and worst-equilibrium e

$$PoA = \sup_{G \in \mathcal{G}} \left(\frac{\max_{p \in NE(G)} TT(p)}{\min_{p \in \mathcal{P}} TT(p)} \right)$$

Key idea: transform the definition of PoA itself into a linear program

1. reduce to only two allocations: optimal o and worst-equilibrium e

$$\operatorname{PoA} = \sup_{\mathcal{G} \in \tilde{\mathcal{G}}} \left(\frac{TT(e)}{TT(o)} \right) \quad \text{s.t.} \quad C_i(e_i, e_{-i}) \leq C_i(o_i, e_{-i}) \quad \forall i$$

$$PoA = \sup_{G \in \mathcal{G}} \left(\frac{\max_{p \in NE(G)} TT(p)}{\min_{p \in \mathcal{P}} TT(p)} \right)$$

Key idea: transform the definition of PoA itself into a linear program

1. reduce to only two allocations: optimal o and worst-equilibrium e

$$\operatorname{PoA} = \sup_{G \in \tilde{\mathcal{G}}} \left(\frac{TT(e)}{TT(o)} \right) \quad \text{s.t.} \quad C_i(e_i, e_{-i}) \leq C_i(o_i, e_{-i}) \quad \forall i$$

2. relax the previous program

$$\operatorname{PoA} = \sup_{G \in \tilde{\mathcal{G}}} \left(\frac{TT(e)}{TT(o)} \right) \quad \text{s.t.} \quad \sum_{i} C_{i}(e_{i}, e_{-i}) \leq \sum_{i} C_{i}(o_{i}, e_{-i})$$

$$PoA = \sup_{G \in \mathcal{G}} \left(\frac{\max_{p \in NE(G)} TT(p)}{\min_{p \in \mathcal{P}} TT(p)} \right)$$

Key idea: transform the definition of PoA itself into a linear program

1. reduce to only two allocations: optimal o and worst-equilibrium e

$$\operatorname{PoA} = \sup_{\mathcal{G} \in \tilde{\mathcal{G}}} \left(\frac{TT(e)}{TT(o)} \right) \quad \text{s.t.} \quad C_i(e_i, e_{-i}) \leq C_i(o_i, e_{-i}) \quad \forall i$$

2. relax the previous program

$$\operatorname{PoA} = \sup_{G \in \tilde{\mathcal{G}}} \left(\frac{TT(e)}{TT(o)} \right) \quad \text{s.t.} \quad \sum_{i} C_{i}(e_{i}, e_{-i}) \leq \sum_{i} C_{i}(o_{i}, e_{-i})$$

3. how to parametrize an instance $G \in \tilde{\mathcal{G}}$?

$$PoA = \sup_{G \in \mathcal{G}} \left(\frac{\max_{p \in NE(G)} TT(p)}{\min_{p \in \mathcal{P}} TT(p)} \right)$$

Key idea: transform the definition of PoA itself into a linear program

1. reduce to only two allocations: optimal o and worst-equilibrium e

$$\operatorname{PoA} = \sup_{G \in \widetilde{\mathcal{G}}} \left(\frac{TT(e)}{TT(o)} \right) \quad \text{s.t.} \quad C_i(e_i, e_{-i}) \leq C_i(o_i, e_{-i}) \quad \forall i$$

2. relax the previous program

$$\operatorname{PoA} = \sup_{G \in \tilde{\mathcal{G}}} \left(\frac{TT(e)}{TT(o)} \right) \quad \text{s.t.} \quad \sum_{i} C_{i}(e_{i}, e_{-i}) \leq \sum_{i} C_{i}(o_{i}, e_{-i})$$

3. how to parametrize an instance $G \in \tilde{\mathcal{G}}$? $\mathcal{O}(n^3)$ variables suffice for TT(e), TT(o), $\sum_i C_i(e) - C_i(o_i, e_{-i})$

$$PoA = \sup_{G \in \mathcal{G}} \left(\frac{\max_{p \in NE(G)} TT(p)}{\min_{p \in \mathcal{P}} TT(p)} \right)$$

Key idea: transform the definition of PoA itself into a linear program

1. reduce to only two allocations: optimal o and worst-equilibrium e

$$\operatorname{PoA} = \sup_{\mathcal{G} \in \tilde{\mathcal{G}}} \left(\frac{TT(e)}{TT(o)} \right) \quad \text{s.t.} \quad C_i(e_i, e_{-i}) \leq C_i(o_i, e_{-i}) \quad \forall i$$

2. relax the previous program

$$\operatorname{PoA} = \sup_{G \in \tilde{\mathcal{G}}} \left(\frac{TT(e)}{TT(o)} \right) \quad \text{s.t.} \quad \sum_{i} C_i(e_i, e_{-i}) \leq \sum_{i} C_i(o_i, e_{-i})$$

3. how to parametrize an instance $G \in \tilde{\mathcal{G}}$? $\mathcal{O}(n^3)$ variables suffice for TT(e), TT(o), $\sum_i C_i(e) - C_i(o_i, e_{-i})$

4. massage and take the dual

Designing optimal tolls

Designing optimal tolls

[Paccagnan, et al.]

