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Abstract— We study the potential of a population of ther-
mostatically controlled loads to track desired power signals
with provable guarantees. Based on connecting the temperature
state of an individual device with its internal energy, we derive
necessary conditions that a given power signal needs to satisfy
in order for the aggregation of devices to track it using
non-disruptive probabilistic switching control. Our derivation
takes into account hybrid individual dynamics, an accurate
continuous-time Markov chain model for the population dy-
namics and bounds on switching rates of individual devices.
We illustrate the approach with case studies.

I. INTRODUCTION

Increasing penetration of renewable energy and liberaliza-
tion of electricity markets are significantly changing power
system operations. Since in a power grid demand and supply
must at all times be balanced, the unpredictability in the
renewable energy generation increases the need for ancillary
services, which are today mainly covered by conventional
generators. With the advancement of smart grid sensing
and communication infrastructure, household appliances can
provide new means for ancillary services. For example, the
power consumption of a population of Thermostatically Con-
trolled Loads (TCLs) can follow a desired trajectory obtained
based on the fluctuation of renewable energy generation [1].

A main challenge in the participation of a population
of TCLs in ancillary service markets is characterizing the
set of power trajectories that can be tracked with provable
guarantees. Once this set is determined, control schemes need
to be developed so that the population can track any power
signal within this set with a desired accuracy. The objective
of this paper is to find fundamental limits on the set of
power trajectories that can be tracked by an aggregation of
TCLs. To do so, a dynamical model for power consumption
of the population of TCLs needs to be developed. While
an individual TCL can be described as a hybrid dynamical
system, developing an accurate population description that is
simple enough for analysis and control design is challenging.

Previous work has extensively studied developing pop-
ulation dynamics for TCLs. In [2] the probability density
function (PDF) of a homogenous aggregation of TCLs is
characterized. In [1] solutions to the PDF were derived and
a linear model was developed to account for heterogeneity
and control of the population by varying their temperature set
points. Discrete-time Markov chain abstractions of the PDF
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were developed in [3], [4]. A more detailed description based
on a two-dimensional hybrid system is proposed in [5] and
the corresponding PDF evolution is studied. All the above
approaches use the aggregate dynamics to design controllers
to track a given power trajectory, but do not a priori quantify
the set of power signals that the population can track.

The mean field approach has been applied to a population
of TCLs in order to develop decentralized control schemes
[6], [7]. Here, each TCL optimizes a cost function that
reflects its desired behavior, such as minimal consumption,
and a term accounting for its contribution to the aggregate
power consumption. Linear dynamic is assumed for indi-
vidual TCLs and the switching between the on/off modes
is removed. A similar framework is also developed in [8],
where the authors address the problem of ensuring that the
power grid frequency is maintained within required bounds.

Recently, a storage model for a population of TCLs was
introduced in [9], [10]. Here, the hybrid dynamics of TCLs
is approximated, and then a generalized battery model for
an aggregation of these was introduced. The authors provide
necessary and sufficient conditions to characterize the set
of feasible power trajectories for the simplified dynamics.
The performance was validated on a realistic simulation with
hybrid dynamics. Our work is inspired by this approach.

The main objective of this paper is to characterize the set
of feasible power trajectories of a population of TCLs, using
accurate individual models of the TCLs. As such, this paper
has three contributions. First, we derive a continuous-time
Markov chain description of a population of TCLs under
probabilistic switching control. We use this to characterize
the limits of performance of population control of TCLs
by analyzing the transients and steady-state distributions of
the controlled dynamics. Second, by connecting the energy
state of individual TCLs with the average temperature of the
aggregation, we characterize the set of feasible trajectories,
in horizon of minutes to hours, under rate limited switching
control. Third, to illustrate the approach, we develop a
simple controller to track a given power trajectory. The
derived bounds on feasible trajectories are useful for ancillary
services such as load following or energy arbitrage [10].

