UC SANTA BARBARA

The Scenario Approach Meets Uncertain Game Theory and Variational Inequalities

Dario Paccagnan

In collaboration with M.C. Campi

Theme of this talk: take decision based on data and quantify their risk

Theme of this talk: take decision based on data and quantify their risk

Theme of this talk: take decision based on data and quantify their risk

if decision making $=$ optimization problem \Longrightarrow - scenario approach

- robust optimization

Theme of this talk: take decision based on data and quantify their risk

if decision making $=$ optimization problem $\quad \Longrightarrow \quad$ - scenario approach

- robust optimization
- ...
[Borelli, Calafiore, Campi, Esfahani, Garatti, Goulart, Kuhn, Lygeros, Margellos, Prandini, Ramponi, Sutter, Tempo, ...]

Theme of this talk: take decision based on data and quantify their risk

if decision making $=$ optimization problem $\quad \Longrightarrow$ - scenario approach

- robust optimization
- ...
[Borelli, Calafiore, Campi, Esfahani, Garatti, Goulart, Kuhn, Lygeros, Margellos, Prandini, Ramponi, Sutter, Tempo, ...]

What if decision making is not an optimization problem?

Theme of this talk: take decision based on data and quantify their risk

if decision making $=$ optimization problem $\quad \Longrightarrow$ - scenario approach

- robust optimization
- ...
[Borelli, Calafiore, Campi, Esfahani, Garatti, Goulart, Kuhn, Lygeros, Margellos, Prandini, Ramponi, Sutter, Tempo, ...]

What if decision making is not an optimization problem?
in this talk: decision making process $=$ variational inequality

Why variational inequalities?

" [...] a multitude of interesting connections to numerous disciplines, and a wide range of important applications in engineering and economics"
F. Facchinei, J-S Pang

Why variational inequalities?

"[...] a multitude of interesting connections to numerous disciplines, and a wide range of important applications in engineering and economics" F. Facchinei, J-S Pang

transportation networks

demand-response markets

contact problems

option pricing

ROADMAP

1. Robust variational inequalities + scenario approach
\rightsquigarrow probabilistic bounds on the risk
\rightsquigarrow extension to quasi variational inequalities
2. Uncertain and robust games
\rightsquigarrow how likely that a Nash equilibrium remains such?
\rightsquigarrow application to demand-response
3. Outlook and opportunities

Variational inequalities

Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^{n}$ and operator $F: \mathcal{X} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \quad \forall x \in \mathcal{X}$

Variational inequalities

Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^{n}$ and operator $F: \mathcal{X} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \quad \forall x \in \mathcal{X}$

Variational inequalities

Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^{n}$ and operator $F: \mathcal{X} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \forall x \in \mathcal{X}$

\triangleright convex optimization as a special case:
\bar{x} solution of $\min _{x \in \mathcal{X}} g(x) \Longleftrightarrow \nabla g(\bar{x})^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$

Variational inequalities

Definition (VI): given set $\mathcal{X} \subset \mathbb{R}^{n}$ and operator $F: \mathcal{X} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \quad \forall x \in \mathcal{X}$

\triangleright convex optimization as a special case:
\bar{x} solution of $\min _{x \in \mathcal{X}} g(x) \Longleftrightarrow \nabla g(\bar{x})^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$

Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?

Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?
tentative: set \mathcal{X}, operator $F: \mathcal{X} \times \Delta \rightarrow \mathbb{R}^{n}$
find $\bar{x} \in \mathcal{X} \quad$ s.t. $F(\bar{x}, \delta)^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$

Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?
tentative: set \mathcal{X}, operator $F: \mathcal{X} \times \Delta \rightarrow \mathbb{R}^{n}$
find $\bar{x} \in \mathcal{X} \quad$ s.t. $F(\bar{x}, \delta)^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$
\rightsquigarrow has a solution only exceptionally

Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?
tentative: set \mathcal{X}, operator $F: \mathcal{X} \times \Delta \rightarrow \mathbb{R}^{n}$
find $\bar{x} \in \mathcal{X} \quad$ s.t. $F(\bar{x}, \delta)^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$
\rightsquigarrow has a solution only exceptionally
literature: 1. expected-value formulation find $\bar{x} \in \mathcal{X}$ s.t. $\mathbb{E}_{\delta \sim \mathbb{P}}[F(\bar{x}, \delta)]^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$ [Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]

Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?
tentative: set \mathcal{X}, operator $F: \mathcal{X} \times \Delta \rightarrow \mathbb{R}^{n}$
find $\bar{x} \in \mathcal{X} \quad$ s.t. $F(\bar{x}, \delta)^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$
\rightsquigarrow has a solution only exceptionally
literature: 1. expected-value formulation find $\bar{x} \in \mathcal{X}$ s.t. $\mathbb{E}_{\delta \sim \mathbb{P}}[F(\bar{x}, \delta)]^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$ [Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]
2. expected residual formulation
find $\bar{x} \in \mathcal{X}$ s.t. $\bar{x} \in \arg \min _{x \in \mathcal{X}} \mathbb{E}_{\delta \sim \mathbb{P}}[\Phi(x, \delta)]$
[Chen, Fukushima, Lin, Shanbhag, Wets, Zhang, ...]

Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?
tentative: set \mathcal{X}, operator $F: \mathcal{X} \times \Delta \rightarrow \mathbb{R}^{n}$
find $\bar{x} \in \mathcal{X} \quad$ s.t. $F(\bar{x}, \delta)^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$
\rightsquigarrow has a solution only exceptionally
literature: 1. expected-value formulation
find $\bar{x} \in \mathcal{X}$ s.t. $\mathbb{E}_{\delta \sim \mathbb{P}}[F(\bar{x}, \delta)]^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$ [Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]
2. expected residual formulation find $\bar{x} \in \mathcal{X}$ s.t. $\bar{x} \in \arg \min _{x \in \mathcal{X}} \mathbb{E}_{\delta \sim \mathbb{P}}[\Phi(x, \delta)]$ [Chen, Fukushima, Lin, Shanbhag, Wets, Zhang, ...]
this talk: robust VI , i.e., $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(\Delta, \mathcal{F}, \mathbb{P})$, sets $\left\{\mathcal{X}_{\delta}\right\}_{\delta \in \Delta}$

Stochastic and robust VIs

Q: How to define a VI that incorporates notion of uncertainty?
tentative: set \mathcal{X}, operator $F: \mathcal{X} \times \Delta \rightarrow \mathbb{R}^{n}$
find $\bar{x} \in \mathcal{X} \quad$ s.t. $F(\bar{x}, \delta)^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}, \forall \delta \in \Delta$
\rightsquigarrow has a solution only exceptionally
literature: 1. expected-value formulation
find $\bar{x} \in \mathcal{X}$ s.t. $\mathbb{E}_{\delta \sim \mathbb{P}}[F(\bar{x}, \delta)]^{\top}(x-\bar{x}) \geq 0 \quad \forall x \in \mathcal{X}$ [Gürkan, Jiang, Nedić, Robinson, Shanbhag, Yousefian, ...]
2. expected residual formulation find $\bar{x} \in \mathcal{X}$ s.t. $\bar{x} \in \arg \min _{x \in \mathcal{X}} \mathbb{E}_{\delta \sim \mathbb{P}}[\Phi(x, \delta)]$
[Chen, Fukushima, Lin, Shanbhag, Wets, Zhang, ...]
this talk: robust VI , i.e., $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(\Delta, \mathcal{F}, \mathbb{P})$, sets $\left\{\mathcal{X}_{\delta}\right\}_{\delta \in \Delta}$ find $x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad$ s.t. $\quad F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$

Robust and sampled VI, risk

RVI: find $x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$ s.t. $\quad F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$

Robust and sampled VI , risk

RVI: find $x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad$ s.t. $\quad F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$
S-RVI: find $x_{S} \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}} \quad$ s.t. $\quad F\left(x_{S}\right)^{\top}\left(x-x_{S}\right) \geq 0 \quad \forall x \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}$

$$
\delta_{i} \text { iid } \sim \mathbb{P}
$$

Robust and sampled VI , risk

RVI: find $x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad$ s.t. $\quad F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$
S-RVI: find $x_{S} \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}} \quad$ s.t. $\quad F\left(x_{S}\right)^{\top}\left(x-x_{S}\right) \geq 0 \quad \forall x \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}$

$$
\delta_{i} \text { iid } \sim \mathbb{P}
$$

Q: How "likely" is a solution to S-RVI to be a solution of RVI?

