Distributed control and game design

From strategic agents to programmable machines

Dario Paccagnan

PhD Defense

Coordination of multiagent systems

Coordination of multiagent systems

Competitive
Cooperative

PhD research overview

Aggregative games

\triangleright Large population, algorithms [TAC18a]
\triangleright Equilibrium efficiency [L-CSS18], [CDC18]
\triangleright Algorithms and applications [CDC16], [ECC16], [CPS18]
\triangleright Traffic and Inertial equilibria [IFAC17], [CDC17]

Combinatorial allocation

\triangleright Optimal utility design [Submitted, J18a] [Submitted, J18b]
\triangleright Role of information
[TAC18b]
[Allerton17]
\triangleright Worst vs best perf. tradeoff [Submitted, J18c]

Others [CDC15], [PLANS14]

PhD research overview

Aggregative games

- Large population, algorithms: [TAC18a]

Equilibrium efficiency
[L-CSS18], [CDC18]
\triangleright Algorithms and applications
[CDC16], [ECC16], [CPS18]:
\triangleright Traffic and Inertial equilibria [IFAC17], [CDC17]

Others [CDC15], [PLANS14]

Combinatorial allocation

\triangleright Role of information
[TAC18b]
[Allerton17]
\triangleright Worst vs best perf. tradeoff [Submitted, J18c]

PhD research overview

Aggregative games

-----------------[TAC18a]

Equilibrium efficiency [L-CSS18], [CDC18]
\triangleright Algorithms and applications [CDC16], [ECC16], [CPS18]:
\triangleright Traffic and Inertial equilibria [IFAC17], [CDC17]

Combinatorial allocation

- Optimal utility design
[Submitted, J18a]
[Submitted, J18b]
\triangleright Role of information
[TAC18b]
[Allerton17]
\triangleright Worst vs best perf. tradeoff [Submitted, J18c]

Others [CDC15], [PLANS14]

Aggregative games

- Introduction
- Convergence between Nash and Wardrop
- Efficiency of equilibria

Aggregative games
players: $i \in\{1, \ldots, M\}$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

$$
\operatorname{cost}: J^{i}\left(x^{i}, x^{-i}\right)
$$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

$$
\operatorname{cost}: J^{i}\left(x^{i}, \sigma(x)\right)
$$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

$$
\operatorname{cost}: J^{i}\left(x^{i}, \sigma(x)\right)
$$

$$
\sigma(x)=\frac{1}{M} \sum_{i=1}^{M} x^{i}
$$

Aggregative games

players: $i \in\{1, \ldots, M\}$ constraints: $x^{i} \in \mathcal{X}^{i} \subseteq \mathbb{R}^{n}$

$$
\operatorname{cost}: J^{i}\left(x^{i}, \sigma(x)\right)
$$

$$
\sigma(x)=\frac{1}{M} \sum_{i=1}^{M} x^{i}
$$

Two equilibrium notions

Two equilibrium notions

Two equilibrium notions

Two equilibrium notions

Two equilibrium notions

What is the relation between \hat{x} and \bar{x} ?

Two equilibrium notions

What is the relation between \hat{x} and \bar{x} ?

Nash operator

$$
\hat{F}(x)=\left[\nabla_{x^{i}} J^{i}\left(x^{i}, \sigma(x)\right)\right]_{i=1}^{M}
$$

Two equilibrium notions

What is the relation between \hat{x} and \bar{x} ?

