In Congestion Games, Taxes Achieve Optimal Approximation

Dario Paccagnan, Martin Gairing

Problem: minimum social cost in atomic congestion games

Problem: minimum social cost in atomic congestion games

Main result I: tight NP-hardness of approximation

Problem: minimum social cost in atomic congestion games

Main result I: tight NP-hardness of approximation

Problem: minimum social cost in atomic congestion games

Main result I: tight NP-hardness of approximation

Main result II: taxes achieve matching approximation

Problem: minimum social cost in atomic congestion games

Main result I: tight NP-hardness of approximation

Main result II: taxes achieve matching approximation

Problem: minimum social cost in atomic congestion games

Main result I: tight NP-hardness of approximation

Main result II: taxes achieve matching approximation

Problem: minimum social cost in atomic congestion games

Main result I: tight NP-hardness of approximation

Main result II: taxes achieve matching approximation \Longrightarrow first poly algo optimal approx

Problem: minimum social cost in atomic congestion games

Main result I: tight NP-hardness of approximation

Main result II: taxes achieve matching approximation \Longrightarrow first poly algo optimal approx

Judiciously designed taxes achieve optimal approx, and no other tractable intervention can improve

Atomic congestion games

Atomic congestion games

- Set of resources \mathcal{R}

Atomic congestion games

- Set of resources \mathcal{R}
- Resource costs $\ell_{r}(\cdot)$

Atomic congestion games

- Set of resources \mathcal{R}
- Resource costs $\ell_{r}(\cdot)$
- Set of players $\{1, \ldots, N\}$

Atomic congestion games

- Set of resources \mathcal{R}
- Resource costs $\ell_{r}(\cdot)$
- Set of players $\{1, \ldots, N\}$
- Player i feasible set $\mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

Atomic congestion games

- Set of resources \mathcal{R}
- Resource costs $\ell_{r}(\cdot)$
- Set of players $\{1, \ldots, N\}$
- Player i feasible set $\mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

Atomic congestion games

- Set of resources \mathcal{R}
- Resource costs $\ell_{r}(\cdot)$
- Set of players $\{1, \ldots, N\}$
- Player i feasible set $\mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

- Player $i \operatorname{cost} C_{i}(a)=\sum_{r \in a_{i}} \ell_{r}\left(|a|_{r}\right)$

Atomic congestion games

- Set of resources \mathcal{R}
- Resource costs $\ell_{r}(\cdot)$
- Set of players $\{1, \ldots, N\}$
- Player i feasible set $\mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

- Player i cost $C_{i}(a)=\sum_{r \in a_{i}} \ell_{r}\left(|a|_{r}\right)$

$$
\text { System cost: } \quad S C(a)=\sum_{i} C_{i}(a)
$$

Atomic congestion games

- Set of resources \mathcal{R}
- Resource costs $\ell_{r}(\cdot)$
- Set of players $\{1, \ldots, N\}$
- Player i feasible set $\mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

$$
S C=\ell_{1}(1)+\ell_{2}(1)+2 \ell_{3}(2)+\ell_{4}(1)
$$

- Player $i \operatorname{cost} C_{i}(a)=\sum_{r \in a_{i}} \ell_{r}\left(|a|_{r}\right)$

System cost: $\quad S C(a)=\sum_{i} C_{i}(a)$

Atomic congestion games

- Set of resources \mathcal{R}
- Resource costs $\ell_{r}(\cdot)$
- Set of players $\{1, \ldots, N\}$
- Player i feasible set $\mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

$$
S C=\ell_{1}(1)+\ell_{2}(1)+2 \ell_{3}(2)+\ell_{4}(1)
$$

- Player $i \operatorname{cost} C_{i}(a)=\sum_{r \in a_{i}} \ell_{r}\left(|a|_{r}\right)$

$$
\text { System cost: } \quad S C(a)=\sum_{i} C_{i}(a)
$$

Applications: routing, sensor allocation, scheduling, minimum power, ...