Robust and sampled VI , risk

RVI: find $x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad$ s.t. $\quad F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$
S-RVI: find $x_{S} \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}} \quad$ s.t. $\quad F\left(x_{S}\right)^{\top}\left(x-x_{S}\right) \geq 0 \quad \forall x \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}$

$$
\delta_{i} \text { iid } \sim \mathbb{P}
$$

Q: How "likely" is a solution to S-RVI to be a solution of RVI?
\rightsquigarrow notion of risk: the risk $V(x)$ associated to $x \in \mathbb{R}^{n}$ is

$$
V(x)=\mathbb{P}\left\{\delta \in \Delta \text { s.t. } x \notin \mathcal{X}_{\delta}\right\}
$$

Robust and sampled VI, risk

RVI: find $x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad$ s.t. $\quad F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$
S-RVI: find $x_{S} \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}} \quad$ s.t. $\quad F\left(x_{S}\right)^{\top}\left(x-x_{S}\right) \geq 0 \quad \forall x \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}$

$$
\delta_{i} \text { iid } \sim \mathbb{P}
$$

Q: How "likely" is a solution to S-RVI to be a solution of RVI?
\rightsquigarrow notion of risk: the risk $V(x)$ associated to $x \in \mathbb{R}^{n}$ is

$$
V(x)=\mathbb{P}\left\{\delta \in \Delta \text { s.t. } x \notin \mathcal{X}_{\delta}\right\}
$$

Robust and sampled VI, risk

RVI: find $x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta} \quad$ s.t. $\quad F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}$
S-RVI: find $x_{S} \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}} \quad$ s.t. $\quad F\left(x_{S}\right)^{\top}\left(x-x_{S}\right) \geq 0 \quad \forall x \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}$

$$
\delta_{i} \text { iid } \sim \mathbb{P}
$$

Q: How "likely" is a solution to S-RVI to be a solution of RVI?
\rightsquigarrow notion of risk: the risk $V(x)$ associated to $x \in \mathbb{R}^{n}$ is

$$
V(x)=\mathbb{P}\left\{\delta \in \Delta \text { s.t. } x \notin \mathcal{X}_{\delta}\right\}
$$

\rightsquigarrow assume: existence \& uniqueness of solution x_{S} for all $\left\{\delta_{i}\right\}_{i=1}^{N}$

First result

For any $\beta \in(0,1), k \in\{0, \ldots, N-1\}$, let $\varepsilon(k)$ be the unique solution of

$$
\frac{\beta}{N+1} \sum_{l=k}^{N}\binom{l}{k}(1-\varepsilon)^{l-k}-\binom{N}{k}(1-\varepsilon)^{N-k}=0
$$

First result

For any $\beta \in(0,1), k \in\{0, \ldots, N-1\}$, let $\varepsilon(k)$ be the unique solution of

$$
\frac{\beta}{N+1} \sum_{l=k}^{N}\binom{l}{k}(1-\varepsilon)^{l-k}-\binom{N}{k}(1-\varepsilon)^{N-k}=0
$$

For any $\beta \in(0,1), k \geq N$, let $\varepsilon(k)=1$.