Nash operator

Wardrop operator

$$
\hat{F}(x)=\left[\nabla_{x^{i}} J^{i}\left(x^{i}, \sigma(x)\right)\right]_{i=1}^{M}
$$

$$
\bar{F}(x)=\left[\left.\nabla_{x^{i}} J^{i}\left(x^{i}, z\right)\right|_{z=\sigma(x)}\right]_{i=1}^{M}
$$

Main result I

Main result I

Theorem (Convergence for large M)
Lipschitzianity of J^{i}, boundedness of \mathcal{X}^{i}

Main result I

Theorem (Convergence for large M) [TAC18a]

Lipschitzianity of J^{i}, boundedness of $\mathcal{X}^{i}, \nabla_{x} \hat{F}(x) \succeq \alpha I$ or $\nabla_{x} \bar{F}(x) \succeq \alpha I$,

Main result I

Theorem (Convergence for large M)
[TAC18a]
Lipschitzianity of J^{i}, boundedness of $\mathcal{X}^{i}, \nabla_{x} \hat{F}(x) \succeq \alpha I$ or $\nabla_{x} \bar{F}(x) \succeq \alpha I$,

$$
\|\hat{x}-\bar{x}\| \leq \text { const } / \sqrt{M}
$$

Main result I

Theorem (Convergence for large M)

Lipschitzianity of J^{i}, boundedness of $\mathcal{X}^{i}, \nabla_{x} \hat{F}(x) \succeq \alpha I$ or $\nabla_{x} \bar{F}(x) \succeq \alpha I$,

$$
\|\hat{x}-\bar{x}\| \leq \mathrm{const} / \sqrt{M}
$$

Main result I

Theorem (Convergence for large M)

Lipschitzianity of J^{i}, boundedness of $\mathcal{X}^{i}, \nabla_{x} \hat{F}(x) \succeq \alpha I$ or $\nabla_{x} \bar{F}(x) \succeq \alpha I$,

$$
\|\hat{x}-\bar{x}\| \leq \text { const } / \sqrt{M}
$$

Consequences:

Main result I

Theorem (Convergence for large M)

Lipschitzianity of J^{i}, boundedness of $\mathcal{X}^{i}, \nabla_{x} \hat{F}(x) \succeq \alpha I$ or $\nabla_{x} \bar{F}(x) \succeq \alpha I$,

$$
\|\hat{x}-\bar{x}\| \leq \text { const } / \sqrt{M}
$$

Consequences:

- equilibrium computation (algorithms)

Main result I

Theorem (Convergence for large M)

Lipschitzianity of J^{i}, boundedness of $\mathcal{X}^{i}, \nabla_{x} \hat{F}(x) \succeq \alpha I$ or $\nabla_{x} \bar{F}(x) \succeq \alpha I$,

$$
\|\hat{x}-\bar{x}\| \leq \text { const } / \sqrt{M}
$$

Consequences:

- equilibrium computation (algorithms)
- equilibrium efficiency

Main result I

Theorem (Convergence for large M)

Lipschitzianity of J^{i}, boundedness of $\mathcal{X}^{i}, \nabla_{x} \hat{F}(x) \succeq \alpha I$ or $\nabla_{x} \bar{F}(x) \succeq \alpha I$,

$$
\|\hat{x}-\bar{x}\| \leq \mathrm{const} / \sqrt{M}
$$

Consequences:

- equilibrium computation (algorithms)
- equilibrium efficiency

Equilibrium efficiency: electric vehicle charging

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
players: $\quad i \in\{1, \ldots, M\}$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
players: $\quad i \in\{1, \ldots, M\}$
- Each vehicle min bill in $[1, n]$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$
- Charging requirements
players: $\quad i \in\{1, \ldots, M\}$
cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$
- Charging requirements
players: $\quad i \in\{1, \ldots, M\}$
cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$
constr: $\quad x^{i} \in \mathcal{X}^{i}$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$
- Charging requirements
players: $\quad i \in\{1, \ldots, M\}$
cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$
constr: $\quad x^{i} \in \mathcal{X}^{i}$

System level objective

- Minimize congestion

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in $[1, n]$
- Charging requirements

System level objective

- Minimize congestion
players: $\quad i \in\{1, \ldots, M\}$
cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$
constr: $\quad x^{i} \in \mathcal{X}^{i}$
$\min _{x \in \mathcal{X}} J_{s}(x)=p(\sigma(x)+d)^{\top}(\sigma(x)+d)$

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]
- Charging requirements
players: $\quad i \in\{1, \ldots, M\}$
cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$
constr: $\quad x^{i} \in \mathcal{X}^{i}$

System level objective

- Minimize congestion

$$
\min _{x \in \mathcal{X}} J_{s}(x)=p(\sigma(x)+d)^{\top}(\sigma(x)+d)
$$

How much does selfish behaviour degrade the performance?

Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge
- Each vehicle min bill in [1, n]
- Charging requirements
players: $\quad i \in\{1, \ldots, M\}$
cost of $i: \quad p(\sigma(x)+d)^{\top} x^{i}$
constr: $\quad x^{i} \in \mathcal{X}^{i}$

System level objective

- Minimize congestion

$$
\min _{x \in \mathcal{X}} J_{s}(x)=p(\sigma(x)+d)^{\top}(\sigma(x)+d)
$$

How much does selfish behaviour degrade the performance?

$$
\operatorname{PoA}=\frac{\max _{x \in \operatorname{NE}(\mathrm{G})} J_{s}(x)}{J_{s}\left(x_{\mathrm{opt}}\right)} \geq 1
$$

Main result II
Theorem (Equilibrium efficiency)

Main result II

Theorem (Equilibrium efficiency)

Assume sufficient regularity
Assume $p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$

Main result II

Theorem (Equilibrium efficiency)

Assume sufficient regularity
Assume $p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$
\triangleright If g is a pure monomial

Main result II

Theorem (Equilibrium efficiency)

Assume sufficient regularity
Assume $p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$
\triangleright If g is a pure monomial \Longrightarrow WE are efficient for any M

Main result II

Theorem (Equilibrium efficiency)

[L-CSS18]
Assume sufficient regularity
Assume $p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$
\triangleright If g is a pure monomial \Longrightarrow WE are efficient for any M
\Longrightarrow NE are efficient for large M

$$
1 \leq \mathrm{PoA} \leq 1+\text { const } / \sqrt{M}
$$

Main result II

Theorem (Equilibrium efficiency)

[L-CSS18]
Assume sufficient regularity
Assume $p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$
\triangleright If g is a pure monomial \Longrightarrow WE are efficient for any M
\Longrightarrow NE are efficient for large M $1 \leq \operatorname{PoA} \leq 1+$ const $/ \sqrt{M}$
\triangleright If g is not a pure monomial \Longrightarrow there exists inefficient instances (both NE/WE)

Main result II

Theorem (Equilibrium efficiency)

Assume sufficient regularity
Assume $p(z+d)=\left[g\left(z_{1}+d_{1}\right) ; \ldots ; g\left(z_{n}+d_{n}\right)\right], \quad g: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$
\triangleright If g is a pure monomial \Longrightarrow WE are efficient for any M
\Longrightarrow NE are efficient for large M $1 \leq \mathrm{PoA} \leq 1+$ const $/ \sqrt{M}$
\triangleright If g is not a pure monomial \Longrightarrow there exists inefficient instances (both NE/WE)

PhD research overview

Aggregative games

 - Large population, algorithms [TAC18a]Equilibrium efficiency [L-CSS18], [CDC18]
Algorithms and applications [CDC16], [ECC16]
\triangleright Traffic and Inertial equilibria [IFAC 17], [CDC17]

Combinatorial allocation

\triangleright Role of information
[TAC18b]
[Allerton17]
\triangleright Worst vs best perf. tradeoff [Submitted, J18c]

Others [CDC15], [PLANS14]

PhD research overview

Aggregative games

 Large population, algorithms: [TAC18a]Equilibrium efficiency [L-CSS18], [CDC18]

Algorithms and applications [CDC16], [ECC16]
\triangleright Traffic and Inertial equilibria [IFAC 17], [CDC17]

Combinatorial allocation
\triangleright Optimal utility design
[Submitted, J18a]
[Submitted, J18b]
\triangleright Role of information
[TAC18b]
[Allerton17]
\triangleright Worst vs best perf. tradeoff [Submitted, J18c]

