

The Scenario Approach Meets Uncertain Game Theory and Variational Inequalities

Dario Paccagnan

In collaboration with M.C. Campi

if decision making = optimization problem \implies - scenario approach - robust optimization

- ...

if decision making = optimization problem \implies - scenario approach - robust optimization

- ...

[Borelli, Calafiore, Campi, Esfahani, Garatti, Goulart, Kuhn, Lygeros, Margellos, Prandini, Ramponi, Sutter, Tempo, ...]

if decision making = optimization problem \implies - scenario approach - robust optimization

- ...

[Borelli, Calafiore, Campi, Esfahani, Garatti, Goulart, Kuhn, Lygeros, Margellos, Prandini, Ramponi, Sutter, Tempo, ...]

What if decision making is not an optimization problem?

if decision making = optimization problem \implies - scenario approach - robust optimization

[Borelli, Calafiore, Campi, Esfahani, Garatti, Goulart, Kuhn, Lygeros, Margellos, Prandini, Ramponi, Sutter, Tempo, ...]

What if decision making is not an optimization problem?

in this talk: decision making process = variational inequality

Why variational inequalities?

"[...] a multitude of interesting connections to numerous disciplines, and a wide range of important applications in engineering and economics"

F. Facchinei, J-S Pang

Why variational inequalities?

"[...] a multitude of interesting connections to numerous disciplines, and a wide range of important applications in engineering and economics"

F. Facchinei, J-S Pang

transportation networks

demand-response markets

contact problems

option pricing

ROADMAP

1. Robust variational inequalities + scenario approach

- \rightsquigarrow probabilistic bounds on the risk
- \rightsquigarrow extension to quasi variational inequalities

2. Uncertain and robust games

- → how likely that a Nash equilibrium remains such?
- \rightsquigarrow application to demand-response
- 3. Outlook and opportunities

Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^n$ and operator $F : \mathcal{X} \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^{\top}(x - \bar{x}) \ge 0, \ \forall x \in \mathcal{X}$

Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^n$ and operator $F : \mathcal{X} \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^{\top}(x - \bar{x}) \ge 0$, $\forall x \in \mathcal{X}$

Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^n$ and operator $F : \mathcal{X} \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^{\top}(x - \bar{x}) \ge 0$, $\forall x \in \mathcal{X}$

▷ convex optimization as a special case:

 $ar{x}$ solution of $\min_{x\in\mathcal{X}}g(x) \iff \nabla g(ar{x})^{ op}(x-ar{x})\geq 0 \ \forall x\in\mathcal{X}$

Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^n$ and operator $F : \mathcal{X} \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^{\top}(x - \bar{x}) \ge 0$, $\forall x \in \mathcal{X}$

▷ convex optimization as a special case:

 $ar{x}$ solution of $\min_{x\in\mathcal{X}}g(x) \iff
abla g(ar{x})^{ op}(x-ar{x}) \geq 0 \quad \forall x\in\mathcal{X}$

Q: How to define a VI that incorporates notion of uncertainty?

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set \mathcal{X} , operator $F : \mathcal{X} \times \Delta \to \mathbb{R}^n$ find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta)^\top (x - \bar{x}) \ge 0 \quad \forall x \in \mathcal{X}, \ \forall \delta \in \Delta$

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set \mathcal{X} , operator $F : \mathcal{X} \times \Delta \to \mathbb{R}^n$ find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta)^{\top}(x - \bar{x}) \ge 0 \quad \forall x \in \mathcal{X}, \ \forall \delta \in \Delta$ \rightsquigarrow has a solution only exceptionally