First result

First result

Theorem: assume existence + uniqueness \& non-degeneracy

First result

Theorem: assume existence + uniqueness \& non-degeneracy
\triangleright a-priori bound on risk:

$$
\mathbb{P}^{N}\left[V\left(x_{S}\right) \leq \varepsilon(n)\right] \geq 1-\beta
$$

First result

Theorem: assume existence + uniqueness \& non-degeneracy
\triangleright a-priori bound on risk:

$$
\mathbb{P}^{N}\left[V\left(x_{S}\right) \leq \varepsilon(n)\right] \geq 1-\beta
$$

\triangleright a-posteriori bound on risk: $\mathbb{P}^{N}\left[V\left(x_{S}\right) \leq \varepsilon(s)\right] \geq 1-\beta$ where s is the number of support constraints

First result

Theorem: assume existence + uniqueness \& non-degeneracy
\triangleright a-priori bound on risk:

$$
\mathbb{P}^{N}\left[V\left(x_{S}\right) \leq \varepsilon(n)\right] \geq 1-\beta
$$

\triangleright a-posteriori bound on risk: $\mathbb{P}^{N}\left[V\left(x_{S}\right) \leq \varepsilon(s)\right] \geq 1-\beta$ where s is the number of support constraints
"with high probability (larger than $1-\beta$), the risk is small (below ε)"

The result extends to quasi-variational inequalities

Definition (QVI): given set-valued $\operatorname{map} \mathcal{X}: \mathbb{R}^{n} \rightrightarrows 2^{\mathbb{R}^{n}}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \quad \forall x \in \mathcal{X}(\bar{x})$

The result extends to quasi-variational inequalities
Definition (QVI): given set-valued map $\mathcal{X}: \mathbb{R}^{n} \rightrightarrows 2^{\mathbb{R}^{n}}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \quad \forall x \in \mathcal{X}(\bar{x})$
\triangleright informal: a VI where the feasible set depends on the point x

The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X}: \mathbb{R}^{n} \rightrightarrows 2^{\mathbb{R}^{n}}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \quad \forall x \in \mathcal{X}(\bar{x})$
\triangleright informal: a VI where the feasible set depends on the point x
\triangleright we will use QVI to describe games with uncertain costs

The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X}: \mathbb{R}^{n} \rightrightarrows 2^{\mathbb{R}^{n}}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \forall x \in \mathcal{X}(\bar{x})$
\triangleright informal: a VI where the feasible set depends on the point x \triangleright we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\left\{\mathcal{X}_{\delta}\right\}_{\delta \in \Delta}$

The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X}: \mathbb{R}^{n} \rightrightarrows 2^{\mathbb{R}^{n}}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \quad \forall x \in \mathcal{X}(\bar{x})$
\triangleright informal: a VI where the feasible set depends on the point x \triangleright we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\left\{\mathcal{X}_{\delta}\right\}_{\delta \in \Delta}$ RQVI: find $x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}\left(x_{R}\right)$ s.t. $F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}\left(x_{R}\right)$

The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X}: \mathbb{R}^{n} \rightrightarrows 2^{\mathbb{R}^{n}}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \quad \forall x \in \mathcal{X}(\bar{x})$
\triangleright informal: a VI where the feasible set depends on the point x \triangleright we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\left\{\mathcal{X}_{\delta}\right\}_{\delta \in \Delta}$
RQVI: find $x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}\left(x_{R}\right)$ s.t. $F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}\left(x_{R}\right)$
S-RQVI: find $x_{S} \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}\left(x_{S}\right)$ s.t. $F\left(x_{S}\right)^{\top}\left(x-x_{S}\right) \geq 0 \quad \forall x \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}\left(x_{S}\right)$ δ_{i} iid $\sim \mathbb{P}$

The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X}: \mathbb{R}^{n} \rightrightarrows 2^{\mathbb{R}^{n}}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \quad \forall x \in \mathcal{X}(\bar{x})$
\triangleright informal: a VI where the feasible set depends on the point x \triangleright we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\left\{\mathcal{X}_{\delta}\right\}_{\delta \in \Delta}$
RQVI: find $x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}\left(x_{R}\right)$ s.t. $F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}\left(x_{R}\right)$
S-RQVI: find $x_{S} \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}\left(x_{S}\right)$ s.t. $F\left(x_{S}\right)^{\top}\left(x-x_{S}\right) \geq 0 \quad \forall x \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}\left(x_{S}\right)$ δ_{i} iid $\sim \mathbb{P}$

