Generalized coverage problems: approximation through game design

Dario Paccagnan
Joint work with J. R. Marden (UCSB)

EHHzürich UCSB

Combinatorial resource allocation

\triangleright a set of resources

Combinatorial resource allocation

\triangleright a set of resources
\triangleright a set of agents

Combinatorial resource allocation

\triangleright a set of resources
\triangleright a set of agents

Goal: assign resources to agents to maximize a given welfare function

Combinatorial resource allocation

\triangleright a set of resources
\triangleright a set of agents

Goal: assign resources to agents to maximize a given welfare function

Generalized Multiagent Maximum Coverage (GMMC)

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $\quad r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, n\}$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $\quad r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, n\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, n\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w_{r}\left(|a|_{r}\right)$
$w_{r}: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, n\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w_{r}\left(|a|_{r}\right)$
$w_{r}: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, n\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w_{r}\left(|a|_{r}\right)$
$w_{r}: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

System-level objective: $\max _{a \in \mathcal{A}} W(a)$

Generalized Multiagent Maximum Coverage (GMMC)

 resources: $\quad r \in \mathcal{R}, \quad v_{r} \geq 0$agents: $i \in\{1, \ldots, n\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w_{r}\left(|a|_{r}\right)$
$w_{r}: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

System-level objective: $\max _{a \in \mathcal{A}} W(a)$

\triangleright no constraints on $w_{r}(j)$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $\quad r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, n\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w_{r}\left(|a|_{r}\right)$
$w_{r}: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

System-level objective: $\max _{a \in \mathcal{A}} W(a)$

\triangleright no constraints on $w_{r}(j)$ typically concave

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, n\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w_{r}\left(|a|_{r}\right)$
$w_{r}: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

System-level objective: $\max _{a \in \mathcal{A}} W(a)$

\triangleright no constraints on $w_{r}(j)$ typically concave
\triangleright to ease the presentation

$$
w_{r}(j)=w(j)
$$

Connection with Coverage problems

Connection with Coverage problems

GMMC problem

Connection with Coverage problems

GMMC problem

- set of weighted resources: \mathcal{R}

Connection with Coverage problems

GMMC problem

- set of weighted resources: \mathcal{R}
- n collections of sets: $\left\{\mathcal{A}_{i}\right\}_{i=1}^{n} \subseteq 2^{\mathcal{R}}$

Connection with Coverage problems

GMMC problem

- set of weighted resources: \mathcal{R}
- n collections of sets: $\left\{\mathcal{A}_{i}\right\}_{i=1}^{n} \subseteq 2^{\mathcal{R}}$
- choose one set per collection to max

$$
W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)
$$

Connection with Coverage problems

GMMC problem

- set of weighted resources: \mathcal{R}
- n collections of sets: $\left\{\mathcal{A}_{i}\right\}_{i=1}^{n} \subseteq 2^{\mathcal{R}}$
- choose one set per collection to max

$$
W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)
$$

Max-n-cover

Connection with Coverage problems

GMMC problem

- set of weighted resources: \mathcal{R}
- n collections of sets: $\left\{\mathcal{A}_{i}\right\}_{i=1}^{n} \subseteq 2^{\mathcal{R}}$
- choose one set per collection to max

$$
W(a)=\sum_{r \in U_{i} a_{i}} v_{r} w\left(|a|_{r}\right)
$$

Max-n-cover

- set of weighted resources: \mathcal{R}

Connection with Coverage problems

GMMC problem

- set of weighted resources: \mathcal{R}
- n collections of sets: $\left\{\mathcal{A}_{i}\right\}_{i=1}^{n} \subseteq 2^{\mathcal{R}}$
- choose one set per collection to max

$$
W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)
$$

Max-n-cover

- set of weighted resources: \mathcal{R}
- one collection of sets: $\overline{\mathcal{A}} \subseteq 2^{\mathcal{R}}$

Connection with Coverage problems

GMMC problem

- set of weighted resources: \mathcal{R}
- n collections of sets: $\left\{\mathcal{A}_{i}\right\}_{i=1}^{n} \subseteq 2^{\mathcal{R}}$
- choose one set per collection to max

$$
W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)
$$

Max-n-cover

- set of weighted resources: \mathcal{R}
- one collection of sets: $\overline{\mathcal{A}} \subseteq 2^{\mathcal{R}}$
- choose n sets from collection to max

$$
W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r}
$$

Connection with Coverage problems

GMMC problem

- set of weighted resources: \mathcal{R}
- n collections of sets: $\left\{\mathcal{A}_{i}\right\}_{i=1}^{n} \subseteq 2^{\mathcal{R}}$
- choose one set per collection to max

$$
W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)
$$

Max-n-cover

- set of weighted resources: \mathcal{R}
- one collection of sets: $\overline{\mathcal{A}} \subseteq 2^{\mathcal{R}}$
- choose n sets from collection to max

$$
W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r}
$$

\triangleright GMMC subsumes max-n-cover $\left(\right.$ set $w(j) \equiv 1, \mathcal{A}_{i}=\mathcal{A}_{j}$ for all $\left.i, j\right)$

Connection with Coverage problems

GMMC problem

- set of weighted resources: \mathcal{R}
- n collections of sets: $\left\{\mathcal{A}_{i}\right\}_{i=1}^{n} \subseteq 2^{\mathcal{R}}$
- choose one set per collection to max

$$
W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)
$$

Max-n-cover

- set of weighted resources: \mathcal{R}
- one collection of sets: $\overline{\mathcal{A}} \subseteq 2^{\mathcal{R}}$
- choose n sets from collection to max

$$
W(a)=\sum_{r \in \cup_{i} a_{i}} v_{r}
$$

\triangleright GMMC subsumes max-n-cover $\left(\right.$ set $w(j) \equiv 1, \mathcal{A}_{i}=\mathcal{A}_{j}$ for all $\left.i, j\right)$
\triangleright GMMC subsumes [Che04],[Gair09] $\quad($ set $w(j) \equiv 1)$
[Che04] C. Chekuri et al. "Maximum Coverage Problem with Group Budget Constraints and Applications", APPROX 04
[Gair09] M. Gairing, "Covering Games: Approximation through Non-cooperation", WINE 09