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set \mathcal{X} , operator $F : \mathcal{X} \times \Delta \to \mathbb{R}^n$ find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta)^\top (x - \bar{x}) \ge 0 \quad \forall x \in \mathcal{X}, \ \forall \delta \in \Delta$ \rightsquigarrow has a solution only exceptionally

literature: 1. expected-value formulation find $\bar{x} \in \mathcal{X}$ s.t. $\mathbb{E}_{\delta \sim \mathbb{P}}[F(\bar{x}, \delta)]^{\top}(x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$ [Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set \mathcal{X} , operator $F : \mathcal{X} \times \Delta \to \mathbb{R}^n$ find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta)^\top (x - \bar{x}) \ge 0 \quad \forall x \in \mathcal{X}, \ \forall \delta \in \Delta$ \rightsquigarrow has a solution only exceptionally

literature: 1. expected-value formulation find $\bar{x} \in \mathcal{X}$ s.t. $\mathbb{E}_{\delta \sim \mathbb{P}}[F(\bar{x}, \delta)]^{\top}(x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$ [Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]

> 2. expected residual formulation find $\bar{x} \in \mathcal{X}$ s.t. $\bar{x} \in \arg\min_{x \in \mathcal{X}} \mathbb{E}_{\delta \sim \mathbb{P}}[\Phi(x, \delta)]$ [Chen, Fukushima, Lin, Shanbhag, Wets, Zhang, ...]

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set \mathcal{X} , operator $F : \mathcal{X} \times \Delta \to \mathbb{R}^n$ find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta)^\top (x - \bar{x}) \ge 0 \quad \forall x \in \mathcal{X}, \ \forall \delta \in \Delta$ \rightsquigarrow has a solution only exceptionally

literature: 1. expected-value formulation find $\bar{x} \in \mathcal{X}$ s.t. $\mathbb{E}_{\delta \sim \mathbb{P}}[F(\bar{x}, \delta)]^{\top}(x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$ [Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]

> 2. expected residual formulation find $\bar{x} \in \mathcal{X}$ s.t. $\bar{x} \in \arg \min_{x \in \mathcal{X}} \mathbb{E}_{\delta \sim \mathbb{P}}[\Phi(x, \delta)]$ [Chen, Fukushima, Lin, Shanbhag, Wets, Zhang, ...]

this talk: robust VI, i.e., $F : \mathbb{R}^n \to \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, sets $\{\mathcal{X}_{\delta}\}_{\delta \in \Delta}$

Q: How to define a VI that incorporates notion of uncertainty?

tentative: set \mathcal{X} , operator $F : \mathcal{X} \times \Delta \to \mathbb{R}^n$ find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x}, \delta)^\top (x - \bar{x}) \ge 0 \quad \forall x \in \mathcal{X}, \ \forall \delta \in \Delta$ \rightsquigarrow has a solution only exceptionally

literature: 1. expected-value formulation find $\bar{x} \in \mathcal{X}$ s.t. $\mathbb{E}_{\delta \sim \mathbb{P}}[F(\bar{x}, \delta)]^{\top}(x - \bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$ [Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]

> 2. expected residual formulation find $\bar{x} \in \mathcal{X}$ s.t. $\bar{x} \in \arg \min_{x \in \mathcal{X}} \mathbb{E}_{\delta \sim \mathbb{P}}[\Phi(x, \delta)]$ [Chen, Fukushima, Lin, Shanbhag, Wets, Zhang, ...]

this talk: robust VI, i.e., $F : \mathbb{R}^n \to \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, sets $\{\mathcal{X}_{\delta}\}_{\delta \in \Delta}$ find $x_R \in \bigcap_{\delta \in \Delta} \mathcal{X}_{\delta}$ s.t. $F(x_R)^{\top}(x - x_R) \ge 0 \quad \forall x \in \bigcap_{\delta \in \Delta} \mathcal{X}_{\delta}$

 $\mathsf{RVI:} \quad \mathsf{find} \ x_R \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad \mathsf{s.t.} \quad F(x_R)^\top (x - x_R) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$

- $\mathsf{RVI:} \quad \mathsf{find} \ x_R \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad \mathsf{s.t.} \quad F(x_R)^\top (x x_R) \ge 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$
- $\begin{array}{lll} \mathsf{S}\text{-}\mathsf{R}\mathsf{V}\mathsf{I}: & \mathsf{find} \ x_{\mathcal{S}} \in \cap_{i=1}^{\mathcal{N}} \mathcal{X}_{\delta_{i}} & \mathsf{s.t.} \quad \mathcal{F}(x_{\mathcal{S}})^{\top}(x-x_{\mathcal{S}}) \geq 0 \quad \forall x \in \cap_{i=1}^{\mathcal{N}} \mathcal{X}_{\delta_{i}} \\ & \delta_{i} \ \mathsf{iid} \sim \mathbb{P} \end{array}$