The result extends to quasi-variational inequalities

Definition (QVI): given set-valued map $\mathcal{X}: \mathbb{R}^{n} \rightrightarrows 2^{\mathbb{R}^{n}}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \forall x \in \mathcal{X}(\bar{x})$
\triangleright informal: a VI where the feasible set depends on the point x \triangleright we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\left\{\mathcal{X}_{\delta}\right\}_{\delta \in \Delta}$
RQVI: find $x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}\left(x_{R}\right)$ s.t. $F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}\left(x_{R}\right)$
S-RQVI: find $x_{S} \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}\left(x_{S}\right)$ s.t. $F\left(x_{S}\right)^{\top}\left(x-x_{S}\right) \geq 0 \quad \forall x \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}\left(x_{S}\right)$ δ_{i} iid $\sim \mathbb{P}$

Risk: the risk associated to $x \in \mathbb{R}^{n}$ is $V(x)=\mathbb{P}\left\{\delta \in \Delta\right.$ s.t. $\left.x \notin \mathcal{X}_{\delta}(x)\right\}$

The result extends to quasi-variational inequalities
Definition (QVI): given set-valued map $\mathcal{X}: \mathbb{R}^{n} \rightrightarrows 2^{\mathbb{R}^{n}}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, find $\bar{x} \in \mathcal{X}(\bar{x})$ s.t. $F(\bar{x})^{\top}(x-\bar{x}) \geq 0, \quad \forall x \in \mathcal{X}(\bar{x})$
\triangleright informal: a VI where the feasible set depends on the point x \triangleright we will use QVI to describe games with uncertain costs

Robust/Sampled QVI: $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n},(\Delta, \mathcal{F}, \mathbb{P})$, set val. maps $\left\{\mathcal{X}_{\delta}\right\}_{\delta \in \Delta}$

$$
\begin{aligned}
& \text { RQVI: find } x_{R} \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}\left(x_{R}\right) \text { s.t. } F\left(x_{R}\right)^{\top}\left(x-x_{R}\right) \geq 0 \quad \forall x \in \cap_{\delta \in \Delta} \mathcal{X}_{\delta}\left(x_{R}\right) \\
& \text { S-RQVI: find } x_{S} \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}\left(x_{S}\right) \text { s.t. } F\left(x_{S}\right)^{\top}\left(x-x_{S}\right) \geq 0 \quad \forall x \in \cap_{i=1}^{N} \mathcal{X}_{\delta_{i}}\left(x_{S}\right) \\
& \delta_{i} \text { iid } \sim \mathbb{P}
\end{aligned}
$$

Risk: the risk associated to $x \in \mathbb{R}^{n}$ is $V(x)=\mathbb{P}\left\{\delta \in \Delta\right.$ s.t. $\left.x \notin \mathcal{X}_{\delta}(x)\right\}$

Theorem (informal): the same bounds on the risk hold for QVI.

Uncertain games

Uncertain games

Uncertain games

- M agents

Uncertain games

- M agents
- each agent's decision $x^{j} \in \mathcal{X}^{j} \subseteq \mathbb{R}^{n}$, let $\mathcal{X}=\mathcal{X}^{1} \times \cdots \times \mathcal{X}^{M}$

Uncertain games

- M agents
- each agent's decision $x^{j} \in \mathcal{X}^{j} \subseteq \mathbb{R}^{n}$, let $\mathcal{X}=\mathcal{X}^{1} \times \cdots \times \mathcal{X}^{M}$
- each agents' cost function $C^{j}\left(x^{j}, x^{-j} ; \delta\right): \mathcal{X} \times \Delta \rightarrow \mathbb{R}$

Uncertain games

- M agents
- each agent's decision $x^{j} \in \mathcal{X}^{j} \subseteq \mathbb{R}^{n}$, let $\mathcal{X}=\mathcal{X}^{1} \times \cdots \times \mathcal{X}^{M}$
- each agents' cost function $C^{j}\left(x^{j}, x^{-j} ; \delta\right): \mathcal{X} \times \Delta \rightarrow \mathbb{R}$