Facts: hardness and approximability

Facts: hardness and approximability max-n-cover problem:

Facts: hardness and approximability max-n-cover problem:
$\triangleright \mathcal{N} \mathcal{P}$-hard

Facts: hardness and approximability

 max-n-cover problem:$\triangleright \mathcal{N} \mathcal{P}$-hard
$\triangleright \mathcal{N} \mathcal{P}$-hard to approximate within any ratio better than $1-1 / e$

Facts: hardness and approximability

 max-n-cover problem:$\triangleright \mathcal{N} \mathcal{P}$-hard
$\triangleright \mathcal{N} \mathcal{P}$-hard to approximate within any ratio better than $1-1 / e$
\triangleright Poly-algorithms achieve 1 - 1 /e

Facts: hardness and approximability

 max-n-cover problem:$\triangleright \mathcal{N} \mathcal{P}$-hard
$\triangleright \mathcal{N} \mathcal{P}$-hard to approximate within any ratio better than $1-1 / e$
\triangleright Poly-algorithms achieve $1-1$ /e

GMMC problem:

Facts: hardness and approximability

 max-n-cover problem:$\triangleright \mathcal{N} \mathcal{P}$-hard
$\triangleright \mathcal{N} \mathcal{P}$-hard to approximate within any ratio better than $1-1 / e$
\triangleright Poly-algorithms achieve $1-1$ /e

GMMC problem:

$\triangleright \mathcal{N} \mathcal{P}$-hard

Facts: hardness and approximability

max-n-cover problem:

$\triangleright \mathcal{N} \mathcal{P}$-hard
$\triangleright \mathcal{N} \mathcal{P}$-hard to approximate within any ratio better than $1-1 / e$
\triangleright Poly-algorithms achieve $1-1$ /e

GMMC problem:

$\triangleright \mathcal{N} \mathcal{P}$-hard
\triangleright If w is concave and $\mathcal{A}_{i}=\mathcal{A}_{j}$, best poly-algorithm achieves $1-c / e$ and is centralized, $c=1-(w(n)-w(n-1))$

Facts: hardness and approximability

max-n-cover problem:

$\triangleright \mathcal{N} \mathcal{P}$-hard
$\triangleright \mathcal{N} \mathcal{P}$-hard to approximate within any ratio better than $1-1 / e$
\triangleright Poly-algorithms achieve $1-1$ /e

GMMC problem:

$\triangleright \mathcal{N} \mathcal{P}$-hard
\triangleright If w is concave and $\mathcal{A}_{i}=\mathcal{A}_{j}$, best poly-algorithm achieves $1-c / e$ and is centralized, $c=1-(w(n)-w(n-1))$

Issues:

Facts: hardness and approximability

max-n-cover problem:

$\triangleright \mathcal{N} \mathcal{P}$-hard
$\triangleright \mathcal{N} \mathcal{P}$-hard to approximate within any ratio better than $1-1 / e$
\triangleright Poly-algorithms achieve $1-1$ /e

GMMC problem:

$\triangleright \mathcal{N} \mathcal{P}$-hard
\triangleright If w is concave and $\mathcal{A}_{i}=\mathcal{A}_{j}$, best poly-algorithm achieves $1-c / e$ and is centralized, $c=1-(w(n)-w(n-1))$

Issues:

- distributedness?

Facts: hardness and approximability

max-n-cover problem:

$\triangleright \mathcal{N} \mathcal{P}$-hard
$\triangleright \mathcal{N} \mathcal{P}$-hard to approximate within any ratio better than $1-1 / e$
\triangleright Poly-algorithms achieve $1-1$ /e

GMMC problem:

$\triangleright \mathcal{N} \mathcal{P}$-hard
\triangleright If w is concave and $\mathcal{A}_{i}=\mathcal{A}_{j}$, best poly-algorithm achieves $1-c / e$ and is centralized, $c=1-(w(n)-w(n-1))$

Issues:

- distributedness?
- best possible approximation?

Facts: hardness and approximability

max-n-cover problem:

$\triangleright \mathcal{N} \mathcal{P}$-hard
$\triangleright \mathcal{N} \mathcal{P}$-hard to approximate within any ratio better than $1-1 / e$
\triangleright Poly-algorithms achieve $1-1$ /e

GMMC problem:

$\triangleright \mathcal{N} \mathcal{P}$-hard
\triangleright If w is concave and $\mathcal{A}_{i}=\mathcal{A}_{j}$, best poly-algorithm achieves $1-c / e$ and is centralized, $c=1-(w(n)-w(n-1))$

Issues:

- distributedness?
- best possible approximation? $\mathcal{A}_{i} \neq \mathcal{A}_{j}, w$ not concave?

Main result

Main result

Game theory can be used to produce algorithms that are:

Main result

Game theory can be used to produce algorithms that are: distributed

Main result

Game theory can be used to produce algorithms that are: distributed, efficient

Main result

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Main result

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40
$-w(j)=j^{d}, d$ varies in $[0,1]$

Main result

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40
$-w(j)=j^{d}, d$ varies in $[0,1]$

Main result

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40
$-w(j)=j^{d}, d$ varies in $[0,1]$

Main result

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40
$-w(j)=j^{d}, d$ varies in $[0,1]$

Main result

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40
$-w(j)=j^{d}, d$ varies in $[0,1]$

Main result

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40
$-w(j)=j^{d}, d$ varies in $[0,1]$

Main result

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40

$$
-w(j)=j^{d}, d \text { varies in }[0,1]
$$

[Pac18a] DP, R.Chandan, J. Marden "Distributed resource allocation through utility design
-Part I: optimizing the performance certificates via the price of anarchy", ArXiv 2018
[Pac18b] DP, J. Marden "- Part II: applications to submodular, supermodular and set covering problems", ArXiv 2018

