Distributed control and game design From strategic agents to programmable machines

Dario Paccagnan

PhD Defense

Coordination of multiagent systems

Coordination of multiagent systems

Cooperative

PhD research overview

Aggregative games

- Large population, algorithms [TAC18a]
- Equilibrium efficiency [L-CSS18], [CDC18]
- Algorithms and applications [CDC16], [ECC16], [CPS18]
- Traffic and Inertial equilibria [IFAC17], [CDC17]

Combinatorial allocation

- Optimal utility design [Submitted, J18a]
 [Submitted, J18b]
- ▷ Role of information [TAC18b] [Allerton17]
- Worst vs best perf. tradeoff [Submitted, J18c]

Others [CDC15], [PLANS14]

PhD research overview

- Large population, algorithms [TAC18a]
- Equilibrium efficiency [L-CSS18], [CDC18]
- Algorithms and applications [CDC16], [ECC16], [CPS18]
 - Traffic and Inertial equilibria [IFAC17], [CDC17]

[Submitted, J18c]

Others [CDC15], [PLANS14]

PhD research overview

Others [CDC15], [PLANS14]

3

- Introduction
- Convergence between Nash and Wardrop
- Efficiency of equilibria

players: $i \in \{1, \ldots, M\}$

players: $i \in \{1, \dots, M\}$ constraints: $x^i \in \mathcal{X}^i \subseteq \mathbb{R}^n$

players: $i \in \{1, ..., M\}$ constraints: $x^i \in \mathcal{X}^i \subseteq \mathbb{R}^n$ cost: $J^i(x^i, x^{-i})$

players: $i \in \{1, ..., M\}$ constraints: $x^i \in \mathcal{X}^i \subseteq \mathbb{R}^n$ cost: $J^i(x^i, \sigma(x))$

players: $i \in \{1, ..., M\}$ constraints: $x^i \in \mathcal{X}^i \subseteq \mathbb{R}^n$ cost: $J^i(x^i, \sigma(x))$

players: $i \in \{1, ..., M\}$ constraints: $x^i \in \mathcal{X}^i \subseteq \mathbb{R}^n$ cost: $J^i(x^i, \sigma(x))$

$$\sigma(x) = \frac{1}{M} \sum_{i=1}^{M} x^i$$

$$\widehat{J^{i}(\hat{x}^{i},\sigma(\hat{x}))} \leq J^{i}(x^{i},\sigma(x^{i},\hat{x}^{-i}))$$

$$= \frac{x^{i}}{M} + \frac{1}{M}\sum_{j\neq i}\hat{x}^{j}$$

What is the relation between \hat{x} and \bar{x} ?

What is the relation between \hat{x} and \bar{x} ?

Nash operator

 $\hat{F}(x) = [\nabla_{x^i} J^i(x^i, \sigma(x))]_{i=1}^M$

What is the relation between \hat{x} and \bar{x} ?

Nash operator

Wardrop operator

 $\hat{F}(x) = [\nabla_{x^i} J^i(x^i, \sigma(x))]_{i=1}^M$

$$\overline{F}(x) = [\nabla_{x^i} J^i(x^i, z)|_{z=\sigma(x)}]_{i=1}^M$$

Theorem (Convergence for large M)

Lipschitzianity of J^i , boundedness of \mathcal{X}^i

Theorem (Convergence for large M)

Lipschitzianity of J^{i} , boundedness of \mathcal{X}^{i} , $\nabla_{x}\hat{F}(x) \succeq \alpha I$ or $\nabla_{x}\bar{F}(x) \succeq \alpha I$,

Theorem (Convergence for large M)

Lipschitzianity of J^{i} , boundedness of \mathcal{X}^{i} , $\nabla_{x}\hat{F}(x) \succeq \alpha I$ or $\nabla_{x}\overline{F}(x) \succeq \alpha I$,

 $||\hat{x} - \bar{x}|| \le \operatorname{const}/\sqrt{M}$

Theorem (Convergence for large M)

Lipschitzianity of J^{i} , boundedness of \mathcal{X}^{i} , $\nabla_{x}\hat{F}(x) \succeq \alpha I$ or $\nabla_{x}\bar{F}(x) \succeq \alpha I$,

 $||\hat{x} - \bar{x}|| \le \operatorname{const}/\sqrt{M}$

Theorem (Convergence for large M)