The paper is organized as follows. In Section II we detail
the individual and population model. In Section III we
discuss the discretization scheme and analyze the transients
and steady states of the controlled population. In Section
IV we develop bounds on the feasible power trajectories
under rate-limited probabilistic switching control. In Section
V, we study the effectiveness of our bounds using numerics.
In Section VI we conclude and summarize future work.



II. INDIVIDUAL AND AGGREGATE MODELS FOR TCLS

A. Individual TCL Model

Thermostatically controlled loads are household appli-
ances, such as electric heaters, water heaters, and air con-
ditioners, that operate in two discrete modes: on and off.
When in the on mode, the device consumes a constant
amount of power to cool down or to heat up the space.
In the off mode no electricity is used and the temperature
naturally evolves towards the ambient temperature. Given the
discrete dynamics of the mode and the continuous evolution
of the temperature, an individual TCL is modeled as a hybrid
system. The state of a single unit is characterized by the pair
(X,m) ∈ R × {0, 1} representing the temperature and the
mode. The continuous dynamics is governed by the following
stochastic differential equation

dX =

(
− 1

CR
(X − θa)±m ηP

C

)
dt+ σdω , (1)

where the signs + and − refer respectively to heating and
cooling devices. The first term in the drift from (1) takes into
account the ambient losses, ηPC represents the input from the
TCL, σ > 0 and dω is a Wiener process capturing model
uncertainties. The parameters C,R, θa, P, η ∈ R+ are ther-
mal capacitance and resistance, ambient temperature, electric
power, and coefficient of performance, respectively. In the
following, let us consider a cooling unit and use subscripts
1 and 0 to refer to the on and off modes respectively.
Each TCL is designed to operate between a temperature
deadband [θ−, θ+] and the discrete state transition is usually
modelled with deterministic hard boundaries of the form

m(t+ dt) =


1 , X(t) ≥ θ+

m(t) , X(t) ∈ (θ−, θ+)

0 , X(t) ≤ θ−
, (2)

see for example [2] and [1]. In this work we use soft
boundaries and define the transition probability from one
mode to the other as

P(m(t+ dt) = i |m(t) = j,X(t) = x) = λji(x)dt+O(dt),
(3)

with i 6= j, i, j = 0, 1. In particular, the rates λ10(x), λ01(x):
R → R+ are taken to be zero respectively in the intervals
[θ−, +∞) and (−∞, θ+], while they grow quickly outside
these intervals as Figure 1 exemplifies.
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Fig. 1: Example of rate λ10(x) for the soft boundaries.

The choice of soft boundaries has been made for two rea-
sons. First, each thermostat does not instantaneously detect
when the boundary of the deadband is reached, introducing
some delay before the switch is triggered. Second, the
resulting model qualitatively takes into account heterogeneity
in the deadband interval, i.e. the fact that different units

may have slightly different deadbands. Furthermore, it has
been shown that the approximated stochastic process using
soft boundaries converges in distribution to that using hard
boundaries as the switching rates near the boundaries in-
crease [11]. For the problem at hand, the stationary distribu-
tion corresponding to hard and soft boundaries are compared
in Figure 3.

Throughout the paper, we use the values of the physical
constants as in the following table, representing typical
residential air conditioning (AC) systems [10].

TABLE I: Typical parameter values for residential ACs.
Parameter C R P σ η θa θ+ θ−

Value 1.5 2 4 0.01 2.5 26 20 19
Units kWh/◦C ◦C/kW kW ◦C - ◦C ◦C ◦C

Our objective is to exploit the flexibility in the pop-
ulation of TCLs by shaping their power demand within
the allowed limits. It is therefore necessary to introduce a
control element in the previous model to change the aggre-
gate power consumption. We introduce the rate functions
µ10(x, t), µ01(x, t) : R × R+ → R+ and we modify the
way the system naturally switches from (3) to

P(m(t+ dt) = i |m(t) = j,X(t) = x) =

= λji(x)dt+ µji(x, t)dt+O(dt) ,
(4)

with i 6= j, i, j = 0, 1. The implementation of the switching
control at the individual TCL level will be discussed in V.
Since this approach may introduce a higher switching rate
and wear out the devices, an upper bound is introduced