Theorem: Given $b_1(x), \ldots, b_m(x)$, an optimal local toll is given by $T^{opt}(\ell_e) = \sum_j \alpha_j^e \cdot T^{opt}(b_j)$ where $T^{opt}(b_j) = f_j^{opt} - b_j$

Designing optimal tolls

[Paccagnan, et al.]

Theorem: Given $b_1(x), \ldots, b_m(x)$, an optimal local toll is given by $T^{opt}(\ell_e) = \sum_j \alpha_j^e \cdot T^{opt}(b_j)$ where $T^{opt}(b_j) = f_j^{opt} - b_j$ $f_j^{opt} \in \underset{f_j \in \mathbb{R}^n, \rho \in \mathbb{R}}{\operatorname{arg\,max}} \rho$ s.t. $b_j(x+z)(x+z) - \rho b_j(x+y)(x+y) + f_j(x+y)y - f_j(x+y+1)z \ge 0$ $\forall (x, y, z) \in \mathcal{I}$
Designing optimal tolls

[Paccagnan, et al.]

Theorem: Given $b_1(x), \ldots, b_m(x)$, an optimal local toll is given by $T^{opt}(\ell_e) = \sum_j \alpha_j^e \cdot T^{opt}(b_j)$ where $T^{opt}(b_j) = f_j^{opt} - b_j$ $f_j^{opt} \in \underset{f_j \in \mathbb{R}^n, \rho \in \mathbb{R}}{\operatorname{arg max}} \rho$ s.t. $b_j(x+z)(x+z) - \rho b_j(x+y)(x+y) + f_j(x+y)y - f_j(x+y+1)z \ge 0$ $\forall (x, y, z) \in \mathcal{I}$

Designing optimal tolls

[Paccagnan, et al.]

Theorem: Given $b_1(x), \ldots, b_m(x)$, an optimal local toll is given by $T^{\text{opt}}(\ell_e) = \sum_j \alpha_j^e \cdot T^{\text{opt}}(b_j) \text{ where } T^{\text{opt}}(b_j) = f_j^{\text{opt}} - b_j$ $f_j^{\text{opt}} \in \underset{f_j \in \mathbb{R}^n, \rho \in \mathbb{R}}{\operatorname{arg max}} \rho$ s.t. $b_j(x+z)(x+z) - \rho b_j(x+y)(x+y) + f_j(x+y)y - f_j(x+y+1)z \ge 0$ $\forall (x, y, z) \in \mathcal{I}$

Congestion-pricing as mechanism for road-traffic routing > first solution to design of optimal tolls in congestion games

Congestion-pricing as mechanism for road-traffic routing \triangleright first solution to design of optimal tolls in congestion games \triangleright computing/optimizing efficiency of equilibria is a tractable LP

Congestion-pricing as mechanism for road-traffic routing \triangleright first solution to design of optimal tolls in congestion games \triangleright computing/optimizing efficiency of equilibria is a tractable LP

Consequences:

 \rightsquigarrow recovers/generalizes existing results altogether

- \rightsquigarrow local information as good as full information
- \rightsquigarrow simple mechanisms do not loose performance

Congestion-pricing as mechanism for road-traffic routing \triangleright first solution to design of optimal tolls in congestion games \triangleright computing/optimizing efficiency of equilibria is a tractable LP

Consequences:

 \rightsquigarrow recovers/generalizes existing results altogether \rightsquigarrow local information as good as full information \rightsquigarrow simple mechanisms do not loose performance

Opportunities: novel framework is still unexplored

Congestion-pricing as mechanism for road-traffic routing \triangleright first solution to design of optimal tolls in congestion games \triangleright computing/optimizing efficiency of equilibria is a tractable LP

Consequences:

→ recovers/generalizes existing results altogether
→ local information as good as full information
→ simple mechanisms do not loose performance

Opportunities: novel framework is still unexplored

- constraints on tolls
- carrots vs sticks

. . .

- knowledge on the latency functions