Outline

1. Introduction

2. Game-design approach
3. Characterizing the price of anarchy
4. Optimizing the price of anarchy
5. Conclusions and Outlook

The game-theoretic approach

The game-theoretic approach

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

Design a game
 (agents, constraints, utilities)

The game-theoretic approach

Game design

Design a game
 (agents, constraints, utilities)

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

The game-theoretic approach

Game design

Design a game
 (agents, constraints, utilities)

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

The game-theoretic approach

Game design

Design a game
 (agents, constraints, utilities)

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

Design a game (agents, constraints, utilities)
 Requirement:
 equilibria have high welfare

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

Design a game (agents, constraints, utilities)
 Requirement:
 equilibria have high welfare

Use existing algorithms to find an equilibrium

The game-theoretic approach

Game design

Design a game
(agents, constraints, utilities)
Requirement:
equilibria have high welfare

Use existing algorithms to find an equilibrium

Utility design and approximation ratio

$u_{i}\left(a_{i}, a_{-i}\right)$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ?

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad(\text { distributed })
$$

How to design f ? Maximize worst-case performance

Given instance I, fix f

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Given instance I, fix $f \rightarrow$ game $\mathrm{G}_{f}=\{\mathrm{I}, f\}$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Given instance I, fix $f \rightarrow$ game $\mathrm{G}_{f}=\{\mathrm{I}, f\} \rightarrow \mathrm{NE}\left(\mathrm{G}_{f}\right)$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Given instance I, fix $f \rightarrow$ game $\mathrm{G}_{f}=\{\mathrm{I}, f\} \rightarrow \mathrm{NE}\left(\mathrm{G}_{f}\right)$

$$
\operatorname{PoA}(f)=\quad \frac{\min _{\mathrm{a} \in \mathrm{NE}\left(\mathrm{G}_{f}\right)} W(a)}{W\left(a_{\mathrm{opt}}\right)} \leq 1
$$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Given instance I, fix $f \rightarrow$ game $\mathrm{G}_{f}=\{\mathrm{I}, f\} \rightarrow \mathrm{NE}\left(\mathrm{G}_{f}\right)$

$$
\operatorname{PoA}(f)=\inf _{\mathrm{G}_{f}: \# \text { agents } \leq n} \frac{\min _{\mathrm{a} \in \mathrm{NE}\left(\mathrm{G}_{f}\right)} W(a)}{W\left(a_{\mathrm{opt}}\right)} \leq 1
$$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Given instance I, fix $f \rightarrow$ game $\mathrm{G}_{f}=\{\mathrm{I}, f\} \rightarrow \mathrm{NE}\left(\mathrm{G}_{f}\right)$

$$
\operatorname{PoA}(f)=\inf _{\mathrm{G}_{f}: \# \text { agents } \leq n} \frac{\min _{\mathrm{a} \in \mathrm{NE}\left(\mathrm{G}_{f}\right)} W(a)}{W\left(a_{\mathrm{opt}}\right)} \leq 1
$$

$\operatorname{PoA}(f)$ is the approx. ratio of any equilibrium-computing algorithm

Utility design reduces to

Find f with highest $\operatorname{PoA}(f)$

Find f with highest $\operatorname{PoA}(f)$

Characterizing the price of anarchy

Characterizing the price of anarchy

The quantity we wish to compute: $\operatorname{PoA}(f)=\inf _{G \in \mathcal{G}}\left(\frac{\min _{a \in N E(G)} W(a)}{W\left(a_{\text {opt }}\right)}\right)$

Characterizing the price of anarchy

The quantity we wish to compute: $\operatorname{PoA}(f)=\inf _{G \in \mathcal{G}}\left(\frac{\min _{a \in N E(G)} W(a)}{W\left(a_{\text {opt }}\right)}\right)$

- well studied in game theory

Characterizing the price of anarchy

The quantity we wish to compute: $\operatorname{PoA}(f)=\inf _{G \in \mathcal{G}}\left(\frac{\min _{\mathrm{a} \in \operatorname{AE}(G)} W(a)}{W\left(a_{\text {opt }}\right)}\right)$

- well studied in game theory
- difficult to compute

Characterizing the price of anarchy

The quantity we wish to compute: $\operatorname{PoA}(f)=\inf _{G \in \mathcal{G}}\left(\frac{\min _{\mathrm{a} \in \operatorname{AE}(G)} W(a)}{W\left(a_{\text {opt }}\right)}\right)$

- well studied in game theory
- difficult to compute
- bounds are available in special cases

Characterizing the price of anarchy

The quantity we wish to compute: $\operatorname{PoA}(f)=\inf _{G \in \mathcal{G}}\left(\frac{\min _{\mathrm{a} \in \operatorname{AE}(G)} W(a)}{W\left(a_{\text {opt }}\right)}\right)$

- well studied in game theory
- difficult to compute
- bounds are available in special cases
- bounds do not explicitly depend on f

Characterizing the price of anarchy

The quantity we wish to compute: $\operatorname{PoA}(f)=\inf _{G \in \mathcal{G}}\left(\frac{\min _{\mathrm{a} \in \operatorname{AE}(G)} W(a)}{W\left(a_{\text {opt }}\right)}\right)$

- well studied in game theory
- difficult to compute
- bounds are available in special cases
- bounds do not explicitly depend on f
- smoothness not applicable

Characterizing the price of anarchy

The quantity we wish to compute: $\operatorname{PoA}(f)=\inf _{G \in \mathcal{G}}\left(\frac{\min _{\mathrm{a} \in \operatorname{AE}(G)} W(a)}{W\left(a_{\text {opt }}\right)}\right)$

- well studied in game theory
- difficult to compute
- bounds are available in special cases
- bounds do not explicitly depend on f
- smoothness not applicable
- tightness?