- $\mathsf{RVI:} \quad \mathsf{find} \ x_R \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad \mathsf{s.t.} \quad F(x_R)^\top (x x_R) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$
- S-RVI: find $x_{S} \in \bigcap_{i=1}^{N} \mathcal{X}_{\delta_{i}}$ s.t. $F(x_{S})^{\top}(x x_{S}) \ge 0 \quad \forall x \in \bigcap_{i=1}^{N} \mathcal{X}_{\delta_{i}}$ $\delta_{i} \text{ iid } \sim \mathbb{P}$

Q: How "likely" is a solution to S-RVI to be a solution of RVI?

- $\mathsf{RVI:} \quad \mathsf{find} \ x_R \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad \mathsf{s.t.} \quad F(x_R)^\top (x x_R) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$
- $\begin{array}{lll} \mathsf{S}\text{-}\mathsf{R}\mathsf{V}\mathsf{I}: & \mathsf{find} \ x_{\mathcal{S}} \in \cap_{i=1}^{\mathcal{N}} \mathcal{X}_{\delta_{i}} & \mathsf{s.t.} \quad F(x_{\mathcal{S}})^{\top}(x-x_{\mathcal{S}}) \geq 0 \quad \forall x \in \cap_{i=1}^{\mathcal{N}} \mathcal{X}_{\delta_{i}} \\ & \delta_{i} \ \mathsf{iid} \sim \mathbb{P} \end{array}$

Q: How "likely" is a solution to S-RVI to be a solution of RVI?

··→ notion of risk: the risk V(x) associated to $x \in \mathbb{R}^n$ is $V(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } x \notin \mathcal{X}_{\delta}\}$

- $\mathsf{RVI:} \quad \mathsf{find} \ x_R \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad \mathsf{s.t.} \quad F(x_R)^\top (x x_R) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$
- $\begin{array}{lll} \text{S-RVI:} & \text{find } x_{\mathcal{S}} \in \cap_{i=1}^{\mathcal{N}} \mathcal{X}_{\delta_{i}} & \text{s.t.} & F(x_{\mathcal{S}})^{\top}(x-x_{\mathcal{S}}) \geq 0 & \forall x \in \cap_{i=1}^{\mathcal{N}} \mathcal{X}_{\delta_{i}} \\ & \delta_{i} \text{ iid } \sim \mathbb{P} \end{array}$

Q: How "likely" is a solution to S-RVI to be a solution of RVI?

 \rightarrow notion of risk: the risk *V*(*x*) associated to *x* ∈ ℝⁿ is *V*(*x*) = ℙ{δ ∈ Δ s.t. *x* ∉ *X*_δ}

$$(\delta_1, \ldots, \delta_N) \longrightarrow$$
 Sampled RVI \longrightarrow solution x_S
risk $V(x_S)$

- $\mathsf{RVI:} \quad \mathsf{find} \ x_R \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad \mathsf{s.t.} \quad F(x_R)^\top (x x_R) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$
- $\begin{array}{lll} \text{S-RVI:} & \text{find } x_{\mathcal{S}} \in \cap_{i=1}^{\mathcal{N}} \mathcal{X}_{\delta_{i}} & \text{s.t.} & F(x_{\mathcal{S}})^{\top}(x-x_{\mathcal{S}}) \geq 0 & \forall x \in \cap_{i=1}^{\mathcal{N}} \mathcal{X}_{\delta_{i}} \\ & \delta_{i} \text{ iid } \sim \mathbb{P} \end{array}$

Q: How "likely" is a solution to S-RVI to be a solution of RVI?

