Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Nash and Wardrop equilibria: convergence and efficiency

Dario Paccagnan ${ }^{1}$
In collaboration with: F. Parise ${ }^{2}$, J. Lygeros ${ }^{1}$
${ }^{1}$ Automatic Control Laboratory, ETH Zürich, Switzerland
${ }^{2}$ Laboratory for Information and Decision Systems, MIT, USA

Outline

- Aggregative games
- Convergence between Nash and Wardrop
- Efficiency of equilibria

Motivation

Analysis and control of large scale competitive systems

Motivation

Analysis and control of large scale competitive systems

Aggregative games
players: $i \in\{1, \ldots, M\}$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$ $\operatorname{cost}: J^{i}\left(x^{i}, x^{-i}\right)$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

$$
\operatorname{cost}: J^{i}\left(x^{i}, \sigma(x)\right)
$$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

$$
\operatorname{cost}: J^{i}\left(x^{i}, \sigma(x)\right)
$$

$$
\sigma(x)=\frac{1}{M} \sum_{i=1}^{M} x^{i}
$$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

$$
\operatorname{cost}: J^{i}\left(x^{i}, \sigma(x)\right)
$$

$$
\sigma(x)=\frac{1}{M} \sum_{i=1}^{M} x^{i}
$$

\hat{x} Nash equilibrium
$J^{i}\left(\hat{x}^{i}, \sigma(\hat{x})\right) \leq J^{i}\left(x^{i}, \sigma\left(x^{i}, \hat{x}^{-i}\right)\right)$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

$$
\operatorname{cost}: J^{i}\left(x^{i}, \sigma(x)\right)
$$

$$
\sigma(x)=\frac{1}{M} \sum_{i=1}^{M} x^{i}
$$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

$$
\operatorname{cost}: J^{i}\left(x^{i}, \sigma(x)\right)
$$

$$
\sigma(x)=\frac{1}{M} \sum_{i=1}^{M} x^{i}
$$

Aggregative games

players: $i \in\{1, \ldots, M\}$
constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

$$
\operatorname{cost}: J^{i}\left(x^{i}, \sigma(x)\right)
$$

$$
\sigma(x)=\frac{1}{M} \sum_{i=1}^{M} x^{i}
$$

What is the relation between \hat{x} and \bar{x} ?

Related works

- Wardrop eq. coincides with deterministic mean field/ aggregative eq.

Related works

- Wardrop eq. coincides with deterministic mean field/ aggregative eq.

E. Altman and L. Wynter. "Equilibrium, games, and pricing in transportation and telecommunication networks". Networks and Spatial Economics, 2004.

Z. Ma, D. Callaway and I. Hiskens. "Decentralized charging control of large populations of plug-in electric vehicles". IEEE Transactions on Control Systems Technology, 2013.

S. Grammatico, F. Parise, M. Colombino and J. Lygeros. "Decentralized convergence to Nash equilibria in constrained deterministic mean field control". IEEE Transactions on Automatic Control, 2017.

Related works

- Wardrop eq. coincides with deterministic mean field/ aggregative eq.
- Wardrop is ε-Nash: $J^{i}\left(\bar{x}^{i}, \sigma(\bar{x})\right) \leq J^{i}\left(x^{i}, \sigma\left(x^{i}, \bar{x}^{-i}\right)\right)+\varepsilon$
E. Altman and L. Wynter. "Equilibrium, games, and pricing in transportation and telecommunication networks". Networks and Spatial Economics, 2004.

Z. Ma, D. Callaway and I. Hiskens. "Decentralized charging control of large populations of plug-in electric vehicles". IEEE Transactions on Control Systems Technology, 2013.

S. Grammatico, F. Parise, M. Colombino and J. Lygeros. "Decentralized convergence to Nash equilibria in constrained deterministic mean field control". IEEE Transactions on Automatic Control, 2017.

Related works

- Wardrop eq. coincides with deterministic mean field/ aggregative eq.
- Wardrop is ε-Nash: $J^{i}\left(\bar{x}^{i}, \sigma(\bar{x})\right) \leq J^{i}\left(x^{i}, \sigma\left(x^{i}, \bar{x}^{-i}\right)\right)+\varepsilon$
E. Altman and L. Wynter. "Equilibrium, games, and pricing in transportation and telecommunication networks". Networks and Spatial Economics, 2004.

Z. Ma, D. Callaway and I. Hiskens. "Decentralized charging control of large populations of plug-in electric vehicles". IEEE Transactions on Control Systems Technology, 2013.