Characterizing the price of anarchy

The quantity we wish to compute: $\operatorname{PoA}(f)=\inf _{G \in \mathcal{G}}\left(\frac{\min _{a \in N E(G)} W(a)}{W\left(a_{o p t}\right)}\right)$

- well studied in game theory
- difficult to compute
- bounds are available in special cases
- bounds do not explicitly depend on f
- smoothness not applicable
- tightness?

Characterizing the price of anarchy

The quantity we wish to compute: $\operatorname{PoA}(f)=\inf _{G \in \mathcal{G}}\left(\frac{\min _{a \in N E(G)} W(a)}{W\left(a_{o p t}\right)}\right)$

- well studied in game theory
- difficult to compute
- bounds are available in special cases
- bounds do not explicitly depend on f
- smoothness not applicable
- tightness?
$\operatorname{PoA}(f)$ is the solution to a tractable $L P$ in 2 variables, $\mathcal{O}\left(n^{2}\right)$ constraints

Characterizing the price of anarchy

The quantity we wish to compute: $\operatorname{PoA}(f)=\inf _{G \in \mathcal{G}}\left(\frac{\min _{a \in N E(G)} W(a)}{W\left(a_{o p t}\right)}\right)$

- well studied in game theory
- difficult to compute
- bounds are available in special cases
- bounds do not explicitly depend on f
- smoothness not applicable
- tightness?
$\operatorname{PoA}(f)$ is the solution to a tractable $L P$ in 2 variables, $\mathcal{O}\left(n^{2}\right)$ constraints
$\triangleright L P$ involves all the components $w(j)$ and $f(j)$

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP
Four steps towards the goal:

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP
Four steps towards the goal:

1. $\operatorname{PoA}(f)$ is the same of the price of anarchy over a reduced class of games where each agent has only two feasible allocations

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP
Four steps towards the goal:

1. $\operatorname{PoA}(f)$ is the same of the price of anarchy over a reduced class of games where each agent has only two feasible allocations i.e. we can reduce to $\tilde{\mathcal{A}}_{i}=\left\{e_{i}, o_{i}\right\}$ with e_{i} the worst NE

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP
Four steps towards the goal:

1. $\operatorname{PoA}(f)$ is the same of the price of anarchy over a reduced class of games where each agent has only two feasible allocations
i.e. we can reduce to $\tilde{\mathcal{A}}_{i}=\left\{e_{i}, o_{i}\right\}$ with e_{i} the worst NE
$\operatorname{PoA}(f)=\inf _{G \in \mathcal{G}}\left(\frac{\min _{a \in N E(G)} W(a)}{\max _{a \in \mathcal{A}} W(a)}\right)$

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP
Four steps towards the goal:

1. $\operatorname{PoA}(f)$ is the same of the price of anarchy over a reduced class of games where each agent has only two feasible allocations
i.e. we can reduce to $\tilde{\mathcal{A}}_{i}=\left\{e_{i}, o_{i}\right\}$ with e_{i} the worst NE
$\operatorname{PoA}(f)=\inf _{G \in \tilde{\mathcal{G}}}\left(\frac{\min _{a \in N E(G)} W(a)}{W(o)}\right)$

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP
Four steps towards the goal:

1. $\operatorname{PoA}(f)$ is the same of the price of anarchy over a reduced class of games where each agent has only two feasible allocations
i.e. we can reduce to $\tilde{\mathcal{A}}_{i}=\left\{e_{i}, o_{i}\right\}$ with e_{i} the worst NE

$$
\operatorname{PoA}(f)=\inf _{G \in \tilde{\mathcal{G}}}\left(\frac{W(e)}{W(o)}\right)
$$

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP
Four steps towards the goal:

1. $\operatorname{PoA}(f)$ is the same of the price of anarchy over a reduced class of games where each agent has only two feasible allocations i.e. we can reduce to $\tilde{\mathcal{A}}_{i}=\left\{e_{i}, o_{i}\right\}$ with e_{i} the worst NE

$$
\operatorname{PoA}(f)=\inf _{G \in \tilde{\mathcal{G}}}\left(\frac{W(e)}{W(o)}\right) \quad \text { s.t. } \quad u_{i}(e) \geq u_{i}\left(o_{i}, e_{-i}\right) \quad \forall i
$$

Proof Sketch - Part 1/4

Idea: transform the definition of PoA itself into a LP
Four steps towards the goal:

1. $\operatorname{PoA}(f)$ is the same of the price of anarchy over a reduced class of games where each agent has only two feasible allocations
i.e. we can reduce to $\tilde{\mathcal{A}}_{i}=\left\{e_{i}, o_{i}\right\}$ with e_{i} the worst NE

$$
\operatorname{PoA}(f)=\inf _{G \in \tilde{\mathcal{G}}}\left(\frac{W(e)}{W(o)}\right) \quad \text { s.t. } \quad u_{i}(e) \geq u_{i}\left(o_{i}, e_{-i}\right) \quad \forall i
$$

2. Relax the previous program

$$
\begin{aligned}
\operatorname{PoA}(f)= & \inf _{G \in \tilde{\mathcal{G}}} \frac{W(e)}{W(o)} \\
& \text { s.t. } \sum_{i} u_{i}(e) \geq \sum_{i} u_{i}\left(o_{i}, e_{-i}\right)
\end{aligned}
$$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Variables θ allow to compute $W(a), u_{i}(a)$ in all allocations

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Variables θ allow to compute $W(a), u_{i}(a)$ in all allocations,
 e.g.

$$
\begin{aligned}
& W\left(e_{1}, e_{2}\right) \\
& =\left(\theta_{e_{1}}+\theta_{e_{1}}^{o_{1}}+\theta_{e_{1}}^{o_{2}}+\theta_{e_{1}}^{o_{1} o_{2}}\right) w(1) \\
& +\left(\theta_{e_{2}}+\theta_{e_{2}}^{o_{2}}+\theta_{e_{2}}^{o_{1}}+\theta_{e_{2}}^{o_{1} o_{2}}\right) w(1) \\
& +\left(\theta_{e_{1} e_{2}}+\theta_{e_{1} e_{2}}^{o_{1}}+\theta_{e_{1} e_{2}}^{o_{2}}+\theta_{e_{1} e_{2}}^{o_{1} O_{2}}\right) w(2)
\end{aligned}
$$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Variables θ allow to compute $W(a), u_{i}(a)$ in all allocations,
 e.g.