Lipschitzianity of J^{i} , boundedness of \mathcal{X}^{i} , $\nabla_{x}\hat{F}(x) \succeq \alpha I$ or $\nabla_{x}\bar{F}(x) \succeq \alpha I$,

 $||\hat{x} - \bar{x}|| \le \operatorname{const}/\sqrt{M}$

Consequences:

Theorem (Convergence for large M)

Lipschitzianity of J^{i} , boundedness of \mathcal{X}^{i} , $\nabla_{x}\hat{F}(x) \succeq \alpha I$ or $\nabla_{x}\bar{F}(x) \succeq \alpha I$,

 $||\hat{x} - \bar{x}|| \le \operatorname{const}/\sqrt{M}$

- equilibrium computation (algorithms)

Consequences:

Theorem (Convergence for large M)

Lipschitzianity of J^{i} , boundedness of \mathcal{X}^{i} , $\nabla_{x}\hat{F}(x) \succeq \alpha I$ or $\nabla_{x}\bar{F}(x) \succeq \alpha I$,

 $||\hat{x} - \bar{x}|| \le \operatorname{const}/\sqrt{M}$

– equilibrium computation (algorithms)– equilibrium efficiency

Consequences:

Theorem (Convergence for large M)

Lipschitzianity of J^{i} , boundedness of \mathcal{X}^{i} , $\nabla_{x}\hat{F}(x) \succeq \alpha I$ or $\nabla_{x}\bar{F}(x) \succeq \alpha I$,

 $||\hat{x} - \bar{x}|| \le \operatorname{const}/\sqrt{M}$

- A fleet of EVs to recharge

- A fleet of EVs to recharge

players: $i \in \{1, \ldots, M\}$

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]

players:
$$i \in \{1, \ldots, M\}$$

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]

players: $i \in \{1, ..., M\}$ cost of i: $p(\sigma(x) + d)^{\top} x^{i}$

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]
- Charging requirements

players: $i \in \{1, ..., M\}$ cost of i: $p(\sigma(x) + d)^{\top} x^{i}$

- A fleet of EVs to recharge
- Each vehicle \min bill in [1, n]
- Charging requirements

players: $i \in \{1, ..., M\}$ cost of i: $p(\sigma(x) + d)^{\top} x^{i}$ constr: $x^{i} \in \mathcal{X}^{i}$

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]
- Charging requirements
- System level objective
 - Minimize congestion

players: $i \in \{1, ..., M\}$ cost of i: $p(\sigma(x) + d)^{\top} x^{i}$ constr: $x^{i} \in \mathcal{X}^{i}$

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]
- Charging requirements
- System level objective
 - Minimize congestion

players: $i \in \{1, ..., M\}$ cost of i: $p(\sigma(x) + d)^{\top} x^{i}$ constr: $x^{i} \in \mathcal{X}^{i}$

$$\min_{x \in \mathcal{X}} J_{s}(x) = p(\sigma(x) + d)^{\top}(\sigma(x) + d)$$

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]
- Charging requirements

System level objective

- Minimize congestion

players: $i \in \{1, ..., M\}$ cost of i: $p(\sigma(x) + d)^{\top} x^i$ constr: $x^i \in \mathcal{X}^i$

$$\min_{x \in \mathcal{X}} J_{s}(x) = p(\sigma(x) + d)^{\top}(\sigma(x) + d)$$

How much does selfish behaviour degrade the performance?

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]
- Charging requirements

System level objective

- Minimize congestion

players: $i \in \{1, \dots, M\}$ cost of i: $p(\sigma(x) + d)^{\top} x^i$ constr: $x^i \in \mathcal{X}^i$

$$\min_{x \in \mathcal{X}} J_{s}(x) = p(\sigma(x) + d)^{\top}(\sigma(x) + d)$$

How much does selfish behaviour degrade the performance?

$$\operatorname{PoA} = \frac{\max_{x \in \operatorname{NE}(\operatorname{G})} J_{s}(x)}{J_{s}(x_{\operatorname{opt}})} \geq 1$$

Theorem (Equilibrium efficiency)

Theorem (Equilibrium efficiency)

Assume sufficient regularity

Assume $p(z + d) = [g(z_1 + d_1); \ldots; g(z_n + d_n)], \qquad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