→ notion of risk: the risk
$$V(x)$$
 associated to $x \in \mathbb{R}^n$ is
 $V(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } x \notin \mathcal{X}_{\delta}\}$

$$(\delta_1, \dots, \delta_N) \longrightarrow$$
 Sampled RVI \longrightarrow solution x_S
risk $V(x_S)$

 \rightarrow assume: existence & uniqueness of solution x_S for all $\{\delta_i\}_{i=1}^N$

For any $\beta \in (0,1)$, $k \in \{0,\ldots,N-1\}$, let $\varepsilon(k)$ be the unique solution of

$$\frac{\beta}{N+1}\sum_{l=k}^{N}\binom{l}{k}(1-\varepsilon)^{l-k}-\binom{N}{k}(1-\varepsilon)^{N-k}=0.$$

For any $\beta \in (0,1)$, $k \in \{0,\ldots,N-1\}$, let $\varepsilon(k)$ be the unique solution of

$$\frac{\beta}{N+1}\sum_{l=k}^{N}\binom{l}{k}(1-\varepsilon)^{l-k}-\binom{N}{k}(1-\varepsilon)^{N-k}=0.$$

For any $\beta \in (0,1)$, $k \ge N$, let $\varepsilon(k) = 1$.

Theorem: assume existence + uniqueness & non-degeneracy

Theorem: assume existence + uniqueness & non-degeneracy \triangleright a-priori bound on risk: $\mathbb{P}^{N}[V(x_{S}) \leq \varepsilon(n)] \geq 1 - \beta$

Theorem: assume existence + uniqueness & non-degeneracy $\mathbb{T}^{N}(V(x_{1})) \leq V(x_{2}) \geq 1$

- \triangleright a-priori bound on risk: $\mathbb{P}^{N}[V(x_{S}) \leq \varepsilon(n)] \geq 1 \beta$
- ▷ a-posteriori bound on risk: $\mathbb{P}^{N}[V(x_{S}) \leq \varepsilon(s)] \geq 1 \beta$ where *s* is the number of support constraints

Theorem: assume existence + uniqueness & non-degeneracy \triangleright a-priori bound on risk: $\mathbb{P}^{N}[V(x_{S}) \leq \varepsilon(n)] \geq 1 - \beta$

▷ a-posteriori bound on risk: $\mathbb{P}^{N}[V(x_{S}) \leq \varepsilon(s)] \geq 1 - \beta$ where *s* is the number of support constraints

"with high probability (larger than $1 - \beta$), the risk is small (below ε)"

The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \Rightarrow 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x - \bar{x}) \ge 0$, $\forall x \in \mathcal{X}(\bar{x})$

The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \Rightarrow 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x - \bar{x}) \ge 0$, $\forall x \in \mathcal{X}(\bar{x})$

▷ informal: a VI where the feasible set depends on the point x

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \Rightarrow 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x - \bar{x}) \ge 0$, $\forall x \in \mathcal{X}(\bar{x})$

▷ informal: a VI where the feasible set depends on the point x
 ▷ we will use QVI to describe games with uncertain costs

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \Rightarrow 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x - \bar{x}) \ge 0$, $\forall x \in \mathcal{X}(\bar{x})$

▷ informal: a VI where the feasible set depends on the point x
 ▷ we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F : \mathbb{R}^n \to \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\{\mathcal{X}_{\delta}\}_{\delta \in \Delta}$

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \Rightarrow 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x - \bar{x}) \ge 0$, $\forall x \in \mathcal{X}(\bar{x})$

▷ informal: a VI where the feasible set depends on the point x
 ▷ we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F : \mathbb{R}^n \to \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\{\mathcal{X}_{\delta}\}_{\delta \in \Delta}$ RQVI: find $x_R \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R)$ s.t. $F(x_R)^{\top}(x - x_R) \ge 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R)$

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \Rightarrow 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \ge 0$, $\forall x \in \mathcal{X}(\bar{x})$

informal: a VI where the feasible set depends on the point x
 we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F : \mathbb{R}^n \to \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\{\mathcal{X}_{\delta}\}_{\delta \in \Delta}$