S. Grammatico, F. Parise, M. Colombino and J. Lygeros. "Decentralized convergence to Nash equilibria in constrained deterministic mean field control". IEEE Transactions on Automatic Control, 2017.
- distance "between strategies" at Nash \hat{x} and Wardrop \bar{x}
R. Haurie and P. Marcotte. "On the relationship between Nash-Cournot and Wardrop equilibria". Networks, 1985.

Main result I

Main result I

Nash operator
$\hat{F}(x)=\left[\nabla_{x^{i}} J^{i}\left(x^{i}, \sigma(x)\right)\right]_{i=1}^{M}$

Main result I

Nash operator
$\hat{F}(x)=\left[\nabla_{x^{i}} J^{i}\left(x^{i}, \sigma(x)\right)\right]_{i=1}^{M}$

Wardrop operator
$\bar{F}(x)=\left[\left.\nabla_{x^{i}} J^{i}\left(x^{i}, z\right)\right|_{z=\sigma(x)}\right]_{i=1}^{M}$

Main result I

> Nash operator
> $\hat{F}(x)=\left[\nabla_{x^{i}} J^{i}\left(x^{i}, \sigma(x)\right)\right]_{i=1}^{M}$

Theorem (Convergence for large M)
J^{i} Lipschitz, \mathcal{X}^{i} convex and bounded

Main result I

$$
\begin{array}{cc}
\text { Nash operator } & \text { Wardrop operator } \\
\hat{F}(x)=\left[\nabla_{x^{i}} J^{i}\left(x^{i}, \sigma(x)\right)\right]_{i=1}^{M} & \bar{F}(x)=\left[\left.\nabla_{x^{i}} J^{i}\left(x^{i}, z\right)\right|_{z=\sigma(x)}\right]_{i=1}^{M}
\end{array}
$$

Theorem (Convergence for large M)
J^{i} Lipschitz, \mathcal{X}^{i} convex and bounded, $\nabla_{x} \hat{F}(x) \succeq \alpha I$ or $\nabla_{x} \bar{F}(x) \succeq \alpha I$,

Main result I

$$
\begin{array}{cc}
\text { Nash operator } & \text { Wardrop operator } \\
\hat{F}(x)=\left[\nabla_{x^{i}} J^{i}\left(x^{i}, \sigma(x)\right)\right]_{i=1}^{M} & \bar{F}(x)=\left[\left.\nabla_{x^{i}} J^{i}\left(x^{i}, z\right)\right|_{z=\sigma(x)}\right]_{i=1}^{M}
\end{array}
$$

Theorem (Convergence for large M)
J^{i} Lipschitz, \mathcal{X}^{i} convex and bounded, $\nabla_{x} \hat{F}(x) \succeq \alpha I$ or $\nabla_{x} \bar{F}(x) \succeq \alpha I$,

$$
\|\hat{x}-\bar{x}\| \leq \text { const } / \sqrt{M}
$$

Main result I

Nash operator

$$
\hat{F}(x)=\left[\nabla_{x^{i}} J^{i}\left(x^{i}, \sigma(x)\right)\right]_{i=1}^{M}
$$

Wardrop operator
$\bar{F}(x)=\left[\left.\nabla_{x^{i}} J^{i}\left(x^{i}, z\right)\right|_{z=\sigma(x)}\right]_{i=1}^{M}$

Theorem (Convergence for large M)
J^{i} Lipschitz, \mathcal{X}^{i} convex and bounded, $\nabla_{x} \hat{F}(x) \succeq \alpha I$ or $\nabla_{x} \bar{F}(x) \succeq \alpha I$,

$$
\|\hat{x}-\bar{x}\| \leq \text { const } / \sqrt{M}
$$

Proof sketch

Proof sketch

Step 1: \hat{x} is a Nash equilibrium $\Longleftrightarrow \hat{F}(\hat{x})^{\top}(x-\hat{x}) \geq 0 \forall x \in \mathcal{X}$
\bar{x} is a Wardrop equilibrium $\Longleftrightarrow \bar{F}(\bar{x})^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$

Proof sketch

Step 1: \hat{x} is a Nash equilibrium $\Longleftrightarrow \hat{F}(\hat{x})^{\top}(x-\hat{x}) \geq 0 \forall x \in \mathcal{X}$ \bar{x} is a Wardrop equilibrium $\Longleftrightarrow \bar{F}(\bar{x})^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$ Recall $\quad \hat{F}(x)=\left[\nabla_{x^{i}} J^{i}\left(x^{i}, \sigma(x)\right)\right]_{i=1}^{M}$

$$
\bar{F}(x)=\left[\left.\nabla_{x^{i}} J^{i}\left(x^{i}, z\right)\right|_{z=\sigma(x)}\right]_{i=1}^{M}
$$