$$
\begin{aligned}
& W\left(e_{1}, e_{2}\right) \\
& =\left(\theta_{e_{1}}+\theta_{e_{1}}^{o_{1}}+\theta_{e_{1}}^{o_{2}}+\theta_{e_{1}}^{o_{1} o_{2}}\right) w(1) \\
& +\left(\theta_{e_{2}}+\theta_{e_{2}}^{o_{2}}+\theta_{e_{2}}^{o_{1}}+\theta_{e_{2}}^{o_{1} o_{2}}\right) w(1) \\
& +\left(\theta_{e_{1} e_{2}}+\theta_{e_{1} e_{2}}^{o_{1}}+\theta_{e_{1} e_{2}}^{o_{2}}+\theta_{e_{1} e_{2}}^{o_{1} o_{2}}\right) w(2)
\end{aligned}
$$

$$
u_{1}\left(e_{1}, e_{2}\right)
$$

$$
=\left(\theta_{e_{1}}+\theta_{e_{1}}^{o_{1}}+\theta_{e_{1}}^{o_{2}}+\theta_{e_{1}}^{o_{1} o_{2}}\right) w(1) f(1)
$$

$$
+\left(\theta_{e_{1} e_{2}}+\theta_{e_{1} e_{2}}^{o_{1}}+\theta_{e_{1} e_{2}}^{o_{1} o_{2}}+\theta_{e_{1} e_{2}}^{o_{2}}\right) w(2) f(2)
$$

Proof Sketch - Part 2/4

3. How to describe an instance? Need to describe $W(a), u_{i}(a)$ on $\tilde{\mathcal{A}}$

Variables θ allow to compute $W(a), u_{i}(a)$ in all allocations,
 e.g.

$$
\begin{aligned}
& W\left(e_{1}, e_{2}\right) \\
& =\left(\theta_{e_{1}}+\theta_{e_{1}}^{o_{1}}+\theta_{e_{1}}^{o_{2}}+\theta_{e_{1}}^{o_{1} o_{2}}\right) w(1) \\
& +\left(\theta_{e_{2}}+\theta_{e_{2}}^{o_{2}}+\theta_{e_{2}}^{o_{1}}+\theta_{e_{2}}^{o_{1} o_{2}}\right) w(1) \\
& +\left(\theta_{e_{1} e_{2}}+\theta_{e_{1} e_{2}}^{o_{1}}+\theta_{e_{1} e_{2}}^{o_{2}}+\theta_{e_{1} e_{2}}^{o_{1} o_{2}}\right) w(2)
\end{aligned}
$$

$$
u_{1}\left(e_{1}, e_{2}\right)
$$

$$
=\left(\theta_{e_{1}}+\theta_{e_{1}}^{o_{1}}+\theta_{e_{1}}^{o_{2}}+\theta_{e_{1}}^{o_{1} o_{2}}\right) w(1) f(1)
$$

$$
+\left(\theta_{e_{1} e_{2}}+\theta_{e_{1} e_{2}}^{o_{1}}+\theta_{e_{1} e_{2}}^{o_{1} o_{2}}+\theta_{e_{1} e_{2}}^{o_{2}}\right) w(2) f(2)
$$

Issue: \#weights is exponential!

Proof Sketch - Part 3/4

4. use reduced variables for $\mathbf{W}(\mathbf{e}), \mathbf{W}(\mathbf{o}), \sum_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}(\mathbf{e})-\mathbf{u}_{\mathbf{i}}\left(\mathbf{o}_{\mathbf{i}}, \mathbf{e}_{-\mathbf{i}}\right)$ \rightarrow define $\theta(a, x, b) \in \mathbb{R}_{\geq 0}$ for $1 \leq a+x+b \leq n, a, x, b \in\{1, \ldots, n\}$

Proof Sketch - Part 3/4

4. use reduced variables for $\mathbf{W}(\mathbf{e}), \mathbf{W}(\mathbf{o}), \sum_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}(\mathbf{e})-\mathbf{u}_{\mathbf{i}}\left(\mathbf{o}_{\mathbf{i}}, \mathbf{e}_{-\mathbf{i}}\right)$ \rightarrow define $\theta(a, x, b) \in \mathbb{R}_{\geq 0}$ for $1 \leq a+x+b \leq n, a, x, b \in\{1, \ldots, n\}$

$$
W(e)=\sum_{a, x, b} \mathbb{1}_{\{a+x \geq 1\}} w(a+x) \theta(a, x, b)
$$

Proof Sketch - Part 3/4

4. use reduced variables for $\mathbf{W}(\mathbf{e}), \mathbf{W}(\mathbf{0}), \sum_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}(\mathbf{e})-\mathbf{u}_{\mathbf{i}}\left(\mathbf{o}_{\mathbf{i}}, \mathbf{e}_{-\mathbf{i}}\right)$ \rightarrow define $\theta(a, x, b) \in \mathbb{R}_{\geq 0}$ for $1 \leq a+x+b \leq n, a, x, b \in\{1, \ldots, n\}$

$$
\begin{aligned}
& W(e)=\sum_{a, x, b} \mathbb{1}_{\{a+x \geq 1\}} w(a+x) \theta(a, x, b) \\
& W(o)=\sum_{a, x, b} \mathbb{1}_{\{b+x \geq 1\}} w(b+x) \theta(a, x, b)
\end{aligned}
$$