[L-CSS18]

Theorem (Equilibrium efficiency)

Assume sufficient regularity Assume $p(z + d) = [g(z_1 + d_1); ...; g(z_n + d_n)], \quad g : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

▷ If g is a pure monomial

Theorem (Equilibrium efficiency)

Assume sufficient regularity Assume $p(z + d) = [g(z_1 + d_1); \dots; g(z_n + d_n)], \qquad g : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

 $\triangleright \ If g is a pure monomial \qquad \Longrightarrow \ WE are efficient for any M$

Theorem (Equilibrium efficiency)

Assume sufficient regularity Assume $p(z + d) = [g(z_1 + d_1); ...; g(z_n + d_n)], \quad g : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

If g is a pure monomial

 $\implies WE \text{ are efficient for any } M$ $\implies NE \text{ are efficient for large } M$ $1 \le \text{PoA} \le 1 + \text{const}/\sqrt{M}$

Theorem (Equilibrium efficiency)

 \triangleright If g is not a pure monomial \implies there exists inefficient instances (both NE/WE)

 $1 < \text{PoA} < 1 + \text{const}/\sqrt{M}$

[L-CSS18]

Theorem (Equilibrium efficiency)

Assume sufficient regularity Assume $p(z + d) = [g(z_1 + d_1); ...; g(z_n + d_n)], \quad g : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$

[L-CSS18]

PhD research overview

Others [CDC15], [PLANS14]

PhD research overview

Others [CDC15], [PLANS14]

Combinatorial allocation

- Introduction
- GMMC problems are intractable
- Utility design approach and performance guarantees

▷ a set of resources

 $\triangleright\,$ a set of resources

▷ a set of agents

▷ a set of resources

▷ a set of agents

Goal: assign resources to agents to maximize a given welfare function

▷ a set of resources

▷ a set of agents

Goal: assign resources to agents to maximize a given welfare function

resources: $r \in \mathcal{R}, \quad v_r \ge 0$

resources: $r \in \mathcal{R}, \quad v_r \ge 0$ agents: $i \in \{1, \dots, M\}$

resources: $r \in \mathcal{R}$, $v_r \ge 0$ agents: $i \in \{1, \dots, M\}$ allocations: $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$

resources:
$$r \in \mathcal{R}$$
, $v_r \ge 0$
agents: $i \in \{1, \dots, M\}$
allocations: $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$

welfare:
$$W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$$

resources:
$$r \in \mathcal{R}$$
, $v_r \ge 0$
agents: $i \in \{1, ..., M\}$
allocations: $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$
welfare: $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$ $w : \mathbb{N} \to \mathbb{R}_{\ge 0}$

System-level objective: $\max_{a \in \mathcal{A}} W(a)$

resources:
$$r \in \mathcal{R}, \quad v_r \ge 0$$

agents: $i \in \{1, \dots, M\}$
allocations: $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$
welfare: $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$
System-level objective: $\max_{a \in \mathcal{A}} W(a)$

resources:
$$r \in \mathcal{R}, \quad v_r \ge 0$$

agents: $i \in \{1, \dots, M\}$
allocations: $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$
welfare: $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$ $w : \mathbb{N} \to \mathbb{R}_{\ge 0}$
System-level objective: $\max_{a \in \mathcal{A}} W(a)$

Hardness and approximability

▷ Reduces to max-cover for w(j) = 1, $A_i = A_j$

resources:
$$r \in \mathcal{R}, \quad v_r \ge 0$$

agents: $i \in \{1, ..., M\}$
allocations: $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$
welfare: $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$
 $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$
System-level objective: $\max_{a \in \mathcal{A}} W(a)$

- \triangleright Reduces to max-cover for w(j) = 1, $\mathcal{A}_i = \mathcal{A}_j$
- $\triangleright \ \mathcal{NP}\text{-hard}$

resources:
$$r \in \mathcal{R}, \quad v_r \ge 0$$

agents: $i \in \{1, ..., M\}$
allocations: $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$
welfare: $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$
 $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$
System-level objective: $\max_{a \in \mathcal{A}} W(a)$