Others [CDC15], [PLANS14]

Combinatorial allocation

- Introduction
- GMMC problems are intractable
- Utility design approach and performance guarantees

Combinatorial resource allocation

\triangleright a set of resources

Combinatorial resource allocation

\triangleright a set of resources
\triangleright a set of agents

Combinatorial resource allocation

\triangleright a set of resources
\triangleright a set of agents

Goal: assign resources to agents to maximize a given welfare function

Combinatorial resource allocation

\triangleright a set of resources
\triangleright a set of agents

Goal: assign resources to agents to maximize a given welfare function

Generalized Multiagent Maximum Coverage (GMMC)

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, M\}$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, M\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, M\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)$
$w: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, M\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)$
$w: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

System-level objective: $\max _{a \in \mathcal{A}} W(a)$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, M\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)$
$w: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$
System-level objective: $\max _{a \in \mathcal{A}} W(a)$
Hardness and approximability

Generalized Multiagent Maximum Coverage (GMMC)

resources: $\quad r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, M\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)$
$w: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

System-level objective: $\max _{a \in \mathcal{A}} W(a)$
Hardness and approximability
\triangleright Reduces to max-cover for $w(j)=1, \mathcal{A}_{i}=\mathcal{A}_{j}$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, M\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)$
$w: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

System-level objective: $\max _{a \in \mathcal{A}} W(a)$
Hardness and approximability
\triangleright Reduces to max-cover for $w(j)=1, \mathcal{A}_{i}=\mathcal{A}_{j}$
$\triangleright \mathcal{N} \mathcal{P}$-hard

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, M\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)$
$w: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

System-level objective: $\max _{a \in \mathcal{A}} W(a)$
Hardness and approximability
\triangleright Reduces to max-cover for $w(j)=1, \mathcal{A}_{i}=\mathcal{A}_{j}$
$\triangleright \mathcal{N} \mathcal{P}$-hard
\triangleright If w is concave and $\mathcal{A}_{i}=\mathcal{A}_{j}$, best poly-algorithm achieves $1-c / e$ and is centralized, $c=1-[w(M)-w(M-1)]$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, M\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)$
$w: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

System-level objective: $\max _{a \in \mathcal{A}} W(a)$
Hardness and approximability
\triangleright Reduces to max-cover for $w(j)=1, \mathcal{A}_{i}=\mathcal{A}_{j}$
$\triangleright \mathcal{N} \mathcal{P}$-hard
\triangleright If w is concave and $\mathcal{A}_{i}=\mathcal{A}_{j}$, best poly-algorithm achieves $1-c / e$ and is centralized, $c=1-[w(M)-w(M-1)]$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, M\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup_{j} a_{i}} v_{r} w\left(|a|_{r}\right)$
$w: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

System-level objective: $\max _{a \in \mathcal{A}} W(a)$
Hardness and approximability
\triangleright Reduces to max-cover for $w(j)=1, \mathcal{A}_{i}=\mathcal{A}_{j}$
$\triangleright \mathcal{N} \mathcal{P}$-hard
\triangleright If w is concave and $\mathcal{A}_{i}=\mathcal{A}_{j}$, best poly-algorithm achieves $1-c / e$ and is centralized, $c=1-[w(M)-w(M-1)]$

Generalized Multiagent Maximum Coverage (GMMC)

resources: $r \in \mathcal{R}, \quad v_{r} \geq 0$
agents: $i \in\{1, \ldots, M\}$
allocations: $a_{i} \in \mathcal{A}_{i} \subseteq 2^{\mathcal{R}}$

welfare: $\quad W(a)=\sum_{r \in \cup \cup_{i} a_{i}} v_{r} w\left(|a|_{r}\right)$
$w: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$