Proof Sketch - Part 3/4

4. use reduced variables for $\mathbf{W}(\mathbf{e}), \mathbf{W}(\mathbf{o}), \sum_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}(\mathbf{e})-\mathbf{u}_{\mathbf{i}}\left(\mathbf{o}_{\mathbf{i}}, \mathbf{e}_{-\mathbf{i}}\right)$ \rightarrow define $\theta(a, x, b) \in \mathbb{R}_{\geq 0}$ for $1 \leq a+x+b \leq n, a, x, b \in\{1, \ldots, n\}$

$$
\begin{aligned}
& W(e)=\sum_{a, x, b} \mathbb{1}_{\{a+x \geq 1\}} w(a+x) \theta(a, x, b) \\
& W(o)=\sum_{a, x, b} \mathbb{1}_{\{b+x \geq 1\}} w(b+x) \theta(a, x, b) \\
& \text { equil. }=\sum_{a, x, b}[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \theta(a, x, b)
\end{aligned}
$$

Proof Sketch - Part 3/4

4. use reduced variables for $\mathbf{W}(\mathbf{e}), \mathbf{W}(\mathbf{o}), \sum_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}(\mathbf{e})-\mathbf{u}_{\mathbf{i}}\left(\mathbf{o}_{\mathbf{i}}, \mathbf{e}_{-\mathbf{i}}\right)$ \rightarrow define $\theta(a, x, b) \in \mathbb{R}_{\geq 0}$ for $1 \leq a+x+b \leq n, a, x, b \in\{1, \ldots, n\}$

$$
\begin{aligned}
& W(e)=\sum_{a, x, b} \mathbb{1}_{\{a+x \geq 1\}} w(a+x) \theta(a, x, b) \\
& W(o)=\sum_{a, x, b} \mathbb{1}_{\{b+x \geq 1\}} w(b+x) \theta(a, x, b) \\
& \text { equil. }=\sum_{a, x, b}[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \theta(a, x, b)
\end{aligned}
$$

The program becomes

Proof Sketch - Part 3/4

4. use reduced variables for $\mathbf{W}(\mathbf{e}), \mathbf{W}(\mathbf{0}), \sum_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}(\mathbf{e})-\mathbf{u}_{\mathbf{i}}\left(\mathbf{o}_{\mathbf{i}}, \mathbf{e}_{-\mathbf{i}}\right)$ \rightarrow define $\theta(a, x, b) \in \mathbb{R}_{\geq 0}$ for $1 \leq a+x+b \leq n, a, x, b \in\{1, \ldots, n\}$

$$
\begin{aligned}
& W(e)=\sum_{a, x, b} \mathbb{1}_{\{a+x \geq 1\}} w(a+x) \theta(a, x, b) \\
& W(o)=\sum_{a, x, b} \mathbb{1}_{\{b+x \geq 1\}} w(b+x) \theta(a, x, b) \\
& \text { equil. }=\sum_{a, x, b}[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \theta(a, x, b)
\end{aligned}
$$

The program becomes $\operatorname{PoA}(f)=\inf _{\theta(a, x, b) \geq 0} \frac{W(e)}{W(o)}$

$$
\text { s.t. } \quad \sum_{i} u_{i}(e)-u_{i}\left(o_{i}, e_{-i}\right) \geq 0
$$

Proof Sketch - Part 3/4

4. use reduced variables for $\mathbf{W}(\mathbf{e}), \mathbf{W}(\mathbf{0}), \sum_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}(\mathbf{e})-\mathbf{u}_{\mathbf{i}}\left(\mathbf{o}_{\mathbf{i}}, \mathbf{e}_{-\mathbf{i}}\right)$ \rightarrow define $\theta(a, x, b) \in \mathbb{R}_{\geq 0}$ for $1 \leq a+x+b \leq n, a, x, b \in\{1, \ldots, n\}$

$$
\begin{aligned}
& W(e)=\sum_{a, x, b} \mathbb{1}_{\{a+x \geq 1\}} w(a+x) \theta(a, x, b) \\
& W(o)=\sum_{a, x, b} \mathbb{1}_{\{b+x \geq 1\}} w(b+x) \theta(a, x, b) \\
& \text { equil. }=\sum_{a, x, b}[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \theta(a, x, b)
\end{aligned}
$$

The program becomes $\operatorname{PoA}(f)=\inf _{\theta(a, x, b) \geq 0} \frac{1}{W(o)}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{i} u_{i}(e)-u_{i}\left(o_{i}, e_{-i}\right) \geq 0 \\
& W(e)=1
\end{array}
$$

Proof Sketch - Part 4/4: Primal LP

$$
\operatorname{PoA}(f)=\frac{1}{W^{\star}}
$$

$$
\begin{aligned}
& W^{\star}=\sup _{\theta(a, x, b)} \sum_{a, x, b} \mathbb{1}_{\{b+x \geq 1\}} w(b+x) \theta(a, x, b) \\
& \text { s.t. } \sum_{a, x, b}[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \theta(a, x, b) \geq 0 \\
& \\
& \quad \sum_{a, x, b} \mathbb{1}_{\{a+x \geq 1\}} w(a+x) \theta(a, x, b)=1 \\
& \\
& \theta(a, x, b) \geq 0 \quad \forall(a, x, b) \in \mathcal{I} .
\end{aligned}
$$

Dual LP

Dual LP

$$
\operatorname{PoA}(f)=\frac{1}{W^{\star}}
$$

$$
W^{\star}=\inf _{\lambda \in \mathbb{R}_{\geq 0}, \mu \in \mathbb{R}} \mu
$$

$$
\begin{aligned}
& \text { s.t. } \mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+ \\
& +\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0 \\
& \forall(a, x, b) \in \mathcal{I}
\end{aligned}
$$

Dual LP

$$
\operatorname{PoA}(f)=\frac{1}{W^{\star}}
$$

$$
W^{\star}=\inf _{\lambda \in \mathbb{R}_{\geq 0}, \mu \in \mathbb{R}} \mu
$$

$$
\begin{aligned}
& \text { s.t. } \mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+ \\
& +\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0 \\
& \forall(a, x, b) \in \partial \mathcal{I}
\end{aligned}
$$