 $\begin{aligned} & \mathsf{RQVI: find } x_R \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R) \ \text{ s.t. } F(x_R)^\top (x - x_R) \ge 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R) \\ & \mathsf{S-RQVI: find } x_S \in \cap_{i=1}^N \mathcal{X}_{\delta_i}(x_S) \ \text{ s.t. } F(x_S)^\top (x - x_S) \ge 0 \quad \forall x \in \cap_{i=1}^N \mathcal{X}_{\delta_i}(x_S) \\ & \delta_i \text{ iid } \sim \mathbb{P} \end{aligned}$

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \Rightarrow 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \ge 0$, $\forall x \in \mathcal{X}(\bar{x})$

informal: a VI where the feasible set depends on the point x
 we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F : \mathbb{R}^n \to \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\{\mathcal{X}_{\delta}\}_{\delta \in \Delta}$ RQVI: find $x_R \in \bigcap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R)$ s.t. $F(x_R)^{\top}(x - x_R) \ge 0$ $\forall x \in \bigcap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R)$ S-RQVI: find $x_S \in \bigcap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$ s.t. $F(x_S)^{\top}(x - x_S) \ge 0$ $\forall x \in \bigcap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$ $\delta_i \text{ iid } \sim \mathbb{P}$

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \Rightarrow 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x - \bar{x}) \ge 0$, $\forall x \in \mathcal{X}(\bar{x})$

informal: a VI where the feasible set depends on the point x
 we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F : \mathbb{R}^n \to \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\{\mathcal{X}_{\delta}\}_{\delta \in \Delta}$ RQVI: find $x_R \in \bigcap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R)$ s.t. $F(x_R)^{\top}(x - x_R) \ge 0$ $\forall x \in \bigcap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R)$ S-RQVI: find $x_S \in \bigcap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$ s.t. $F(x_S)^{\top}(x - x_S) \ge 0$ $\forall x \in \bigcap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$ $\delta_i \text{ iid } \sim \mathbb{P}$

Risk: the risk associated to $x \in \mathbb{R}^n$ is $V(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } x \notin \mathcal{X}_{\delta}(x)\}$

Definition (QVI): given set-valued map $\mathcal{X} : \mathbb{R}^n \Rightarrow 2^{\mathbb{R}^n}$ and $F : \mathbb{R}^n \to \mathbb{R}^n$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x - \bar{x}) \ge 0$, $\forall x \in \mathcal{X}(\bar{x})$

informal: a VI where the feasible set depends on the point x
 we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F : \mathbb{R}^n \to \mathbb{R}^n$, $(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\{\mathcal{X}_{\delta}\}_{\delta \in \Delta}$ RQVI: find $x_R \in \bigcap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R)$ s.t. $F(x_R)^{\top}(x - x_R) \ge 0$ $\forall x \in \bigcap_{\delta \in \Delta} \mathcal{X}_{\delta}(x_R)$ S-RQVI: find $x_S \in \bigcap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$ s.t. $F(x_S)^{\top}(x - x_S) \ge 0$ $\forall x \in \bigcap_{i=1}^N \mathcal{X}_{\delta_i}(x_S)$ $\delta_i \text{ iid } \sim \mathbb{P}$

Risk: the risk associated to $x \in \mathbb{R}^n$ is $V(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } x \notin \mathcal{X}_{\delta}(x)\}$

Theorem (informal): the same bounds on the risk hold for QVI.