- \triangleright Reduces to max-cover for w(j) = 1, $\mathcal{A}_i = \mathcal{A}_j$
- $\triangleright \ \mathcal{NP}\text{-hard}$
- ▷ If w is concave and A_i = A_j, best poly-algorithm achieves 1 c/e and is centralized, c = 1 - [w(M) - w(M - 1)]

resources:
$$r \in \mathcal{R}, \quad v_r \ge 0$$

agents: $i \in \{1, ..., M\}$
allocations: $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$
welfare: $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$
 $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$
System-level objective: $\max_{a \in \mathcal{A}} W(a)$

- \triangleright Reduces to max-cover for w(j) = 1, $\mathcal{A}_i = \mathcal{A}_j$
- $\triangleright \ \mathcal{NP}\text{-hard}$
- ▷ If w is concave and $A_i = A_j$, best poly-algorithm achieves 1 c/eand is centralized, c = 1 - [w(M) - w(M - 1)]

resources:
$$r \in \mathcal{R}, \quad v_r \ge 0$$

agents: $i \in \{1, ..., M\}$
allocations: $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$
welfare: $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$
 $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$
System-level objective: $\max_{a \in \mathcal{A}} W(a)$

- ▷ Reduces to max-cover for w(j) = 1, $A_i = A_j$
- $\triangleright \ \mathcal{NP}\text{-hard}$
- ▷ If w is concave and $A_i = A_j$, best poly-algorithm achieves 1 c/eand is centralized, c = 1 - [w(M) - w(M - 1)]

resources:
$$r \in \mathcal{R}, \quad v_r \ge 0$$

agents: $i \in \{1, ..., M\}$
allocations: $a_i \in \mathcal{A}_i \subseteq 2^{\mathcal{R}}$
welfare: $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$
 $W(a) = \sum_{r \in \cup_i a_i} v_r w(|a|_r)$
System-level objective: $\max_{a \in \mathcal{A}} W(a)$

Hardness and approximability

- \triangleright Reduces to max-cover for w(j) = 1, $\mathcal{A}_i = \mathcal{A}_j$
- $\triangleright \ \mathcal{NP}\text{-hard}$

▷ If w is concave and $A_i = A_j$, best poly-algorithm achieves 1 - c/eand is centralized, c = 1 - [w(M) - w(M - 1)]

Game theory can be used to produce algorithms that are:

Game theory can be used to produce algorithms that are: distributed

Game theory can be used to produce algorithms that are: distributed, efficient

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - # agents
$$\leq$$
 40
- $w(j) = j^d$, d varies in [0, 1]

Example: - # agents
$$\leq$$
 40
- $w(j) = j^d$, d varies in [0, 1]

Example: - # agents
$$\leq 40$$

- $w(j) = j^d$, d varies in [0, 1]

Example: - # agents
$$\leq 40$$

- $w(j) = j^d$, d varies in [0,1]

Example: - # agents
$$\leq 40$$

- $w(j) = j^d$, d varies in [0,1]

Example: - # agents
$$\leq 40$$

- $w(j) = j^d$, d varies in [0,1]

- Distributed algorithm
- Good approximation
- Polytime

Game design

- Distributed algorithm
- Good approximation
- Polytime

Game design

- Distributed algorithm
- Good approximation
- Polytime

Game design

Design a game (agents, constraints, utilities)

 $\max W(a)$

- Distributed algorithm
- Good approximation
- Polytime

15

Game design

Design a game (agents, constraints, utilities)

- Distributed algorithm
- Good approximation
- Polytime

Game design

Design a game (agents, constraints, utilities)

- Distributed algorithm
- Good approximation
- Polytime

Game design

Design a game (agents, constraints, utilities)

- Distributed algorithm
- Good approximation
- Polytime

 $\max W(a)$

Distributed algorithm

▷ Good approximation

Polytime

 \triangleright

 \triangleright

Game design

Design a game (agents, constraints, utilities)

Requirement: equilibria have high welfare

Game design

Design a game (agents, constraints, utilities)

Requirement: equilibria have high welfare

Use existing algorithms to find an equilibrium

- Distributed algorithm
- Good approximation
- Polytime

Game design

Design a game (agents, constraints, utilities)