µ01(x, t) ≤ µ̄01 , µ10(x, t) ≤ µ̄10 . (5)

B. Aggregate TCL Model

Let us denote with f1(x) and f0(x) the drift of (1) in the
on and off mode, respectively. Given the initial probability
distribution of the TCLs in the two modes as ρ1(x, 0) and
ρ0(x, 0), the behavior of a homogeneous population can be
described by the probability densities ρ1(x, t), ρ0(x, t) : R×
R+ → R+. Their evolution in time is determined by the
following system of Fokker Planck equations [12]

∂ρi(x, t)

∂t
=− ∂

∂x
(ρi(x, t)fi(x)) +

σ2

2

∂2ρi(x, t)

∂x2

− (λij(x) + µij(x, t))ρi(x, t)

+ (λji(x) + µji(x, t))ρj(x, t) ,

(6)

with i 6= j, i, j = 0, 1.

III. NUMERICAL IMPLEMENTATION AND ANALYSIS OF
THE POPULATION MODEL

The systems of PDEs (6) do not in general admit a
closed form solution. To get more insight into the dynamics,
we discretize the PDEs using the Finite Volume Method
(FVM) reducing the problem to a system of ODEs. Different
discretization techniques could be used, however FVM is
chosen due to the mass preserving property [13], i.e. the fact
that

∫∞
−∞ ρ1(x, t)+ρ0(x, t) dx = 1, ∀t ≥ 0 is guaranteed. We

grid the temperature axis uniformly as in Figure 2, where the



domain is restricted to J = [θ−−, θ++] ⊃ [θ−, θ+] since
the probability of the temperature being outside J is very
small for sufficiently small/large θ−− and θ++. Reflecting
boundary conditions are introduced at the endpoints of J .
Let us consider the on mode only, since the exact reasoning
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applies also to the off mode. Integrating the first PDE from
(6) with µ01(x, t) = µ10(x, t) = 0 in each bin results in

d

dt
ρ̄1, k∆x =

[
−ρ1(x, t)f1(x) +

σ2

2

∂

∂x
ρ1(x, t)

]xk+1

xk

+

−
∫ xk+1

xk

λ10(x)ρ1(x, t) dx+

∫ xk+1

xk

λ01(x)ρ0(x, t) dx ,

where ρ̄1, k is the average of ρ1(x, t) in the k-th bin and
∆x is the length of each bin. By interpolation, ρ1(x, t)
can be approximated using the neighboring average val-
ues. Finally, by taking the rates to be piecewise constant
in each bin, (6) can be transformed into a system of
linear differential equations for the column vector ρ̄ =
[ρ̄1,1 , . . . , ρ̄1,n , ρ̄0,1 , . . . , ρ̄0,n]> ∈ R2n

d

dt
ρ̄(t) = Aρ̄(t) . (7)

The resulting matrix A ∈ R2n×2n can be decomposed into
three terms

A =
1

2∆x

[
A0 0n×n

0n×n A1

]
+A2 +A3

with the non-zero elements of A0 being

A0(i, j) =


f1(xi) + σ2

∆x j = i− 1,

f1(xi)− f1(xi+1)− 2σ2

∆x j = i,

−f1(xi+1) + σ2

∆x j = i+ 1,

(8)

for 1 < i < n, and A0(1, 1) = −f1(x2) − σ2/∆x,
A0(1, 2) = −f1(x2) + σ2/∆x, A0(n, n− 1) = f1(xn) +
σ2/∆x, A0(n, n) = f1(xn) − σ2/∆x. The matrix A1 is
obtained as A0 using f0(x) rather than f1(x). The matrices
A2 and A3 capture the transition rates due to the soft
boundaries. Each column of A2 and A3 contains either all
zeros, or only two nonzero elements: a negative one on the
diagonal and a positive off diagonal one, with equal mag-
nitude but opposite signs. Since the vector ρ̄(t) represents
a probability distribution on the state space, it is required
that the discretized system (7) preserves the total mass for
all times, that is