Proof sketch

Step 1: $\quad \hat{x}$ is a Nash equilibrium $\Longleftrightarrow \hat{F}(\hat{x})^{\top}(x-\hat{x}) \geq 0 \forall x \in \mathcal{X}$ \bar{x} is a Wardrop equilibrium $\Longleftrightarrow \bar{F}(\bar{x})^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$

$$
\begin{array}{ll}
\text { Recall } \quad \hat{F}(x) & =\left[\nabla_{x^{i}} J^{i}\left(x^{i}, \sigma(x)\right)\right]_{i=1}^{M} \\
\bar{F}(x) & =\left[\left.\nabla_{x^{i}} J^{i}\left(x^{i}, z\right)\right|_{z=\sigma(x)}\right]_{i=1}^{M}
\end{array}
$$

Step 2: $\quad \hat{F}$ is close to \bar{F} for large M, i.e., for all $x \in \mathcal{X}$

$$
\|\hat{F}(x)-\bar{F}(x)\| \leq \frac{\text { const }^{\prime}}{\sqrt{M}}
$$

Proof sketch

Step 1: \hat{x} is a Nash equilibrium $\Longleftrightarrow \hat{F}(\hat{x})^{\top}(x-\hat{x}) \geq 0 \forall x \in \mathcal{X}$
\bar{x} is a Wardrop equilibrium $\Longleftrightarrow \bar{F}(\bar{x})^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$

$$
\begin{array}{ll}
\text { Recall } & \hat{F}(x)=\left[\nabla_{x^{i}} J^{\prime}\left(x^{i}, \sigma(x)\right)\right]_{i=1}^{M} \\
& \bar{F}(x)=\left[\left.\nabla_{x^{i}} J^{j}\left(x^{i}, z\right)\right|_{z=\sigma(x)}\right]_{i=1}^{M}
\end{array}
$$

Step 2: $\quad \hat{F}$ is close to \bar{F} for large M, i.e., for all $x \in \mathcal{X}$

$$
\|\hat{F}(x)-\bar{F}(x)\| \leq \frac{\text { const }^{\prime}}{\sqrt{M}}
$$

Step 3: When operators are close, solutions are close

$$
\|\hat{x}-\bar{x}\| \leq \text { const }^{\prime \prime}\|\hat{F}(\bar{x})-\bar{F}(\bar{x})\|
$$

Consequences of $\|\hat{x}-\bar{x}\| \leq \frac{\text { const }}{\sqrt{M}}$

equilibrium computation

Consequences of $\|\hat{x}-\bar{x}\| \leq \frac{\text { const }}{\sqrt{M}}$

equilibrium computation

equilibrium efficiency

Equilibrium efficiency: electric vehicle charging

Equilibrium efficiency: electric vehicle charging国

- A fleet of EVs to recharge

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
players: $\quad i \in\{1, \ldots, M\}$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

players: $\quad i \in\{1, \ldots, M\}$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

players: $\quad i \in\{1, \ldots, M\}$
cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

- Charging requirements

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

- Charging requirements players: $\quad i \in\{1, \ldots, M\}$ cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$ constr: $\quad x^{i} \in \mathcal{X}^{i}$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

- Charging requirements

System level objective

- Minimize congestion
constr: $\quad x^{i} \in \mathcal{X}^{i}$
players: $\quad i \in\{1, \ldots, M\}$
cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

- Charging requirements

System level objective

- Minimize congestion
players: $\quad i \in\{1, \ldots, M\}$
cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$
constr: $\quad x^{i} \in \mathcal{X}^{i}$
$\min _{x \in \mathcal{X}} J_{S}(x)=p(\sigma(x)+d)^{\top}(\sigma(x)+d)$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

- Charging requirements

System level objective

- Minimize congestion
players: $\quad i \in\{1, \ldots, M\}$
cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$

$$
\text { constr: } \quad x^{i} \in \mathcal{X}^{i}
$$

$$
\min _{x \in \mathcal{X}} J_{s}(x)=p(\sigma(x)+d)^{\top}(\sigma(x)+d)
$$

How much does selfish behaviour degrade the performance?