Requirement: equilibria have high welfare

Use existing algorithms to find an equilibrium

- Distributed algorithm
- Good approximation
- Polytime

 $u_i(a_i, a_{-i})$

$$u_i(a_i, a_{-i}) = \sum_{r \in a_i} v_r w(|a|_r) f(|a|_r) \qquad f : \mathbb{N} \to \mathbb{R}_{\geq 0} \quad (distributed)$$

$$u_i(a_i, a_{-i}) = \sum_{r \in a_i} v_r w(|a|_r) f(|a|_r) \qquad f : \mathbb{N} \to \mathbb{R}_{\geq 0} \quad (\textit{distributed})$$

How to design *f*?

$$u_i(a_i, a_{-i}) = \sum_{r \in a_i} v_r w(|a|_r) f(|a|_r) \qquad f : \mathbb{N} \to \mathbb{R}_{\geq 0} \quad (distributed)$$

How to design f? Maximize worst-case performance

$$u_i(a_i, a_{-i}) = \sum_{r \in a_i} v_r w(|a|_r) f(|a|_r) \qquad f : \mathbb{N} \to \mathbb{R}_{\geq 0} \quad (distributed)$$

How to design f? Maximize worst-case performance

Given instance I, fix f

$$u_i(a_i, a_{-i}) = \sum_{r \in a_i} v_r w(|a|_r) f(|a|_r) \qquad f : \mathbb{N} \to \mathbb{R}_{\geq 0} \quad (distributed)$$

How to design f? Maximize worst-case performance

Given instance I, fix $f \rightarrow \text{game } G_f = \{I, f\}$

$$u_i(a_i, a_{-i}) = \sum_{r \in a_i} v_r w(|a|_r) f(|a|_r) \qquad f : \mathbb{N} \to \mathbb{R}_{\geq 0} \quad (distributed)$$

How to design f? Maximize worst-case performance

Given instance I, fix $f \to \text{game } G_f = \{I, f\} \to \text{NE}(G_f)$

$$u_i(a_i, a_{-i}) = \sum_{r \in a_i} v_r w(|a|_r) f(|a|_r) \qquad f : \mathbb{N} \to \mathbb{R}_{\geq 0} \quad (\textit{distributed})$$

How to design f? Maximize worst-case performance

Given instance I, fix $f \to \text{game } G_f = \{I, f\} \to \text{NE}(G_f)$

$$\operatorname{PoA}(f) = rac{\min_{a \in \operatorname{NE}(G_f)} W(a)}{W(a_{\operatorname{opt}})} \leq 1$$

$$u_i(a_i, a_{-i}) = \sum_{r \in a_i} v_r w(|a|_r) f(|a|_r) \qquad f : \mathbb{N} \to \mathbb{R}_{\geq 0} \quad (\textit{distributed})$$

How to design f? Maximize worst-case performance

Given instance I, fix $f \to \text{game } G_f = \{I, f\} \to \text{NE}(G_f)$

$$\operatorname{PoA}(f) = \inf_{\operatorname{G}_f: \, \# \text{agents } \leq M} \frac{\min_{a \in \operatorname{NE}(\operatorname{G}_f)} W(a)}{W(a_{\operatorname{opt}})} \leq 1$$

$$u_i(a_i, a_{-i}) = \sum_{r \in a_i} v_r w(|a|_r) f(|a|_r) \qquad f : \mathbb{N} \to \mathbb{R}_{\geq 0} \quad (distributed)$$

How to design f? Maximize worst-case performance

Given instance I, fix $f \to \text{game } G_f = \{I, f\} \to NE(G_f)$

$$\operatorname{PoA}(f) = \inf_{\operatorname{G}_f: \, \# \text{ agents } \leq M} \frac{\min_{a \in \operatorname{NE}(\operatorname{G}_f)} W(a)}{W(a_{\operatorname{opt}})} \leq 1$$

PoA(f) is the approx. ratio of any equilibrium-computing algorithm

[J18a], [J18b]

PoA(f) is the solution to a tractable LP in 2 variables, $O(M^2)$ constraints

[J18a], [J18b]

PoA(f) is the solution to a tractable LP in 2 variables, $O(M^2)$ constraints

$$\operatorname{PoA}(f) = \frac{1}{W^{\star}}$$

PoA(f) is the solution to a tractable LP in 2 variables, $O(M^2)$ constraints

$$\operatorname{PoA}(f) = \frac{1}{W^{\star}}$$

$$W^{\star} = \inf_{\lambda \in \mathbb{R}_{\geq 0}, \mu \in \mathbb{R}} \mu$$

s.t. $\mathbb{1}_{\{b+x \geq 1\}} w(b+x) - \mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x) +$
 $+ \lambda [af(a+x)w(a+x) - bf(a+x+1)w(a+x+1)] \leq 0$
 $\forall (a,x,b) \in \mathcal{I} \subset \{0,\ldots,M\}^3$