∑n
k=1(ρ̄1,k(t) + ρ̄0,k(t))∆x = 1, and to

be positive i.e. ρ̄i,k(t) ≥ 0 when ρ̄i,k(0) ≥ 0 ∀i, k, ∀t ≥ 0.
From (8) and from the structure of A2, A3 it follows that
sum of the elements in each column of A is zero, thus
the total mass is preserved. Positivity can be guaranteed by

proving that A is a Metzler matrix. This is true if the space
discretization is fine enough, in particular, if

∆x <
σ2

maxx∈J{|f1(x)|, |f0(x)|}
. (9)

In the following we ensure that this condition is met.
Note that the FVM has transformed the initial system of
PDEs into a continuous-time Markov Chain that is irre-
ducible due to the Wiener process that results in the terms
σ2

∆x in (8). These terms enable transition from any state of
the Markov chain to any other in finite time. Thus, there
exists a unique stationary distribution [14] and for any initial
condition, the distribution ρ̄(t) converges to the non trivial
solution of Aρ̄ = 0. An example of stationary distribution
with parameters from table I is shown in Figure 3. In all the
simulations that follow, we use θ−− = 18.5 ◦C, θ++ = 20.5
◦C and ∆x = 10−2 ◦C, µ̄01 = µ̄10 = 2 · 10−3. These rate
limits guarantee that the average time between switches is
more than approximately 9 minutes. We choose

λ01(x) = α(ex−θ+ − 1) (10)

in [θ+, ∞) and zero elsewhere. The same is done symmet-
rically for λ10(x). Unless otherwise stated α = 1.
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Fig. 3: Stationary distributions with hard boundaries (2)
(dashed line), soft boundaries as in (10) with α = 1 (solid
line) and α = 10 (dotted line).

The aggregate power consumed by the population is
proportional to the mass in the on mode m1(t) as

Pagg(t) = PNm1(t) = Hρ̄(t), (11)

where H := PN∆x[11×n, 01×n] is a row vector. In the fol-
lowing, µ01(x, t) and µ10(x, t) are taken to be constant along
the temperature axis when inside the deadband [θ−, θ+]
with a value of µ01(t) and µ10(t), respectively, and zero
outside this region. When the control rates µ01(t), µ10(t)
are introduced, one can still apply the FVM. The result is a
bilinear system of the form

d

dt
ρ̄(t) = (A+ µ10(t)B10 + µ01(t)B01)ρ̄(t) := Ac(t)ρ̄(t) .

(12)
Note that the closed loop matrix Ac(t) has the same property
as A for all times t: each column sums to zero and Ac(t)



is Metzler, provided (9) is satisfied. Thus, mass is preserved
and positivity of ρ̄(t) is ensured.

When the control rates µ01(t), µ10(t) are fixed in time,
the existence of a unique attracting stationary distribution
is guaranteed, since the Markov chain is still finite and
irreducible. From a regulating perspective, if the range of sta-
tionary power outputs is sufficiently large and the transients
are fast, one may consider controlling the system by steering
it from one steady state to another. Recall that by (11) the
power consumed is proportional to the amount of mass in the
on mode m1(t). In Figure 4, m1(t) is computed for different
values of the constant control inputs µ01. As shown in
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µ01 = 1

µ01 = 10−2

µ01 = 5 · 10−3

µ01 = 0

Fig. 4: Evolution of m1(t) for the system (12) with different
control inputs starting from the stationary distribution of (7)
and increasing µ01 while fixing µ10 = 0.

Figure 4, the range of power outputs at steady state is much
smaller compared to what can be reached in the transients.
This can be explained by the following observation. At
steady state, the heat extracted from an aggregation of TCLs
has to equal the heat inflow. Since the latter is proportional to
the average difference in temperature of the system with that
of the ambient and the deadband excursion is approximately
1◦C, the possible power values Pagg at steady state are
limited. This observation suggests one should harness the
flexibility that comes from the transients. In this direction,
we turn our attention to the set of desired power trajectories
Pd(s) : R+ → R that the system can track, given a certain
initial condition ρ̄(0). Characterizing this set of trajectories
is in general very difficult due to the bilinearity in (12).
Thus, we provide necessary conditions on feasible power
trajectories Pd(s) over a horizon [t0, tf ].