System-level objective: $\max _{a \in \mathcal{A}} W(a)$
Hardness and approximability
\triangleright Reduces to max-cover for $w(j)=1, \mathcal{A}_{i}=\mathcal{A}_{j}$
$\triangleright \mathcal{N} \mathcal{P}$-hard
\triangleright If w is concave and $\mathcal{A}_{i}=\mathcal{A}_{j}$, best poly-algorithm achieves $1-c / e$ and is centralized, $c=1-[w(M)-w(M-1)]$

Main result III

Main result III

Game theory can be used to produce algorithms that are:

Main result III

Game theory can be used to produce algorithms that are: distributed

Main result III

Game theory can be used to produce algorithms that are: distributed, efficient

Main result III

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Main result III

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40
$-w(j)=j^{d}, d$ varies in $[0,1]$

Main result III

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40
$-w(j)=j^{d}, d$ varies in $[0,1]$

Main result III

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40
$-w(j)=j^{d}, d$ varies in $[0,1]$

Main result III

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40

$$
-w(j)=j^{d}, d \text { varies in }[0,1]
$$

Main result III

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40

$$
-w(j)=j^{d}, d \text { varies in }[0,1]
$$

Main result III

Game theory can be used to produce algorithms that are: distributed, efficient, match/improve existing approximations

Example: - \# agents ≤ 40

$$
-w(j)=j^{d}, d \text { varies in }[0,1]
$$

The game-theoretic approach

The game-theoretic approach

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

The game-theoretic approach

Game design

Design a game

(agents, constraints, utilities)

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime
$\max W(a)$

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

Design a game
 (agents, constraints, utilities)

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

Design a game
 (agents, constraints, utilities)

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

Design a game (agents, constraints, utilities)
 Requirement:
 equilibria have high welfare

The game-theoretic approach

Game design

$\max W(a)$
\triangleright Distributed algorithm
\triangleright Good approximation
\triangleright Polytime

Design a game
 (agents, constraints, utilities)
 Requirement:
 equilibria have high welfare

Use existing algorithms to find an equilibrium

The game-theoretic approach

Game design

Design a game
(agents, constraints, utilities)
Requirement:
equilibria have high welfare

Use existing algorithms to find an equilibrium

Utility design and approximation ratio

$u_{i}\left(a_{i}, a_{-i}\right)$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ?

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad(\text { distributed })
$$

How to design f ? Maximize worst-case performance

Given instance I, fix f

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Given instance I, fix $f \rightarrow$ game $\mathrm{G}_{f}=\{\mathrm{I}, f\}$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Given instance I, fix $f \rightarrow$ game $\mathrm{G}_{f}=\{\mathrm{I}, f\} \rightarrow \mathrm{NE}\left(\mathrm{G}_{f}\right)$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Given instance I, fix $f \rightarrow$ game $\mathrm{G}_{f}=\{\mathrm{I}, f\} \rightarrow \mathrm{NE}\left(\mathrm{G}_{f}\right)$

$$
\operatorname{PoA}(f)=\quad \frac{\min _{a \in \operatorname{NE}\left(\mathrm{G}_{f}\right)} W(a)}{W\left(a_{\mathrm{opt}}\right)} \leq 1
$$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Given instance I, fix $f \rightarrow$ game $\mathrm{G}_{f}=\{\mathrm{I}, f\} \rightarrow \mathrm{NE}\left(\mathrm{G}_{f}\right)$

$$
\operatorname{PoA}(f)=\inf _{\mathrm{G}_{f}: \# \text { agents } \leq M} \frac{\min _{a \in \operatorname{NE}\left(\mathrm{G}_{f}\right)} W(a)}{W\left(a_{\mathrm{opt}}\right)} \leq 1
$$

Utility design and approximation ratio

$$
u_{i}\left(a_{i}, a_{-i}\right)=\sum_{r \in a_{i}} v_{r} w\left(|a|_{r}\right) f\left(|a|_{r}\right) \quad f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \quad \text { (distributed) }
$$