Problem: minimum social cost in atomic congestion games

Main result I: tight NP-hardness of approximation

Main result II: taxes achieve matching approximation
\Longrightarrow first poly algo optimal approx

Hardness of approximation - related work

MinSC : $\min _{a \in \mathcal{A}} S C(a)$

Hardness of approximation - related work

MinSC : $\min _{a \in \mathcal{A}} S C(a)$

* MinSC is NP-hard [Meyers/Schulz, Networks'12]
* MinSC is NP-hard if latencies are linear [Castiglioni/Celli/Marchesi/Gatti, ArXiv'20]

Hardness of approximation - related work

MinSC : $\min _{a \in \mathcal{A}} S C(a)$

* MinSC is NP-hard [Meyers/Schulz, Networks'12]
* MinSC is NP-hard if latencies are linear [Castiglioni/Celli/Marchesi/Gatti, ArXiv'20]
* If latencies are polynomial of degree $\leq d$, then MinSC is NP-hard to approx within a factor $(\beta d)^{\frac{d}{2}}$, for some $\beta>0$ [Roughgarden, FOCS'12]

Hardness of approximation - related work

$$
\text { MinSC }: \min _{a \in \mathcal{A}} S C(a)
$$

* MinSC is NP-hard [Meyers/Schulz, Networks'12]
* MinSC is NP-hard if latencies are linear [Castiglioni/Celli/Marchesi/Gatti, ArXiv'20]
* If latencies are polynomial of degree $\leq d$, then MinSC is NP-hard to approx within a factor $(\beta d)^{\frac{d}{2}}$, for some $\beta>0$ [Roughgarden, FOCS'12]

Take-away: so far no tight computational lower bound

Hardness of approximation - main result

Hardness of approximation - main result

Theorem: In congestion games with resource costs identical to $b(\cdot)$

Hardness of approximation - main result

Theorem: In congestion games with resource costs identical to $b(\cdot)$, MinSC is NP-hard to approximate within any factor smaller than

$$
\rho_{b}=\sup _{x \in \mathbb{N}} \frac{\mathbb{E}_{P \sim \operatorname{Poi}(x)}[P b(P)]}{x b(x)}
$$

Hardness of approximation - main result

Theorem: In congestion games with resource costs identical to $b(\cdot)$, MinSC is NP-hard to approximate within any factor smaller than

$$
\rho_{b}=\sup _{x \in \mathbb{N}} \frac{\mathbb{E}_{P \sim \operatorname{Poi}(x)}[P b(P)]}{x b(x)}
$$

Extension to resource costs produced by non-negative combinations of functions b_{1}, \ldots, b_{m} obtained replacing ρ_{b} with $\max _{j} \rho_{b_{j}}$

Hardness of approximation - main result

Theorem: In congestion games with resource costs identical to $b(\cdot)$, MinSC is NP-hard to approximate within any factor smaller than

$$
\rho_{b}=\sup _{x \in \mathbb{N}} \frac{\mathbb{E}_{P \sim \operatorname{Poi}(x)}[P b(P)]}{x b(x)}
$$

Extension to resource costs produced by non-negative combinations of functions b_{1}, \ldots, b_{m} obtained replacing ρ_{b} with $\max _{j} \rho_{b_{j}}$

Corollary: In polynomial congestion games of max degree d

$$
\max _{j} \rho_{b_{j}}=(d+1) \text { 'st Bell number }
$$

Hardness of approximation - main result

Theorem: In congestion games with resource costs identical to $b(\cdot)$, MinSC is NP-hard to approximate within any factor smaller than

$$
\rho_{b}=\sup _{x \in \mathbb{N}} \frac{\mathbb{E}_{P \sim \operatorname{Poi}(x)}[P b(P)]}{x b(x)}
$$

Extension to resource costs produced by non-negative combinations of functions b_{1}, \ldots, b_{m} obtained replacing ρ_{b} with $\max _{j} \rho_{b_{j}}$