IV. CHARACTERIZING TCL POPULATION CONTROL
POTENTIAL

In the following the control volume consists of the space
within all the buildings where a TCL operates.

Lemma 1: Consider a population of N homogeneous
cooling TCLs with hybrid dynamics (1), probabilistic switch-
ing (4), rate limits (5) and initial distribution X(0). Then the
internal energy of the control volume e(t) is upper and lower
bounded at all times t by

CN [θµ̄01
−E(X(0))] ≤ e(t)−e(0) ≤ CN [θµ̄10

−E(X(0))] ,
(13)

where θµ̄01
is the mean of the stationary distribution that

solves (A + µ̄01B01)ρ̄ = 0 , and θµ̄10 is the mean of the
stationary distribution that solves (A+ µ̄10B10)ρ̄ = 0.

Proof: For a single building the variation in internal
energy is proportional to the variation in temperature [15],
thus for a finite number of homogeneous units e(t)−e(0) =∑
l C(Tl(t)−Tl(0)), where Tl(t) represents the temperature

of the l-th unit. Consequently, for a population we can write

e(t)− e(0) = CN

∫ +∞

−∞
x
∑
i=0,1

(
ρi(x, t)− ρi(x, 0)

)
dx .

(14)
Thus, the variation in energy is proportional to the variation
in the average temperature of the population e(t) − e(0) =
CN [E(X(t)) − E(X(0))]. Since the average temperature
E(X(t)) increases when mass is moved from the on mode to
the off mode, and since the switching rates are constrained
by (5), the highest E(X(t)) is the steady state temperature
when we apply the constant control µ10(t) = µ̄10. It follows
that the average temperature is naturally upper bounded
by θµ̄10

, obtained a priori as the mean of the stationary
distribution that solves (A + µ̄10B10)ρ̄ = 0. This results
in e(t)− e(0) ≤ CN [θµ̄10

− E(X(0))] := ∆emax. With the
same reasoning, one finds a lower bound on the expected
value of the temperature θµ̄01 and shows that e(t)− e(0) ≥
CN [θµ̄01

− E(X(0))] := ∆emin.
Given a desired power trajectory Pd(s), s ∈ [0, t], and an
initial distribution X(0), we would like to know a priori if
(13) is satisfied. The next proposition provides the answer.

Proposition 1: Under the assumption of Lemma 1, con-
sider a desired power trajectory Pd(s), s ∈ [0, t]. Denote
with Pmin and Pmax the electric power consumed at steady
state when the maximum value of µ10 resp. µ01 is applied.

1) If −∆emax + ηPmaxt ≤
∫ t

0
ηPd(s) ds ≤ −∆emin +

ηPmint , then ∆emin ≤ e(t)− e(0) ≤ ∆emax .

2) If
∫ t

0
ηPd(s) ds > −∆emin + ηPmaxt then e(t) −

e(0) < ∆emin. If
∫ t

0
ηPd(s) ds < −∆emax + ηPmint

then e(t)− e(0) > ∆emax.
Proof: Let us first prove 1). From the first principle of

thermodynamics [15] we know that

e(t)− e(0) = −
∫ t

0

ηPagg(s) ds+

∫ t

0

I(s) ds , (15)

where −ηPagg(s) represents the aggregate heat flow that the
ACs extract, while I(s) is the total inflow of heat due to
the higher ambient temperature. Note that I(s) ≥ ηPmin.
This inequality describes the fact that the heat inflow I(s) is
always greater than the inflow when the average temperature
E(X(t)) is the highest possible. The value of Pmin can be
easily computed beforehand as Pmin = Hρ̄, where ρ̄ solves
(A+ µ̄10B10)ρ̄ = 0. As a consequence of this estimate and
of (15), it follows that

e(t)− e(0) ≥ −
∫ t

0

ηPagg(s) ds+ ηPmint . (16)