- *M* agents

- M agents
- each agent's decision $x^j \in \mathcal{X}^j \subseteq \mathbb{R}^n$, let $\mathcal{X} = \mathcal{X}^1 \times \cdots \times \mathcal{X}^M$

- M agents
- each agent's decision $x^j \in \mathcal{X}^j \subseteq \mathbb{R}^n$, let $\mathcal{X} = \mathcal{X}^1 \times \cdots \times \mathcal{X}^M$
- each agents' cost function $C^j(x^j, x^{-j}; \delta) : \mathcal{X} imes \Delta o \mathbb{R}$

- M agents
- each agent's decision $x^j \in \mathcal{X}^j \subseteq \mathbb{R}^n$, let $\mathcal{X} = \mathcal{X}^1 \times \cdots \times \mathcal{X}^M$
- each agents' cost function $C^j(x^j, x^{-j}; \delta) : \mathcal{X} \times \Delta \to \mathbb{R}$

Robust NE ([Aghassi and Berstimas]): $x_R \in \mathcal{X}$ is a robust NE if $\max_{\delta \in \Delta} C^j(x_R; \delta) \le \max_{\delta \in \Delta} C^j(x^j, x_R^{-j}; \delta) \qquad \forall x^j \in \mathcal{X}^j, \ \forall j$

- M agents
- each agent's decision $x^j \in \mathcal{X}^j \subseteq \mathbb{R}^n$, let $\mathcal{X} = \mathcal{X}^1 \times \cdots \times \mathcal{X}^M$
- each agents' cost function $C^j(x^j, x^{-j}; \delta) : \mathcal{X} \times \Delta \to \mathbb{R}$

Robust NE ([Aghassi and Berstimas]): $x_R \in \mathcal{X}$ is a robust NE if $\max_{\delta \in \Delta} C^j(x_R; \delta) \le \max_{\delta \in \Delta} C^j(x^j, x_R^{-j}; \delta) \qquad \forall x^j \in \mathcal{X}^j, \ \forall j$

 \triangleright often agents have access to past realizations δ_i from $(\Delta, \mathcal{F}, \mathbb{P})$

- *M* agents
- each agent's decision $x^j \in \mathcal{X}^j \subseteq \mathbb{R}^n$, let $\mathcal{X} = \mathcal{X}^1 \times \cdots \times \mathcal{X}^M$
- each agents' cost function $C^j(x^j, x^{-j}; \delta) : \mathcal{X} \times \Delta \to \mathbb{R}$

Robust NE ([Aghassi and Berstimas]): $x_R \in \mathcal{X}$ is a robust NE if $\max_{\delta \in \Delta} C^j(x_R; \delta) \le \max_{\delta \in \Delta} C^j(x^j, x_R^{-j}; \delta) \qquad \forall x^j \in \mathcal{X}^j, \ \forall j$

 \triangleright often agents have access to past realizations δ_i from $(\Delta, \mathcal{F}, \mathbb{P})$

Sampled robust NE: $\{\delta_i\}_{i=1}^N$ iid $\sim \mathbb{P}$, $x_S \in \mathcal{X}$ is a sampled robust NE if $\max_i C^j(x_S; \delta_i) \leq \max_i C^j(x^j, x_S^{-j}; \delta_i) \qquad \forall x^j \in \mathcal{X}^j, \ \forall j$

Setup: samples $\{\delta_i\}_{i \in N}$ are known to the agents, which decide to play x_s .

Setup: samples $\{\delta_i\}_{i \in \mathbb{N}}$ are known to the agents, which decide to play x_s .

$$(\delta_1, \ldots, \delta_N) \longrightarrow$$
 Sampled robust Nash \longrightarrow solution x_S

Setup: samples $\{\delta_i\}_{i \in N}$ are known to the agents, which decide to play x_S .

$$(\delta_1, \ldots, \delta_N) \longrightarrow$$
 Sampled robust Nash \longrightarrow solution x_S

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than $\max_i C^j(x_S; \delta_i)$?

Setup: samples $\{\delta_i\}_{i \in N}$ are known to the agents, which decide to play x_S .

$$(\delta_1, \ldots, \delta_N) \longrightarrow$$
 Sampled robust Nash \longrightarrow solution x_S

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than $\max_i C^j(x_S; \delta_i)$?

Answer: an application of the previous theory.

Setup: samples $\{\delta_i\}_{i \in N}$ are known to the agents, which decide to play x_S .

$$(\delta_1, \ldots, \delta_N) \longrightarrow$$
 Sampled robust Nash \longrightarrow solution x_S

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than $\max_i C^j(x_S; \delta_i)$?