Corollary: In polynomial congestion games of max degree d

$$
\max _{j} \rho_{b_{j}}=(d+1) \text { 'st Bell number }
$$

For example $d=1$ corresponds to $\mathcal{B}(d+1)=2$

Hardness of approximation - main result

Theorem: In congestion games with resource costs identical to $b(\cdot)$, MinSC is NP-hard to approximate within any factor smaller than

$$
\rho_{b}=\sup _{x \in \mathbb{N}} \frac{\mathbb{E}_{P \sim \operatorname{Poi}(x)}[P b(P)]}{x b(x)}
$$

Extension to resource costs produced by non-negative combinations of functions b_{1}, \ldots, b_{m} obtained replacing ρ_{b} with $\max _{j} \rho_{b_{j}}$

Corollary: In polynomial congestion games of max degree d

$$
\max _{j} \rho_{b_{j}}=(d+1) \text { 'st Bell number }
$$

For example $d=1$ corresponds to $\mathcal{B}(d+1)=2$

$$
d=2 \text { corresponds to } \mathcal{B}(d+1)=5
$$

Proof Ideas

Proof Ideas

Reduction from Gap-label-cover to CG using partitioning system

Proof Ideas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat IJCAI'20]

- bi-partite graph

Proof Ideas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat IJCAI'20]

- bi-partite graph
- palette of colors

Proof Ideas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat IJCAI'20]

- bi-partite graph
- palette of colors
- set of constraints

Proof Ideas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat IJCAI'20]

- bi-partite graph
- palette of colors
- set of constraints

Proof Ideas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat IJCAI'20]

- bi-partite graph
- palette of colors
- set of constraints

Partitioning system generalizes [Feige, JACM'98], used in [Barman/Fawzi/Fermé, STACS'21]

- resources \mathcal{R}, cost $b(\cdot)$

Proof Ideas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat IJCAI'20]

- bi-partite graph
- palette of colors
- set of constraints

Partitioning system generalizes [Feige, JACM'98], used in [Barman/Fawzi/Fermé, STACS'21]

- resources \mathcal{R}, cost $b(\cdot)$
- subsets $P_{i, j} \subseteq \mathcal{R}$

Proof Ideas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat IJCAI'20]

- bi-partite graph
- palette of colors
- set of constraints

Partitioning system generalizes [Feige, JACM'98], used in [Barman/Fawzi/Fermé, STACS'21]

- resources \mathcal{R}, cost $b(\cdot)$
- subsets $P_{i, j} \subseteq \mathcal{R}$
- SC(row)

Proof Ideas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat IJCAI'20]

- bi-partite graph
- palette of colors
- set of constraints

Partitioning system generalizes [Feige, JACM'98], used in [Barman/Fawzi/Fermé, STACS'21]

- resources \mathcal{R}, cost $b(\cdot)$
- subsets $P_{i, j} \subseteq \mathcal{R}$
- SC(row), SC(scr)

Proof Ideas

Reduction from Gap-label-cover to CG using partitioning system

Gap-label-cover [Feige JACM'98; Dudyciz/Manurangsi/Marcinkowski/Sornat IJCAI'20]

- bi-partite graph
- palette of colors
- set of constraints

Partitioning system generalizes [Feige, JACM'98], used in [Barman/Fawzi/Fermé, STACS'21]

- resources \mathcal{R}, cost $b(\cdot)$
- subsets $P_{i, j} \subseteq \mathcal{R}$
- SC(row), SC(scr) satisfy

$$
\frac{S C(s c r)}{S C(\text { row })} \approx \rho_{b}
$$

Problem: minimum social cost in atomic congestion games

Main result I: tight NP-hardness of approximation
Main result II: taxes achieve matching approximation
\Longrightarrow first poly algo optimal approx

Poly-time algorithm based on taxes

Poly-time algorithm based on taxes

Background:

- price of anarchy measures equilibrium quality, e.g., $S C\left(a^{\mathrm{NE}}\right) / S C\left(a^{\mathrm{OPT}}\right)$ [Koutsoupias/Papadimitriou STACS'99; Christodoulou/Koutsoupias STOC'05; Aland/Dumrauf/Gairing/Monien/Schoppmann, STACS'06; Roughgarden JACM'15]

Poly-time algorithm based on taxes

Background:

- price of anarchy measures equilibrium quality, e.g., $S C\left(a^{\mathrm{NE}}\right) / S C\left(a^{\mathrm{OPT}}\right)$ [Koutsoupias/Papadimitriou STACS'99; Christodoulou/Koutsoupias STOC'05; Aland/Dumrauf/Gairing/Monien/Schoppmann, STACS'06; Roughgarden JACM'15]
- efficient computation of CE/CCE
[Papadimitriou/Roughgarden, JACM'08; Xin Jiang/Leyton-Brown, GEB'15;
Hart/Mas-Colell, Econometrica'00; Blum/Hajiaghayi/Ligett/Roth, STOC'08]

Poly-time algorithm based on taxes

Background:

- price of anarchy measures equilibrium quality, e.g., $S C\left(a^{\mathrm{NE}}\right) / S C\left(a^{\mathrm{OPT}}\right)$ [Koutsoupias/Papadimitriou STACS'99; Christodoulou/Koutsoupias STOC'05; Aland/Dumrauf/Gairing/Monien/Schoppmann, STACS'06; Roughgarden JACM'15]
- efficient computation of CE/CCE
[Papadimitriou/Roughgarden, JACM'08; Xin Jiang/Leyton-Brown, GEB'15; Hart/Mas-Colell, Econometrica'00; Blum/Hajiaghayi/Ligett/Roth, STOC'08]

Price of anarchy as approximation ratio

Poly-time algorithm based on taxes

Background:

- price of anarchy measures equilibrium quality, e.g., $S C\left(a^{\mathrm{NE}}\right) / S C\left(a^{\mathrm{OPT}}\right)$ [Koutsoupias/Papadimitriou STACS'99; Christodoulou/Koutsoupias STOC'05; Aland/Dumrauf/Gairing/Monien/Schoppmann, STACS'06; Roughgarden JACM'15]
- efficient computation of CE/CCE
[Papadimitriou/Roughgarden, JACM'08; Xin Jiang/Leyton-Brown, GEB'15; Hart/Mas-Colell, Econometrica'00; Blum/Hajiaghayi/Ligett/Roth, STOC'08]

Price of anarchy as approximation ratio
$\rightsquigarrow \mathbf{Q}$: How to improve PoA?

Poly-time algorithm based on taxes

Background:

- price of anarchy measures equilibrium quality, e.g., $S C\left(a^{\mathrm{NE}}\right) / S C\left(a^{\mathrm{OPT}}\right)$
[Koutsoupias/Papadimitriou STACS'99; Christodoulou/Koutsoupias STOC'05;
Aland/Dumrauf/Gairing/Monien/Schoppmann, STACS'06; Roughgarden JACM'15]
- efficient computation of CE/CCE
[Papadimitriou/Roughgarden, JACM'08; Xin Jiang/Leyton-Brown, GEB'15;
Hart/Mas-Colell, Econometrica'00; Blum/Hajiaghayi/Ligett/Roth, STOC'08]

Price of anarchy as approximation ratio
 $\rightsquigarrow \mathbf{Q}$: How to improve PoA?

* coordination mechanisms: [Christodolou/Koutsoupias/Nanavati, ICALP'04 ...]
* Stackelberg strategies: [Fotakis, ESA'04; Swamy, SODA'07 ...]
* information provision: [Bhaskar/Cheng/Kun Ko/Swamy, EC'16; Nachbar/Xu ArXiv'20 ...]
* cost sharing: [Gkatzelis/Kollias/Roughgarden, WINE'14; Chen/Roughgarden/Valiant, J Comput'10 ...]
* taxes: [Caragiannis/Kaklamanis/Kannellopoulos, Trans Alg'10; Bilò/Vinci, EC'16 ...]