Robust NE ([Aghassi and Berstimas]): $x_{R} \in \mathcal{X}$ is a robust NE if

$$
\max _{\delta \in \Delta} C^{j}\left(x_{R} ; \delta\right) \leq \max _{\delta \in \Delta} C^{j}\left(x^{j}, x_{R}^{-j} ; \delta\right) \quad \forall x^{j} \in \mathcal{X}^{j}, \forall j
$$

Uncertain games

- M agents
- each agent's decision $x^{j} \in \mathcal{X}^{j} \subseteq \mathbb{R}^{n}$, let $\mathcal{X}=\mathcal{X}^{1} \times \cdots \times \mathcal{X}^{M}$
- each agents' cost function $C^{j}\left(x^{j}, x^{-j} ; \delta\right): \mathcal{X} \times \Delta \rightarrow \mathbb{R}$

Robust NE ([Aghassi and Berstimas]): $x_{R} \in \mathcal{X}$ is a robust NE if

$$
\max _{\delta \in \Delta} C^{j}\left(x_{R} ; \delta\right) \leq \max _{\delta \in \Delta} C^{j}\left(x^{j}, x_{R}^{-j} ; \delta\right) \quad \forall x^{j} \in \mathcal{X}^{j}, \forall j
$$

\triangleright often agents have access to past realizations δ_{i} from $(\Delta, \mathcal{F}, \mathbb{P})$

Uncertain games

- M agents
- each agent's decision $x^{j} \in \mathcal{X}^{j} \subseteq \mathbb{R}^{n}$, let $\mathcal{X}=\mathcal{X}^{1} \times \cdots \times \mathcal{X}^{M}$
- each agents' cost function $C^{j}\left(x^{j}, x^{-j} ; \delta\right): \mathcal{X} \times \Delta \rightarrow \mathbb{R}$

Robust NE ([Aghassi and Berstimas]): $x_{R} \in \mathcal{X}$ is a robust NE if

$$
\max _{\delta \in \Delta} C^{j}\left(x_{R} ; \delta\right) \leq \max _{\delta \in \Delta} C^{j}\left(x^{j}, x_{R}^{-j} ; \delta\right) \quad \forall x^{j} \in \mathcal{X}^{j}, \forall j
$$

\triangleright often agents have access to past realizations δ_{i} from $(\Delta, \mathcal{F}, \mathbb{P})$
Sampled robust NE: $\left\{\delta_{i}\right\}_{i=1}^{N}$ iid $\sim \mathbb{P}, x_{S} \in \mathcal{X}$ is a sampled robust NE if

$$
\max _{i} C^{j}\left(x_{S} ; \delta_{i}\right) \leq \max _{i} C^{j}\left(x^{j}, x_{S}^{-j} ; \delta_{i}\right) \quad \forall x^{j} \in \mathcal{X}^{j}, \forall j
$$

Risk associated to sampled robust NE

Setup: samples $\left\{\delta_{i}\right\}_{i \in N}$ are known to the agents, which decide to play x_{S}.

Risk associated to sampled robust NE

Setup: samples $\left\{\delta_{i}\right\}_{i \in N}$ are known to the agents, which decide to play x_{S}.

Risk associated to sampled robust NE

Setup: samples $\left\{\delta_{i}\right\}_{i \in N}$ are known to the agents, which decide to play x_{S}.

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than $\max _{i} C^{j}\left(x_{S} ; \delta_{i}\right)$?

Risk associated to sampled robust NE

Setup: samples $\left\{\delta_{i}\right\}_{i \in N}$ are known to the agents, which decide to play x_{S}.

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than $\max _{i} C^{j}\left(x_{S} ; \delta_{i}\right)$?

Answer: an application of the previous theory.

Risk associated to sampled robust NE

Setup: samples $\left\{\delta_{i}\right\}_{i \in N}$ are known to the agents, which decide to play x_{S}.

$$
\left(\delta_{1}, \ldots, \delta_{N}\right) \longrightarrow \text { Sampled robust Nash } \longrightarrow \text { solution } x_{S}
$$

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than $\max _{i} C^{j}\left(x_{S} ; \delta_{i}\right)$?