Keeping in mind (13), given a desired power trajectory
Pd(s), if

∫ t
0
ηPd(s) ds ≤ −∆emin + ηPmint, we can

conclude that the constraint e(t)−e(0) ≥ ∆emin is satisfied.
Similarly one can show that if

∫ t
0
ηPd(s) ds ≥ −∆emax +



ηPmaxt, then e(t)− e(0) ≤ ∆emax. This proves 1).
To prove 2) note that I(s) ≤ ηPmax. This inequality
describes the fact that the heat inflow I(s) is always smaller
than the inflow when the average temperature E(X(t)) is
the lowest possible. The value of Pmax can be computed
beforehand as Pmax = Hρ̄, where ρ̄ solves (A+µ̄01B01)ρ̄ =
0. Thus, one has that

e(t)− e(0) ≤ −
∫ t

0

ηPagg(s) ds+ ηPmaxt . (17)

If the desired power Pd(s) is such that
∫ t

0
ηPd(s) ds >

−∆emin + ηPmaxt, then from Equation (17), e(t)− e(0) <
∆emin. Similarly one can prove the second part of 2).

The statement 1) in Proposition 1 guarantees that (13) is
satisfied, while the statement 2) certifies the infeasibility of
the same inequality, thus providing a necessary condition for
Pd(s) to be tracked. These conditions on the desired power
can be represented graphically, as shown in Figure 5, for the
integral of the on mass m1(t), which is proportional to the
aggregate power of TCLs.
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Fig. 5: Feasible and infeasible regions for (13). For trajecto-
ries lying in the white portion we cannot a priori guarantee
feasibility.

V. CASE STUDIES

In this section, we present a feedback controller in order
to illustrate the results obtained previously. Furthermore, we
provide more insight into energy bounds derived here by
discussing the case with heterogeneous parameters and by
connecting our work with the previous approaches [10], [9].

A. Control and simulations

Given a power signal Pd provided by a system operator
for load following or obtained as a solution of an energy ar-
bitrage problem [10], we use feedback linearization to derive
a controller to track it. We take the derivative of the output,
which is the aggregate power (11), until the input appears.
Using the fact that the dynamics for ρ̄ is given by (12), one
gets Ṗagg = H ˙̄ρ = HAρ̄+ µ10HB10ρ̄+ µ01HB01ρ̄. Thus,
the system has relative degree 1. We then use one of the
controls µ10 or µ01 at a single time. If Ṗd − HAρ̄ < 0,
then more mass is needed in the off mode and µ10 is used.
Since the maximum value of µ10 is upper bounded by (5),
we obtain the following controller

µ10 = min

{
Ṗd −HAρ̄
HB10ρ̄

, µ̄10

}
≥ 0. (18)

Note that the previous equation is meaningful if the denom-
inator of the first term is bounded away from zero, which
is always the case when the mass in the deadband of the
on mode is non-zero. Similarly µ01 is computed when Ṗd−
HAρ̄ > 0. The closed loop system will be an inhomogeneous
Markov chain, preserving mass and positivity. The control
can be implemented by broadcasting the signals µ01(t) and
µ10(t) to all the units at discrete instants of time. If for
instance, at the discrete time tk, µ01(tk) 6= 0, each unit in
the off mode inside the deadband will draw a random number
rk uniformly distributed in the interval [0, 1]. Recalling (4),
if rk ≤ µ01(tk)∆t, the unit will switch on.

The control is non-disruptive since we do not change the
natural switching outside the deadband. In addition, it is
distributed in the sense that given a rate µ01 or µ10 broad-
casted by a central aggregator, the TCLs can draw a random
number and implement the control. In this formulation, the
aggregator requires knowledge of the state ρ̄ at each time
instant. In general, this information may not be available but
can be estimated using aggregate power measurements [3].
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Fig. 6: Simulations of power tracking. The desired and the
actual trajectories are in red and black, respectively. The
uncontrolled consumption is dashed. The trajectory at the top
satisfies the energy constraints and can be delivered, while
the one at the bottom does satisfy the constraints but can not
be tracked as accurately.