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

- Charging requirements

System level objective

- Minimize congestion
players: $\quad i \in\{1, \ldots, M\}$
cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$
constr: $\quad x^{i} \in \mathcal{X}^{i}$
$\min _{x \in \mathcal{X}} J_{s}(x)=p(\sigma(x)+d)^{\top}(\sigma(x)+d)$

How much does selfish behaviour degrade the performance?

$$
\operatorname{PoA}=\frac{\max _{x \in \operatorname{NE}(\mathrm{G})} J_{s}(x)}{\min _{x \in \mathcal{X}} J_{s}(x)} \geq 1
$$

Related works

- Results available in idealized cases:

Related works

- Results available in idealized cases: simplex constraints, homogeneous vehicles, linear price functions

Related works

－Results available in idealized cases： simplex constraints，homogeneous vehicles，linear price functions

居
Z．Ma，D．Callaway and I．Hiskens．＂Decentralized charging control of large populations of plug－in electric vehicles＂．IEEE Transactions on Control Systems Technology， 2013.
國
L．Deori，K．Margellos and M．Prandini．＂Price of anarchy in electric vehicle charging control games：When Nash equilibria achieve social welfare＂．
Automatica， 2018.

A．De Paola，D．Angeli and G．Strbac．＂Convergence and optimality of a new iterative price－based scheme for distributed coordination of flexible loads in the electricity market＂．IEEE Conference on Decision and Control， 2017.
國
M．Gonzales，S．Grammatico and J．Lygeros．＂On the price of being selfish in large populations of plug－in electric vehicles＂．IEEE Conference on Decision and Control， 2015.

O．Beaude，S．Lasaulce and M．Hennebel．＂Charging games in networks of electrical vehicles＂．NetGCooP， 2012.

Main result II

Theorem (Equilibrium efficiency)

Main result II

Theorem (Equilibrium efficiency)

Assume regularity + price at time t depends on consumption at time t

$$
p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}
$$

Main result II

Theorem (Equilibrium efficiency)

Assume regularity + price at time t depends on consumption at time t

$$
p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}
$$

$\triangleright I f g$ is a pure monomial

Main result II

Theorem (Equilibrium efficiency)

Assume regularity + price at time t depends on consumption at time t

$$
p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}
$$

\triangleright If g is a pure monomial \Longrightarrow WE are efficient for any M

Main result II

Theorem (Equilibrium efficiency)

Assume regularity + price at time t depends on consumption at time t

$$
p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}
$$

\triangleright If g is a pure monomial \Longrightarrow WE are efficient for any M
\Longrightarrow NE are efficient for large M

$$
1 \leq \mathrm{PoA} \leq 1+\text { const } / \sqrt{M}
$$

Main result II

Theorem (Equilibrium efficiency)

Assume regularity + price at time t depends on consumption at time t

$$
p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}
$$

\triangleright If g is a pure monomial \Longrightarrow WE are efficient for any M
\Longrightarrow NE are efficient for large M $1 \leq \mathrm{PoA} \leq 1+$ const $/ \sqrt{M}$
\triangleright If g is not a pure monomial \Longrightarrow there exists inefficient instances (both NE/WE)

Main result II

Theorem (Equilibrium efficiency)

Assume regularity + price at time t depends on consumption at time t

$$
p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}
$$

\triangleright If g is a pure monomial \Longrightarrow WE are efficient for any M
\Longrightarrow NE are efficient for large M $1 \leq \mathrm{PoA} \leq 1+$ const $/ \sqrt{M}$
\triangleright If g is not a pure monomial \Longrightarrow there exists inefficient instances (both NE/WE)
[L-CSS18] includes $p(z+d)=\left[g_{1}\left(z_{1}+d_{1}\right) ; \ldots ; g_{n}\left(z_{n}+d_{n}\right)\right]$ time dep. includes $p(z+d)=C(z+d)$ linear

Numerics validate the result

Numerics validate the result

Proof sketch

Proof sketch

Step 1: \bar{x} is a Wardrop equilibrium $\Longleftrightarrow \bar{F}(\bar{x})^{\top}(x-\bar{x}) \geq 0 \forall x \in \mathcal{X}$ x^{\star} is a social optimizer $\Longleftrightarrow F^{\star}\left(x^{\star}\right)^{\top}\left(x-x^{\star}\right) \geq 0 \quad \forall x \in \mathcal{X}$

Proof sketch

Step 1: \bar{x} is a Wardrop equilibrium $\Longleftrightarrow \bar{F}(\bar{x})^{\top}(x-\bar{x}) \geq 0 \forall x \in \mathcal{X}$ x^{\star} is a social optimizer $\Longleftrightarrow F^{\star}\left(x^{\star}\right)^{\top}\left(x-x^{\star}\right) \geq 0 \quad \forall x \in \mathcal{X}$