Answer: an application of the previous theory. Let agent's j risk be

$$
V^{j}(x)=\mathbb{P}\left\{\delta \in \Delta \text { s.t. } C^{j}(x ; \delta) \geq \max _{i} C^{j}\left(x ; \delta_{i}\right)\right\}
$$

Risk associated to sampled robust NE

Setup: samples $\left\{\delta_{i}\right\}_{i \in N}$ are known to the agents, which decide to play x_{S}.

$$
\left(\delta_{1}, \ldots, \delta_{N}\right) \longrightarrow \text { Sampled robust Nash } \longrightarrow \text { solution } x_{S}
$$

Q: how likely is each agent to incur a higher cost than what predicted? i.e., higher than $\max _{i} C^{j}\left(x_{S} ; \delta_{i}\right)$?

Answer: an application of the previous theory. Let agent's j risk be

$$
V^{j}(x)=\mathbb{P}\left\{\delta \in \Delta \text { s.t. } C^{j}(x ; \delta) \geq \max _{i} C^{j}\left(x ; \delta_{i}\right)\right\}
$$

Theorem: existence, uniqueness, non-degeneracy \Longrightarrow
\triangleright a-priori bound on risk:

$$
\mathbb{P}^{N}\left[V^{j}\left(x_{S}\right) \leq \varepsilon(n M+M)\right] \geq 1-\beta
$$

\triangleright a-posteriori bound on risk: $\mathbb{P}^{N}\left[V^{j}\left(x_{S}\right) \leq \varepsilon(s)\right] \geq 1-\beta$

Robust Charging games

Robust Charging games

- A fleet of EVs to recharge

Robust Charging games

- A fleet of EVs to recharge

Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]

players: $\quad j \in\{1, \ldots, M\}$
cost of $j: p\left(\sum_{j} x^{j}+d\right)^{\top} x^{j}$

Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

players: $\quad j \in\{1, \ldots, M\}$ cost of $j: \quad p\left(\sum_{j} x^{j}+d\right)^{\top} x^{j}$

Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

- Charging requirements

players: $\quad j \in\{1, \ldots, M\}$
cost of $j: \quad p\left(\sum_{j} x^{j}+d\right)^{\top} x^{j}$
constr: $\quad x^{j} \in \mathcal{X}^{j}$

Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

- Charging requirements
- Past non-EV demand

players: $\quad j \in\{1, \ldots, M\}$
cost of $j: \quad p\left(\sum_{j} x^{j}+d\right)^{\top} x^{j}$
constr: $\quad x^{j} \in \mathcal{X}^{j}$
samples: $\quad\left\{d_{i}\right\}_{i=1}^{N}$

Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]

- Charging requirements
- Past non-EV demand
literature: d known in advance [Callaway, Chen, Grammatico, Hiskens, Ma, ...]
samples: $\quad\left\{d_{i}\right\}_{i=1}^{N}$

Robust Charging games

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

- Charging requirements
- Past non-EV demand

players: $\quad j \in\{1, \ldots, M\}$
cost of $j: \quad p\left(\sum_{j} x^{j}+d\right)^{\top} x^{j}$
constr: $\quad x^{j} \in \mathcal{X}^{j}$
samples: $\quad\left\{d_{i}\right\}_{i=1}^{N}$
literature: d known in advance [Callaway, Chen, Grammatico, Hiskens, Ma, ...]
Q: What guarantees can we provide the users without this assumption?

Numerical experiments

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees

Numerical experiments

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees
\triangleright How "likely" are users to pay more than "expected"? Little

Numerical experiments

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees
\triangleright How "likely" are users to pay more than "expected"? Little \triangleright How "likely" are user to deviate from agreed charging? Little

Numerical experiments

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees
\triangleright How "likely" are users to pay more than "expected"? Little \triangleright How "likely" are user to deviate from agreed charging? Little

Numerical experiments

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees
\triangleright How "likely" are users to pay more than "expected"? Little \triangleright How "likely" are user to deviate from agreed charging? Little