Poly-time algorithm based on taxes

Background:

- price of anarchy measures equilibrium quality, e.g., $S C\left(a^{\mathrm{NE}}\right) / S C\left(a^{\mathrm{OPT}}\right)$
[Koutsoupias/Papadimitriou STACS'99; Christodoulou/Koutsoupias STOC'05;
Aland/Dumrauf/Gairing/Monien/Schoppmann, STACS'06; Roughgarden JACM'15]
- efficient computation of CE/CCE
[Papadimitriou/Roughgarden, JACM'08; Xin Jiang/Leyton-Brown, GEB'15;
Hart/Mas-Colell, Econometrica'00; Blum/Hajiaghayi/Ligett/Roth, STOC'08]

Price of anarchy as approximation ratio
 $\rightsquigarrow \mathbf{Q}$: How to improve PoA?

* coordination mechanisms: [Christodolou/Koutsoupias/Nanavati, ICALP'04 ...]
* Stackelberg strategies: [Fotakis, ESA'04; Swamy, SODA'07 ...]
* information provision: [Bhaskar/Cheng/Kun Ko/Swamy, EC'16; Nachbar/Xu ArXiv'20 ...]
* cost sharing: [Gkatzelis/Kollias/Roughgarden, WINE'14; Chen/Roughgarden/Valiant, J Comput'10 ...]
* taxes: [Caragiannis/Kaklamanis/Kannellopoulos, Trans Alg'10; Bilò/Vinci, EC'16 ...]

Polynomial time algorithms - related work

Polynomial time algorithms - related work

* Best-known approx (LP + rounding) [Makarychev/Sviridenko, JACM'18]

$$
\sup _{x \in \mathbb{R}_{>0}} \frac{\mathbb{E}_{P \sim \text { Poi }(1)}[(x P) b(x P)]}{x b(x)}
$$

Polynomial time algorithms - related work

* Best-known approx (LP + rounding) [Makarychev/Sviridenko, JACM'18]

$$
\sup _{x \in \mathbb{R}_{>0}} \frac{\mathbb{E}_{P \sim \text { Poi }(1)}[(x P) b(x P)]}{x b(x)} \geq \text { NP-hardness factor }
$$

Polynomial time algorithms - related work

* Best-known approx (LP + rounding) [Makarychev/Sviridenko, JACM'18]

$$
\sup _{x \in \mathbb{R}_{>0}} \frac{\mathbb{E}_{P \sim \text { Poi(1) }}[(x P) b(x P)]}{x b(x)} \geq \text { NP-hardness factor }
$$

* For polynomial costs, taxes achieve $\operatorname{PoA}=\mathcal{B}(d+1)$
[Caragiannis/Kaklamanis/Kannellopoulos, Trans Alg'10; Bilò/Vinci, EC'16]

Polynomial time algorithms - related work

* Best-known approx (LP + rounding) [Makarychev/Sviridenko, JACM'18]

$$
\sup _{x \in \mathbb{R}_{>0}} \frac{\mathbb{E}_{P \sim \text { Poi }(1)}[(x P) b(x P)]}{x b(x)} \geq \text { NP-hardness factor }
$$

* For polynomial costs, taxes achieve $\operatorname{PoA}=\mathcal{B}(d+1)$
[Caragiannis/Kaklamanis/Kannellopoulos, Trans Alg'10; Bilò/Vinci, EC'16]

Take-away: so far no matching approx in general

Matching polynomial time algorithm - main result

Matching polynomial time algorithm - main result

Theorem: Consider congestion games where all resource costs are equal to $b(\cdot)$, positive, non-decreasing, semi-convex.