PoA(f) is the solution to a tractable LP in 2 variables, $O(M^2)$ constraints

$$\operatorname{PoA}(f) = \frac{1}{W^{\star}}$$

$$\begin{split} \mathcal{W}^{\star} &= \inf_{\lambda \in \mathbb{R}_{\geq 0}, \, \mu \in \mathbb{R}} \mu \\ \text{s.t. } \mathbb{1}_{\{b+x \geq 1\}} w(b+x) - \mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x) + \\ &+ \lambda [af(a+x)w(a+x) - bf(a+x+1)w(a+x+1)] \leq 0 \\ &\quad \forall (a,x,b) \in \mathcal{I} \subset \{0,\ldots,M\}^3 \end{split}$$

Corollary Optimizing PoA

Determining $f \in \mathbb{R}^M_{>0}$ maximizing $\operatorname{PoA}(f)$ is a tractable linear program

PoA(f) is the solution to a tractable LP in 2 variables, $O(M^2)$ constraints

$$\operatorname{PoA}(f) = \frac{1}{W^{\star}}$$

$$W^{\star} = \min_{f \in \mathbb{R}_{\geq 0}^{M}} \inf_{\lambda \in \mathbb{R}_{\geq 0}, \mu \in \mathbb{R}} \mu$$

s.t. $\mathbb{1}_{\{b+x \geq 1\}} w(b+x) - \mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x) +$
 $+ \lambda [af(a+x)w(a+x) - bf(a+x+1)w(a+x+1)] \leq 0$
 $\forall (a,x,b) \in \mathcal{I} \subset \{0,\ldots,M\}^{3}$

Corollary Optimizing PoA

Determining $f \in \mathbb{R}^{M}_{\geq 0}$ maximizing $\operatorname{PoA}(f)$ is a tractable linear program

PoA(f) is the solution to a tractable LP in 2 variables, $O(M^2)$ constraints

$$\operatorname{PoA}(f) = \frac{1}{W^{\star}}$$

$$W^{\star} = \min_{f \in \mathbb{R}_{\geq 0}^{M}} \inf_{\lambda \in \mathbb{R}_{\geq 0}, \mu \in \mathbb{R}} \mu$$

s.t. $\mathbb{1}_{\{b+x \geq 1\}} w(b+x) - \mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x) +$
 $+ \lambda [af(a+x)w(a+x) - bf(a+x+1)w(a+x+1)] \leq 0$
 $\forall (a,x,b) \in \mathcal{I} \subset \{0,\ldots,M\}^{3}$

Corollary Optimizing PoA

Determining $f \in \mathbb{R}^M_{\geq 0}$ maximizing $\operatorname{PoA}(f)$ is a tractable linear program

Back to the main result

Example:

- $\# \operatorname{agents} \le 40$

Back to the main result

Example:

-
$$\# \operatorname{agents} \le 40$$

-
$$w(j) = j^d$$
, $d = 0$

-
$$\# \operatorname{agents} \le 40$$

-
$$w(j) = j^d$$
, $d = 0$

-
$$\# \operatorname{agents} \le 40$$

-
$$w(j) = j^d$$
, $d = 0.2$

-
$$\# \operatorname{agents} \le 40$$

-
$$w(j) = j^d$$
, $d = 0.4$

-
$$\# \operatorname{agents} \le 40$$

-
$$w(j) = j^d$$
, $d = 0.6$

-
$$\# \operatorname{agents} \le 40$$

-
$$w(j) = j^d$$
, $d = 0.8$

-
$$\# \operatorname{agents} \le 40$$

-
$$w(j) = j^d$$
, $d = 1$

-
$$\# \operatorname{agents} \le 40$$

-
$$w(j) = j^d$$
, $d = 1$

-
$$\# \operatorname{agents} \le 40$$

-
$$w(j) = j^d$$
, $d = 1$

Aggregative games

- Convergence between Nash and Wardrop
- ▷ Equilibrium efficiency

Aggregative games

- Convergence between Nash and Wardrop
- Equilibrium efficiency

Combinatorial allocation

- GMMC problems and utility design approach
- $\triangleright\,$ Characterization and optimization of PoA