Simulations with $M=100$ agents, $N=500$ days of history

Numerical experiments

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees
\triangleright How "likely" are users to pay more than "expected"? Little \triangleright How "likely" are user to deviate from agreed charging? Little

Time of the day [hours]
Simulations with $M=100$ agents, $N=500$ days of history \rightsquigarrow a-priori bound is not useful as $n M+M=2500$

Numerical experiments

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees
\triangleright How "likely" are users to pay more than "expected"? Little \triangleright How "likely" are user to deviate from agreed charging? Little

Time of the day [hours]
Simulations with $M=100$ agents, $N=500$ days of history \rightsquigarrow a-priori bound is not useful as $n M+M=2500$
\rightsquigarrow a-posteriori bound is useful as typically $3 \leq s \leq 7$

Numerical experiments

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees
\triangleright How "likely" are users to pay more than "expected"? Little \triangleright How "likely" are user to deviate from agreed charging? Little

Time of the day [hours]
Simulations with $M=100$ agents, $N=500$ days of history
\rightsquigarrow a-priori bound is not useful as $n M+M=2500$
\rightsquigarrow a-posteriori bound is useful as typically $3 \leq s \leq 7$
with $s=7, \quad V^{j}\left(x_{s}\right) \leq 6.5 \% \quad$ with probability larger than $1-10^{-6}$

Numerical experiments

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees
\triangleright How "likely" are users to pay more than "expected"? Little \triangleright How "likely" are user to deviate from agreed charging? Little

Time of the day [hours]
Simulations with $M=100$ agents, $N=500$ days of history
\rightsquigarrow a-priori bound is not useful as $n M+M=2500$
\rightsquigarrow a-posteriori bound is useful as typically $3 \leq s \leq 7$ with $s=7, \quad V^{j}\left(x_{S}\right) \leq 6.5 \% \quad$ with probability larger than $1-10^{-6}$
\rightsquigarrow exact calculations reveal that $0.11 \% \leq V^{j}\left(x_{S}\right) \leq 0.16 \%$

Numerical experiments

Charging profile coordinated to a sampled-robust NE \rightsquigarrow prob. guarantees
\triangleright How "likely" are users to pay more than "expected"? Little \triangleright How "likely" are user to deviate from agreed charging? Little

Time of the day [hours]

Simulations with $M=100$ agents, $N=500$ days of history
\rightsquigarrow a-priori bound is not useful as $n M+M=2500$
\rightsquigarrow a-posteriori bound is useful as typically $3 \leq s \leq 7$ with $s=7, \quad V^{j}\left(x_{S}\right) \leq 6.5 \% \quad$ with probability larger than $1-10^{-6}$ \rightsquigarrow exact calculations reveal that $0.11 \% \leq V^{j}\left(x_{S}\right) \leq 0.16 \%$

Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

data \longrightarrow\begin{tabular}{c}
variational

inequality

\longrightarrow

solution

risk
\end{tabular}

Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

Technical results: - a-priori/a-posteriori bounds for VI and QVI

Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

Technical results: - a-priori/a-posteriori bounds for VI and QVI

- scenario approach for uncertain game theory

Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

Technical results: - a-priori/a-posteriori bounds for VI and QVI

- scenario approach for uncertain game theory

Application: EV charging

Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

Technical results: - a-priori/a-posteriori bounds for VI and QVI

- scenario approach for uncertain game theory

Application: EV charging

Opportunities: novel and unexplored framework
\rightsquigarrow explore different applications
\rightsquigarrow tightly bound agents' private risk?

Theme of this talk: take decision based on data and quantify risk

Opportunities: novel and unexplored framework explore different applications \rightsquigarrow tightly bound agents' private risk?

Conclusions and Outlook

Theme of this talk: take decision based on data and quantify risk

Technical results: - a-priori/a-posteriori bounds for VI and QVI

- scenario approach for uncertain game theory

Application: EV charging

Opportunities: novel and unexplored framework
\rightsquigarrow explore different applications
\rightsquigarrow tightly bound agents' private risk?
sites.engineering.ucsb.edu/~dariop dariop@ucsb.edu