Answer: an application of the previous theory. Let agent's *j* risk be $V^{j}(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } C^{j}(x; \delta) \ge \max_{i} C^{j}(x; \delta_{i})\}$

Setup: samples $\{\delta_i\}_{i \in N}$ are known to the agents, which decide to play x_S .

$$(\delta_1, \ldots, \delta_N) \longrightarrow$$
 Sampled robust Nash \longrightarrow solution x_S

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than $\max_i C^j(x_S; \delta_i)$?

Answer: an application of the previous theory. Let agent's *j* risk be $V^{j}(x) = \mathbb{P}\{\delta \in \Delta \text{ s.t. } C^{j}(x; \delta) \ge \max_{i} C^{j}(x; \delta_{i})\}$

Theorem: existence, uniqueness, non-degeneracy \implies

▷ a-priori bound on risk: $\mathbb{P}^{N}[V^{j}(x_{S}) \leq \varepsilon(nM+M)] \geq 1-\beta$ ▷ a-posteriori bound on risk: $\mathbb{P}^{N}[V^{j}(x_{S}) \leq \varepsilon(s)] \geq 1-\beta$

- A fleet of EVs to recharge

- A fleet of EVs to recharge

players: $j \in \{1, \ldots, M\}$

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]

$$\begin{array}{c|c} & & \\ & & \\ x_1^j & x_2^j & x_{n-1}^j & x_n^j \end{array}$$

players: $j \in \{1, \ldots, M\}$

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]

$$\begin{array}{c|c} & & \\ & & \\ x_1^j & x_2^j & x_{n-1}^j & x_n^j \end{array}$$

 $\begin{array}{ll} \mathsf{players:} & j \in \{1,\ldots,M\}\\ \mathsf{cost} \text{ of } j \text{:} & \mathsf{p}(\sum_j x^j + d)^\top x^j \end{array}$

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]

$$\begin{array}{c|c} & & \\ \hline \\ x_1^j & x_2^j & x_{n-1}^j & x_n^j \end{array}$$

- A fleet of EVs to recharge
- Each vehicle \min bill in [1, n]

- Charging requirements

constr: $x^j \in \mathcal{X}^j$

- A fleet of EVs to recharge
- Each vehicle \min bill in [1, n]

- Charging requirements
- Past non-EV demand

constr: $x^j \in \mathcal{X}^j$ samples: $\{d_i\}_{i=1}^N$

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]

 $\begin{array}{c|c} & & \\ & & \\ x_1^j & x_2^j & x_{n-1}^j & x_n^j \end{array}$

- Charging requirements
- Past non-EV demand

Vormalized demand *d* [kW] 8 7 Non-EV demand 6 12PM 04 PM 08PM 12AM 08AM 12PM 04AM players: $j \in \{1, \ldots, M\}$ cost of j: $p(\sum_{i} x^{j} + d)^{\top} x^{j}$

> constr: $x^j \in \mathcal{X}^j$ samples: $\{d_i\}_{i=1}^N$

literature: d known in advance [Callaway, Chen, Grammatico, Hiskens, Ma, ...]

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]

 $\begin{array}{c|c} & & \\ & & \\ x_1^j & x_2^j & x_{n-1}^j & x_n^j \end{array}$

- Charging requirements
- Past non-EV demand

Vormalized demand *d* [kW] 8 7 Non-EV demand 6 12PM 08AM 12PM 08PM 12AM players: $j \in \{1, \ldots, M\}$ cost of j: $p(\sum_{i} x^{j} + d)^{\top} x^{j}$

> constr: $x^j \in \mathcal{X}^j$ samples: $\{d_i\}_{i=1}^N$

literature: d known in advance [Callaway, Chen, Grammatico, Hiskens, Ma, ...]

Q: What guarantees can we provide the users without this assumption?