In Figure 6 we present two simulation results using the
feedback linearization control. The trajectory in the first
plot of Figure 6 satisfies the constraints in (13) and can
be tracked. Nevertheless, the conditions previously obtained
are only necessary. There could exist a power trajectory that
satisfies the derived bounds, but cannot be delivered. This is
shown in the second plot of Figure 6.

Difficulty in tracking for trajectories that satisfy the neces-
sary conditions can arise in two cases. First, if the derivative
of the desired power trajectory Pd is too high, the control
saturates due to the rate constraints in (5). Second, when the
derivative of Pd is kept roughly constant as in the second
trajectory of Figure 6, increasingly more mass is taken from
the on mode and moved to the off mode, see Figure 7.
This decreases the magnitude of the denominator in (18)



and saturates the controller.
Notice that for any negative or positive derivative of the
desired power signal Pd(s), there exists a unique µ10(s) or
µ01(s) that tracks the desired trajectory perfectly. Thus, the
only potential way to avoid or postpone saturation is to use
state-dependent switching rates µ01(x, t), µ10(x, t).
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Fig. 7: Distributions for the second trajectory of Figure 6, at
time t∗ = 55 [min], when tracking is lost.

B. Discussion

The bounds derived in Proposition 1 are a function of the
ambient temperature, size of the TCLs population and their
parameters. Furthermore, the energy bounds of Equation
(13) for a horizon of [t0, tf ] depend only on the estimate
of average temperature at time t0, while the bounds on
I(s) are independent of the distribution. It is consequently
straightforward to compute them.

For heterogeneous parameters one can use a probability
density function with an extended state in which the pa-
rameters are modeled as additional states. Similar derivation
of the continuous-time Markov chain will follow, with the
difference that the matrices A, B01, B10 will be computed us-
ing the updated probability density function evolution. Same
reasoning for derivation of bounds can be applied. However,
the existence of a unique stationary distribution needs to
be shown. Alternatively, the Markov chain model can be
identified experimentally for a population of heterogenous
TCLs [3]. In this case, we can still use the approach to
find the invariant distribution of the Markov chain given the
switching rate constraints and thus derive the energy bounds.

The bounds derived in Proposition 1 are closely related
to those in [10]. In this work, a first order linear model
for the integral of power, referred to as a storage model,
is derived. The parameters ∆emax and ∆emin correspond
to the upper and lower bounds on the storage. In addition,
the term capturing the natural discharge of the storage model
in [10] is equivalent to the inflow term I , at steady-state. We
derive more accurate upper and lower bounds on the inflow
by quantifying the maximum/minimum inflow. The average
temperature equivalence with energy used here for derivation
of bounds is also connected with the approach in [9]. In
this work, by assuming a linear and deterministic model
for TCLs, the average temperature dynamics of population
is approximated by a linear model. Since such dynamics
is an accurate approximation near steady-state operations,
the generalized battery model is effective in zero mean fast
time scale regulation rather than minutes to hours, as is

the case here. Furthermore, with respect to past work, the
formulation presented here accounts for practically motivated
upper bounds on rate of switching in the derivation of the
bounds.

VI. CONCLUSIONS

We studied the problem of quantifying the set of power
trajectories that a population of TCLs can track using prob-
abilistic switching control schemes. Based on the hybrid
stochastic model of the individual TCLs, we derived neces-
sary conditions on feasible power trajectories over a horizon
of interest. The derivation was based on recognizing the
energy of the population as the average temperature, and
then using the probability distribution of the population to
quantify limits on the average temperature. Future work
includes accounting for heterogeneity in the probability
density function, estimating the state of the Markov chain
using partial measurements and extending the results to TCLs
with more complex dynamics and random switching such as
electric water heaters.
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