Where

$$
\begin{aligned}
& \bar{F}(\sigma)=[p(\sigma+d)]_{i=1}^{M} \\
& F^{\star}(\sigma)=\left[p(\sigma+d)+\nabla_{\sigma} p(\sigma+d)^{\top}(\sigma+d)\right]_{i=1}^{M}
\end{aligned}
$$

Proof sketch

Step 1: \bar{x} is a Wardrop equilibrium $\Longleftrightarrow \bar{F}(\bar{x})^{\top}(x-\bar{x}) \geq 0 \forall x \in \mathcal{X}$ x^{\star} is a social optimizer $\Longleftrightarrow F^{\star}\left(x^{\star}\right)^{\top}\left(x-x^{\star}\right) \geq 0 \quad \forall x \in \mathcal{X}$

Where

$$
\begin{aligned}
& \bar{F}(\sigma)=[p(\sigma+d)]_{i=1}^{M} \\
& F^{\star}(\sigma)=\left[p(\sigma+d)+\nabla_{\sigma} p(\sigma+d)^{\top}(\sigma+d)\right]_{i=1}^{M}
\end{aligned}
$$

Step 2: \bar{x} coincides with x^{\star} (for any instance) iff in every point

$$
\begin{aligned}
\bar{F}(\sigma) \| F^{\star}(\sigma) & \Longleftrightarrow \bar{F}(\sigma)=\beta(\sigma) F^{\star}(\sigma), \quad \beta(\sigma)>0 \\
& \Longleftrightarrow p(\sigma) \text { pure monomial componentwise }
\end{aligned}
$$

Proof sketch

Step 1: \bar{x} is a Wardrop equilibrium $\Longleftrightarrow \bar{F}(\bar{x})^{\top}(x-\bar{x}) \geq 0 \forall x \in \mathcal{X}$ x^{\star} is a social optimizer $\Longleftrightarrow F^{\star}\left(x^{\star}\right)^{\top}\left(x-x^{\star}\right) \geq 0 \quad \forall x \in \mathcal{X}$

Where

$$
\begin{aligned}
& \bar{F}(\sigma)=[p(\sigma+d)]_{i=1}^{M} \\
& F^{\star}(\sigma)=\left[p(\sigma+d)+\nabla_{\sigma} p(\sigma+d)^{\top}(\sigma+d)\right]_{i=1}^{M}
\end{aligned}
$$

Step 2: \bar{x} coincides with x^{\star} (for any instance) iff in every point

$$
\begin{aligned}
\bar{F}(\sigma) \| F^{\star}(\sigma) & \Longleftrightarrow \bar{F}(\sigma)=\beta(\sigma) F^{\star}(\sigma), \quad \beta(\sigma)>0 \\
& \Longleftrightarrow p(\sigma) \text { pure monomial componentwise }
\end{aligned}
$$

Step 3: previous convergence result $\hat{\sigma} \rightarrow \bar{\sigma}$ as $M \rightarrow \infty$.

$$
\text { Thus } \quad J_{s}(\hat{\sigma}) \rightarrow J_{s}(\bar{\sigma}) \text { as } M \rightarrow \infty
$$

Conclusions and Outlook

Conclusions and Outlook

\triangleright Two equilibrium notions

Conclusions and Outlook

\triangleright Two equilibrium notions
\triangleright Result I: Convergence between Nash and Wardrop

Conclusions and Outlook

\triangleright Two equilibrium notions
\triangleright Result I: Convergence between Nash and Wardrop
\triangleright Result II: Equilibrium efficiency

Conclusions and Outlook

\triangleright Two equilibrium notions
\triangleright Result I: Convergence between Nash and Wardrop
\triangleright Result II: Equilibrium efficiency
\triangleright Numerics

Conclusions and Outlook

\triangleright Two equilibrium notions
\triangleright Result I: Convergence between Nash and Wardrop
\triangleright Result II: Equilibrium efficiency
\triangleright Numerics
\triangleright Stochasticity and data

Thank you

[L-CSS18] D. Paccagnan, F. Parise and J. Lygeros. "On the Efficiency of Nash Equilibria in Aggregative Charging Games". IEEE Control Systems Letters, 2018.
[TAC18] D. Paccagnan*, B. Gentile^, F. Parise^, M. Kamgarpour, and J. Lygeros. "Nash and Wardrop equilibria in aggregative games with coupling constraints". IEEE Transactions on Automatic Control, 2018.