Matching polynomial time algorithm - main result

Theorem: Consider congestion games where all resource costs are equal to $b(\cdot)$, positive, non-decreasing, semi-convex. For any $\varepsilon>0$, it is possible to efficiently compute a taxation mechanism so that

$$
\mathrm{PoA}_{\mathrm{CCE}} \leq \rho_{\mathrm{b}}+\varepsilon
$$

Matching polynomial time algorithm - main result

Theorem: Consider congestion games where all resource costs are equal to $b(\cdot)$, positive, non-decreasing, semi-convex. For any $\varepsilon>0$, it is possible to efficiently compute a taxation mechanism so that

$$
\mathrm{PoA}_{\mathrm{CCE}} \leq \rho_{\mathrm{b}}+\varepsilon
$$

Extends to resource costs obtained by non-negative combo of b_{1}, \ldots, b_{m}

Matching polynomial time algorithm - main result

Theorem: Consider congestion games where all resource costs are equal to $b(\cdot)$, positive, non-decreasing, semi-convex. For any $\varepsilon>0$, it is possible to efficiently compute a taxation mechanism so that

$$
\mathrm{PoA}_{\mathrm{CCE}} \leq \rho_{\mathrm{b}}+\varepsilon
$$

Extends to resource costs obtained by non-negative combo of b_{1}, \ldots, b_{m}

Corollary: For any $\varepsilon>0$, there exists a polynomial time algorithm producing an allocation a^{*} with cost

$$
S C\left(a^{*}\right) \leq\left(\max _{j} \rho_{b_{j}}+\varepsilon\right) \cdot O P T
$$

Matching polynomial time algorithm - Proof Ideas

Matching polynomial time algorithm - Proof Ideas

$$
S C(a)=\sum_{r \in a}|a|_{r} b\left(|a|_{r}\right) \quad S C_{P}(a)=\sum_{r \in a} \mathbb{E}_{P \sim \operatorname{Poi}\left(|a|_{r}\right)}[P b(P)]
$$

Matching polynomial time algorithm - Proof Ideas

$$
S C(a)=\sum_{r \in \mathrm{a}}|a| r b(|a| r) \quad S C_{P}(a)=\sum_{r \in \mathrm{a}} \mathbb{E}_{P \sim \operatorname{Poi}| | a|r| r}[P b(P)]
$$

Matching polynomial time algorithm - Proof Ideas
$S C(a)=\sum_{r \in a}|a|_{r} b\left(|a|_{r}\right) \quad S C_{P}(a)=\sum_{r \in a} \mathbb{E}_{P \sim \operatorname{Poi}\left(|a|_{r}\right)}[P b(P)]$

Key ingredients:
P1: $\bar{b}(x ; v)$ solves crucial recursion

Matching polynomial time algorithm - Proof Ideas

$$
S C(a)=\sum_{r \in a}|a|_{r} b\left(|a|_{r}\right) \quad S C_{P}(a)=\sum_{r \in a} \mathbb{E}_{P \sim \operatorname{Poi}(|a| r \mid r}[P b(P)]
$$

Key ingredients:
P1: $\bar{b}(x ; v)$ solves crucial recursion
P2: \bar{v} solves continuous relaxation of $\min S C_{P}(a)$

Matching polynomial time algorithm - Proof Ideas

$$
S C(a)=\sum_{r \in a}|a|_{r} b\left(|a|_{r}\right) \quad S C_{P}(a)=\sum_{r \in a} \mathbb{E}_{P \sim \operatorname{Poi}\left(|a|_{r}\right)}[P b(P)]
$$

Key ingredients:
P1: $\bar{b}(x ; v)$ solves crucial recursion
P2: \bar{v} solves continuous relaxation of $\min S C_{P}(a)$

$$
S C\left(a^{\mathrm{NE}}\right) \stackrel{P 1}{\leq} S C_{P}(\bar{v})
$$

Matching polynomial time algorithm - Proof Ideas

$$
S C(a)=\sum_{r \in a}|a|_{r} b\left(|a|_{r}\right) \quad S C_{P}(a)=\sum_{r \in a} \mathbb{E}_{P \sim \operatorname{Poi}\left(|a|_{r}\right)}[P b(P)]
$$