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees

▷ How "likely" are users to pay more than "expected"? Little

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees

- \triangleright How "likely" are users to pay more than "expected"? Little
- \triangleright How "likely" are user to deviate from agreed charging? Little

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees

- \triangleright How "likely" are users to pay more than "expected"? Little
- \triangleright How "likely" are user to deviate from agreed charging? Little

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees

- \triangleright How "likely" are users to pay more than "expected"? Little
- \triangleright How "likely" are user to deviate from agreed charging? Little

Simulations with M = 100 agents, N = 500 days of history

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees

- \triangleright How "likely" are users to pay more than "expected"? Little
- \triangleright How "likely" are user to deviate from agreed charging? Little

Simulations with M = 100 agents, N = 500 days of history \rightsquigarrow a-priori bound is not useful as nM + M = 2500

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees

- ▷ How "likely" are users to pay more than "expected"? Little
- \triangleright How "likely" are user to deviate from agreed charging? Little

Simulations with M = 100 agents, N = 500 days of history \rightsquigarrow a-priori bound is not useful as nM + M = 2500 \rightsquigarrow a-posteriori bound is useful as typically $3 \le s \le 7$

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees

- ▷ How "likely" are users to pay more than "expected"? Little
- \triangleright How "likely" are user to deviate from agreed charging? Little

Simulations with M = 100 agents, N = 500 days of history \rightsquigarrow a-priori bound is not useful as nM + M = 2500 \rightsquigarrow a-posteriori bound is useful as typically $3 \le s \le 7$

with $s=7, \quad V^j(x_S) \leq 6.5\%$ with probability larger than $1-10^{-6}$

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees

- ▷ How "likely" are users to pay more than "expected"? Little
- \triangleright How "likely" are user to deviate from agreed charging? Little

Simulations with M = 100 agents, N = 500 days of history \rightsquigarrow a-priori bound is not useful as nM + M = 2500 \rightsquigarrow a-posteriori bound is useful as typically $3 \le s \le 7$

with s = 7, $V^{j}(x_{S}) \le 6.5\%$ with probability larger than $1 - 10^{-6}$ \rightsquigarrow exact calculations reveal that $0.11\% \le V^{j}(x_{S}) \le 0.16\%$

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees

▷ How "likely" are users to pay more than "expected"? Little
 ▷ How "likely" are user to deviate from agreed charging? Little

Simulations with M = 100 agents, N = 500 days of history \rightsquigarrow a-priori bound is not useful as nM + M = 2500 \rightsquigarrow a-posteriori bound is useful as typically $3 \le s \le 7$

with s = 7, $V^{j}(x_{S}) \le 6.5\%$ with probability larger than $1 - 10^{-6}$ \rightsquigarrow exact calculations reveal that $0.11\% \le V^{j}(x_{S}) \le 0.16\%$

Theme of this talk: take decision based on data and quantify risk

Theme of this talk: take decision based on data and quantify risk

Theme of this talk: take decision based on data and quantify risk

Technical results: - a-priori/a-posteriori bounds for VI and QVI

Theme of this talk: take decision based on data and quantify risk

Technical results: - a-priori/a-posteriori bounds for VI and QVI - scenario approach for uncertain game theory

Theme of this talk: take decision based on data and quantify risk

Technical results: - a-priori/a-posteriori bounds for VI and QVI - scenario approach for uncertain game theory

Application: EV charging

Theme of this talk: take decision based on data and quantify risk

Technical results: - a-priori/a-posteriori bounds for VI and QVI - scenario approach for uncertain game theory

Application: EV charging

Opportunities: novel and unexplored framework \rightsquigarrow explore different applications \rightsquigarrow tightly bound agents' private risk?

Theme of this talk: take decision based on data and quantify risk

Opportunities: novel and unexplored framework \rightsquigarrow explore different applications \rightarrow tightly bound agents' private risk?

Theme of this talk: take decision based on data and quantify risk

Technical results: - a-priori/a-posteriori bounds for VI and QVI - scenario approach for uncertain game theory

Application: EV charging

Opportunities: novel and unexplored framework \rightsquigarrow explore different applications \rightarrow tightly bound agents' private risk?

sites.engineering.ucsb.edu/~dariop

dariop@ucsb.edu