Dual LP

$$
\operatorname{PoA}(f)=\frac{1}{W^{\star}}
$$

$$
W^{\star}=\inf _{\lambda \in \mathbb{R}_{\geq 0}, \mu \in \mathbb{R}} \mu
$$

$$
\begin{aligned}
& \text { s.t. } \mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+ \\
& +\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0 \\
& \forall(a, x, b) \in \partial \mathcal{I}
\end{aligned}
$$

$\triangleright 2$ decision variables, $\mathcal{O}\left(n^{2}\right)$ constraints

Dual LP

$$
\operatorname{PoA}(f)=\frac{1}{W^{\star}}
$$

$$
W^{\star}=\inf _{\lambda \in \mathbb{R}_{\geq 0}, \mu \in \mathbb{R}} \mu
$$

$$
\text { s.t. } \mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+
$$

$$
+\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0
$$

$$
\forall(a, x, b) \in \partial I
$$

$\triangleright 2$ decision variables, $\mathcal{O}\left(n^{2}\right)$ constraints
\triangleright observe the special structure i.e. $\min _{\lambda, \mu} \mu$ subject to $\mu \geq \ldots$

Dual LP

$$
\operatorname{PoA}(f)=\frac{1}{W^{\star}}
$$

$$
W^{\star}=\inf _{\lambda \in \mathbb{R}_{\geq 0}, \mu \in \mathbb{R}} \mu
$$

$$
\text { s.t. } \mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+
$$

$$
+\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0
$$

$$
\forall(a, x, b) \in \partial I
$$

$\triangleright 2$ decision variables, $\mathcal{O}\left(n^{2}\right)$ constraints
\triangleright observe the special structure i.e. $\min _{\lambda, \mu} \mu$ subject to $\mu \geq \ldots$
\triangleright gives PoA for e.g., $f_{\mathrm{sv}}(j)=1 / j, f_{\mathrm{mc}}(j)=1-w(j-1) / w(j)$

PoA: connection with existing literature

Covering Games: Approximation through
 Non-Cooperation *

Martin Gairing
Department of Computer Science, University of Liverpool, U.K.
m.gairingeliverpool.ac.uk

Abstract. We propose approximation algorithms under game-theoretic considerations. We indroduce and study the general conering problem which is a natural generalization of the well-studied max-n-cover prob weirhted elements E and n collections of subsets of the elements. The ask is to choose one subet from each collection such that the total weight of their union is as large as possible. In our game-theoretic set. weight of their union is as large as possible. In our game-theoretic setFor covering an element, the players receive a payoff defined by a nonincreasing uttity sharing function. This function defines the fraction that each covering player receives from the weight of the elements.
We show how to construct a utility sharing function such that every Nash Equilibrium approximates the optimal solution by a factor of $1-\frac{1}{2}$. W also prove that any sequence of unilateral improving steps is polynomially bounded. This gives rise to a polynomial-time local search approximation algorithm whose approximation ratio is best possible.

PoA: connection with existing literature

Covering Games: Approximation through

Non-Cooperation *

Martin Gairing

Generalized Efficiency Bounds in Distributed Resource Allocation

Jason R. Marden and Tim Roughgarden

Abstract

Game theory is emerging as a popular tool for dis- tributed control of multiagent systems. To take advantage of these tributed control of multiagent systems. To take advantage of these game theoretic tools, the interactions of the autonomous agents must be designed within a game-deorenc ensicher assignment of a local component of this game-theoretic design is the utility function to each agent. One promising approach to utility design is assigning each agent a utility function according to the agent's Shapley value. This method frequently results in games that possess many desirable features, such as the existence of pure Nash equilibria with near-optimal efficiency. In this paper, we explore the relationship between the Shapley value utility design and the resulting efficiency of both pure Nash equilibria and coarse corre- lated equilibria. To study this relationship, we introduce simple class of resource allocation problems. Within this class, we derive an explicit relationship between the structure of the resource allocation problem and the efficiency of the resulting equilibria. Lastly, we derive a bicriteria bound for this class of resource allocation problems-a bound on the value of the optimal allocation relative to the value of an equilibrium allocation with additional agents. in large-scale engineering systems, where a centralized control approach is undesirable or even infeasible. For example, a centralized control approach may be impossible for the forementioned sensor allocation problem because of the complexity associated with a potentially large number of sensors, the vastness/uncertainty of the mission space, or potential stealth requirements that restrict communication capabilities. A more desirable control approach is to establish a distributed control algorithm that allows the sensors to allocate themselves ffectively over the mission space without the need for global 15). intervention [14], [15]. Such an algorithm would eliminate the need for centralized communication and introduce an inherent robustness to communication failures, sensor failures, and environmental uncertainties. While desirable, establishing such distributed control algorithm comes with its share of chalusulte from the interawtions of a laron global behavior that

PoA: connection with existing literature

Covering Games: Approximation through

Non-Cooperation *

Martin Gairing

Generalized Efficiency Bounds in Distributed Resource Allocation

Jason R. Marden and Tim Roughgarden

Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature

Maxim Sviridenko, ${ }^{\text {a }}$ Jan Vondrák, ${ }^{\text {b }}$ Justin Ward ${ }^{\text {c }}$
aYahoo! Labs, New York, New York 10018; 'Stanford University, Stanford, California 94305; ${ }^{\text {E Ecolle Polytechnique Federale de Lausanne, }}$ 1015 Lausanne, Switzerland
Contsct swirieyahoo-inc.com (MS); jvondrakestanfordedu (JV); justin.wardeepfl.ch (JW)

Rectived: Decentier 30, 2014
Revised. Lune 20,2016
Published Online in Articies in Advance:
Mes) 16,2017
MSC2010 Subject Classification: Pimary

ORMS Subiect Classilicationc: Primary:
andy yss of alyonitms, secondary: mathemaliz: functions
hllpg:sdeliorgy10.12877moor.2016.0842
Copyright: 02017 INFORMS