Key ingredients:
P1: $\bar{b}(x ; v)$ solves crucial recursion
P2: \bar{v} solves continuous relaxation of $\min S C_{P}(a)$

$$
S C\left(a^{\mathrm{NE}}\right) \stackrel{P 1}{\leq} S C_{P}(\bar{v}) \stackrel{P 2}{\leq} S C_{P}\left(a^{\mathrm{OPT}}\right)
$$

Matching polynomial time algorithm - Proof Ideas

$$
S C(a)=\sum_{r \in a}|a|_{r} b\left(|a|_{r}\right) \quad S C_{P}(a)=\sum_{r \in a} \mathbb{E}_{P \sim \operatorname{Poi}\left(|a|_{r}\right)}[P b(P)]
$$

Key ingredients:
P1: $\bar{b}(x ; v)$ solves crucial recursion
P2: \bar{v} solves continuous relaxation of $\min S C_{P}(a)$

$$
S C\left(a^{\mathrm{NE}}\right) \stackrel{P 1}{\leq} S C_{P}(\bar{v}) \stackrel{P 2}{\leq} S C_{P}\left(a^{\mathrm{OPT}}\right) \stackrel{\operatorname{def} \rho_{b}}{\leq} \rho_{b} S C\left(a^{\mathrm{OPT}}\right)
$$

Conclusion and open questions

Conclusion and open questions

Problem: minimum social cost in atomic congestion games
Main result I: tight NP-hardness of approximation
Main result II: taxes achieve matching approximation \Longrightarrow first poly algo optimal approx

Conclusion and open questions

Problem: minimum social cost in atomic congestion games
Main result I: tight NP-hardness of approximation
Main result II: taxes achieve matching approximation \Longrightarrow first poly algo optimal approx

Remarks:

* Competitive decision making + incentives $=$ best-centralized

Conclusion and open questions

> Problem: minimum social cost in atomic congestion games Main result I: tight NP-hardness of approximation Main result II: taxes achieve matching approximation \Longrightarrow first poly algo optimal approx

Remarks:

* Competitive decision making + incentives $=$ best-centralized
* Surprising that "taxes are enough"

Conclusion and open questions

> Problem: minimum social cost in atomic congestion games Main result I: tight NP-hardness of approximation Main result II: taxes achieve matching approximation \Longrightarrow first poly algo optimal approx

Remarks:

* Competitive decision making + incentives $=$ best-centralized
* Surprising that "taxes are enough"
* Poly-time algo requires centralized solution of cvx opt

Conclusion and open questions

Problem: minimum social cost in atomic congestion games
Main result I: tight NP-hardness of approximation
Main result II: taxes achieve matching approximation \Longrightarrow first poly algo optimal approx

Remarks:

* Competitive decision making + incentives $=$ best-centralized
* Surprising that "taxes are enough"
* Poly-time algo requires centralized solution of cvx opt If undesirable \rightsquigarrow optimal local tax [Paccagnan/Chandan/Ferguson/Marden, TEAC'21] very little performance loss, e.g., 2.012 vs 2 for affine

Conclusion and open questions

Problem: minimum social cost in atomic congestion games
Main result I: tight NP-hardness of approximation
Main result II: taxes achieve matching approximation \Longrightarrow first poly algo optimal approx

Remarks:

* Competitive decision making + incentives $=$ best-centralized
* Surprising that "taxes are enough"
* Poly-time algo requires centralized solution of cvx opt If undesirable \rightsquigarrow optimal local tax [Paccagnan/Chandan/Ferguson/Marden, TEAC'21] very little performance loss, e.g., 2.012 vs 2 for affine
* Main result II extends to network CG
"Judiciously designed taxes achieve optimal approximation, and no other tractable intervention can improve upon this result"