Aggregative games

- Convergence between Nash and Wardrop
- Equilibrium efficiency
- Stochasticity and data

Combinatorial allocation

- GMMC problems and utility design approach
- $\triangleright\,$ Characterization and optimization of PoA

Aggregative games

- Convergence between Nash and Wardrop
- Equilibrium efficiency
- Stochasticity and data

Combinatorial allocation

- GMMC problems and utility design approach
- $\triangleright\,$ Characterization and optimization of PoA
- Submodular maximization

Acknowledgment to collaborators

Prof. J. Lygeros

Dr. B. Gentile

R. Chandan

Prof. J.R. Marden

Dr. F. Parise

G. Burger

Prof. M. Kamgarpour

Dr. V. Ramaswamy

B. Ogunsola

Publications - part 1 of 2

- [L-CSS18] D. Paccagnan, F. Parise and J. Lygeros. "On the Efficiency of Nash Equilibria in Aggregative Charging Games". *IEEE Control Systems Letters*, 2018.
- [TAC18a] D. Paccagnan*, B. Gentile*, F. Parise*, M. Kamgarpour, and J. Lygeros. "Nash and Wardrop equilibria in aggregative games with coupling constraints". *IEEE Transactions on Automatic Control*, 2018.
- [CPS18] B. Gentile*, F. Parise*, D. Paccagnan*, M. Kamgarpour and J. Lygeros. "A game theoretic approach to decentralized charging of plug-in electric vehicles". *Challenges in Engineering and Management of Cyber-Physical Systems, River Publishers*, 2018.
- [CDC17] B. Gentile, D. Paccagnan, B. Ogunsola and J. Lygeros. "A Novel Concept of Equilibrium Over a Network". IEEE Conference on Decision and Control, 2017.
- [IFAC17] G. Burger, D. Paccagnan, B. Gentile, and J. Lygeros. "Guarantees of convergence to a dynamic user equilibrium for a network of parallel roads". IFAC World Congress, 2017.
- [CDC16] D. Paccagnan*, B. Gentile*, F. Parise*, M. Kamgarpour, and J. Lygeros. "Distributed computation of generalized Nash equilibria in quadratic aggregative games with affine coupling constraints". *IEEE Conference on Decision and Control*, 2016.
- [ECC16] D. Paccagnan, M. Kamgarpour, and J. Lygeros. "On Aggregative and Mean Field Games with Applications to Electricity Markets". *European Control Conference*, 2016.

Publications - part 2 of 2

- [TAC18b] D. Paccagnan and J.R. Marden. "The Importance of System-Level Information in Multiagent Systems Design: Cardinality and Covering Problems". IEEE Transactions on Automatic Control, 2018.
- [J18a] D. Paccagnan, R. Chandan and J.R. Marden. "Distributed resource allocation through utility design - Part I: optimizing the performance certificates via the price of anarchy". Submitted; arXiv:1807.01333, 2018.
- [J18b] D. Paccagnan and J.R. Marden. "Distributed resource allocation through utility design - Part II: applications to submodular, supermodular and set covering problems". Submitted; arXiv:1807.01343, 2018.
- [J18c] V. Ramaswamy, D. Paccagnan and J.R. Marden. "Multiagent Coverage Problems: The Trade-off Between Anarchy and Stability". Submitted; arXiv:1710.01409, 2017.
- [ALL17] D. Paccagnan and J.R. Marden. "The Risks and Rewards of Conditioning Noncooperative Designs to Additional Information". Allerton Conference on Communication, Control, and Computing, 2017.
- [CDC15] D. Paccagnan, M. Kamgarpour, and J. Lygeros. "On the Range of Feasible Power Trajectories for a Population of Thermostatically Controlled Loads". IEEE Conference on Decision and Control, 2015.
- [PLANS14] M.J. Joergensen, D. Paccagnan, N.K. Poulsen, and M.B. Larsen. "IMU Calibration and Validation in a Factory, Remote on Land and at Sea". IEEE Position Location and Navigation Symposium, 2014.