Abstract. We design new approximation algorithms for the problems of optimizing submodular and supermodular functions subject to a single matroid constraint. Specifically, function or minimize a monotone decreasing supermodular function with a bounded total curvature c Intuitively, the parameter c represents how nonlinear a function f is when $c=0, f$ is linear, while for $c=1, f$ may be an arbitrary monotone increasing submodu$c=0$, f is inear, while for $c=1$, f may be an arbitrary monotone increasing submodu-
lar function. For the case of submodular maximization with total curvature c, we obtain a ($1-c / e$)-approximation-the first improvement over the greedy algorithm of of Conforti and Cornuejols from 1984, which holds for a cardinality constraint, as well as a recent analogous result for an arbitrary matroid constraint.
Our approach is based on modifications of the continuous greedy algorithm and nonoblivious local search, and allows us to approximately maximize the sum of a nonnegative, monotone increasing submodular function and a (possibly negative) linear function. We show how to reduce both submodular maximization and supermodular minimization to this general problem when the objective function has bounded total curvature. We prove thel, even in the case of a cardinality constraint the value oracle model, eve the case of curvature to constrain,
show a ($1-c$)-approximation for maximization and a $1 /(1-c)$-one set functions minimization cases. Finally, we give two concrete applications of our results in the settings of maximum entropy sampling, and the column-subset selection problem.

Find f with highest $\operatorname{PoA}(f)$

Optimal price of anarchy

Optimal price of anarchy

Corollary (Optimizing PoA)

Determining $f \in \mathbb{R}_{\geq 0}^{n}$ maximizing $\operatorname{PoA}(f)$ is a tractable linear program

Optimal price of anarchy

Corollary (Optimizing PoA) [Pac18a], [Pac18b]

Determining $f \in \mathbb{R}_{\geq 0}^{n}$ maximizing $\operatorname{PoA}(f)$ is a tractable linear program

Proof.

Optimal price of anarchy

Corollary (Optimizing PoA)

Determining $f \in \mathbb{R}_{\geq 0}^{n}$ maximizing $\operatorname{PoA}(f)$ is a tractable linear program

Proof.

$$
\operatorname{PoA}(f)=\frac{1}{W^{\star}}
$$

$$
\begin{array}{lc}
W^{\star}= & \inf _{\lambda \in \mathbb{R} \geq 0, \mu \in \mathbb{R}} \mu \\
\text { s.t. } & \mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+ \\
& +\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0 \\
& \forall(a, x, b) \in \partial \mathcal{I}
\end{array}
$$

Optimal price of anarchy

Corollary (Optimizing PoA)

Determining $f \in \mathbb{R}_{\geq 0}^{n}$ maximizing $\operatorname{PoA}(f)$ is a tractable linear program

Proof.

$$
\operatorname{PoA}(f)=\frac{1}{W^{\star}}
$$

$$
\begin{aligned}
& W^{\star}=\min _{f \in \mathbb{R}_{\geq 0}^{n} \lambda \in \mathbb{R}_{\geq 0, \mu \in \mathbb{R}}} \inf \mu \\
& \text { s.t. } \mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+ \\
& \quad+\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0 \\
& \quad \forall(a, x, b) \in \partial \mathcal{I}
\end{aligned}
$$

Optimal price of anarchy

Corollary (Optimizing PoA)

Determining $f \in \mathbb{R}_{\geq 0}^{n}$ maximizing $\operatorname{PoA}(f)$ is a tractable linear program

Proof.

$$
\operatorname{PoA}(f)=\frac{1}{W^{\star}}
$$

$$
\begin{aligned}
& W^{\star}=\min _{f \in \mathbb{R}_{\geq 0}^{n} \lambda \in \mathbb{R}_{\geq 0,}, \mu \in \mathbb{R}} \inf \mu \\
& \text { s.t. } \mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+ \\
& \quad+\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0 \\
& \quad \forall(a, x, b) \in \partial \mathcal{I}
\end{aligned}
$$

Back to the main result

Example:

- \# agents ≤ 40

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0.2$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0.4$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0.6$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0.8$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=1$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=1$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=1$

Comparison with other distributions, \#agents ≤ 20

Comparison with other distributions, \#agents ≤ 20
$\triangleright f_{\mathrm{SV}}(j)=\frac{1}{j}$

Comparison with other distributions, \#agents ≤ 20
$\triangleright f_{\mathrm{SV}}(j)=\frac{1}{j}$
$\triangleright f_{\mathrm{MC}}(j)=1-\frac{w(j-1)}{w(j)}$

Comparison with other distributions, \#agents ≤ 20
$\triangleright f_{\mathrm{SV}}(j)=\frac{1}{j}$
$\triangleright f_{\mathrm{MC}}(j)=1-\frac{w(j-1)}{w(j)}$

Conclusions and Outlook

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage
The approach: Approximation through game theory

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage
The approach: Approximation through game theory
\triangleright Computing the exact price of anarchy
\triangleright Optimizing the price of anarchy

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage
The approach: Approximation through game theory
\triangleright Computing the exact price of anarchy
\triangleright Optimizing the price of anarchy
The contribution: Distributed algorithms, improved performance

Conclusions and Outlook

The problem: Generalized Multiagent Maximum Coverage
The approach: Approximation through game theory
\triangleright Computing the exact price of anarchy
\triangleright Optimizing the price of anarchy
The contribution: Distributed algorithms, improved performance
Outlook:
Extension to
\triangleright Coarse correlated equilibria
\triangleright More general W

Thank you
people.ee.ethz.ch/~dariop

FNO 2 N
 ETHzürich UCSB

Thank you
people.ee.ethz.ch/~dariop

FNSNF
 EHHzürich UCSB

[Pac18a] D. Paccagnan, R. Chandan and J.R. Marden. "Distributed resource allocation through utility design - Part I: optimizing the performance certificates via the price of anarchy". ArXiv, 2018.
[Pac18b] D. Paccagnan and J.R. Marden. "Distributed resource allocation through utility design - Part II: applications to submodular, supermodular and set covering problems". ArXiv, 2018.