How to design f ? Maximize worst-case performance

Given instance I, fix $f \rightarrow$ game $\mathrm{G}_{f}=\{\mathrm{I}, f\} \rightarrow \mathrm{NE}\left(\mathrm{G}_{f}\right)$

$$
\operatorname{PoA}(f)=\inf _{\mathrm{G}_{f}: \# \text { agents } \leq M} \frac{\min _{a \in \operatorname{NE}\left(\mathrm{G}_{f}\right)} W(a)}{W\left(a_{\mathrm{opt}}\right)} \leq 1
$$

$\operatorname{PoA}(f)$ is the approx. ratio of any equilibrium-computing algorithm

Theorem (Characterizing PoA)

$\operatorname{PoA}(f)$ is the solution to a tractable $L P$ in 2 variables, $\mathcal{O}\left(M^{2}\right)$ constraints
$\operatorname{PoA}(f)$ is the solution to a tractable LP in 2 variables, $\mathcal{O}\left(M^{2}\right)$ constraints

$$
\operatorname{PoA}(f)=\frac{1}{W^{\star}}
$$

Theorem (Characterizing PoA)

$\operatorname{PoA}(f)$ is the solution to a tractable LP in 2 variables, $\mathcal{O}\left(M^{2}\right)$ constraints

$$
\operatorname{PoA}(f)=\frac{1}{W^{\star}}
$$

$$
W^{\star}=\inf _{\lambda \in \mathbb{R} \geq 0, \mu \in \mathbb{R}} \mu
$$

s.t. $\mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+$

$$
+\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0
$$

$$
\forall(a, x, b) \in \mathcal{I} \subset\{0, \ldots, M\}^{3}
$$

$\operatorname{PoA}(f)$ is the solution to a tractable $L P$ in 2 variables, $\mathcal{O}\left(M^{2}\right)$ constraints

$$
\begin{gathered}
\operatorname{PoA}(f)=\frac{1}{W^{\star}} \\
W^{\star}=\quad \inf _{\lambda \in \mathbb{R}_{\geq 0, \mu \in \mathbb{R}}} \mu \\
\text { s.t. } \quad \mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+ \\
\\
\\
\quad+\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0 \\
\quad \forall(a, x, b) \in \mathcal{I} \subset\{0, \ldots, M\}^{3}
\end{gathered}
$$

Corollary Optimizing PoA

Determining $f \in \mathbb{R}_{\geq 0}^{M}$ maximizing $\operatorname{PoA}(f)$ is a tractable linear program
$\operatorname{PoA}(f)$ is the solution to a tractable $L P$ in 2 variables, $\mathcal{O}\left(M^{2}\right)$ constraints

$$
\begin{aligned}
& \operatorname{PoA}(f)=\frac{1}{W^{\star}} \\
& W^{\star}=\min _{f \in \mathbb{R}_{\geq 0}^{M} \lambda \in \mathbb{R} \geq 0, \mu \in \mathbb{R}} \inf \mu \\
& \text { s.t. } \mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+ \\
& \quad+\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0 \\
& \quad \forall(a, x, b) \in \mathcal{I} \subset\{0, \ldots, M\}^{3}
\end{aligned}
$$

Corollary Optimizing PoA

Determining $f \in \mathbb{R}_{\geq 0}^{M}$ maximizing $\operatorname{PoA}(f)$ is a tractable linear program
$\operatorname{PoA}(f)$ is the solution to a tractable $L P$ in 2 variables, $\mathcal{O}\left(M^{2}\right)$ constraints

$$
\begin{aligned}
& \operatorname{PoA}(f)=\frac{1}{W^{\star}} \\
& W^{\star}=\min _{f \in \mathbb{R}_{\geq 0}^{M} \lambda \in \mathbb{R} \geq 0, \mu \in \mathbb{R}} \inf \mu \\
& \text { s.t. } \quad \mathbb{1}_{\{b+x \geq 1\}} w(b+x)-\mu \mathbb{1}_{\{a+x \geq 1\}} w(a+x)+ \\
& \quad+\lambda[a f(a+x) w(a+x)-b f(a+x+1) w(a+x+1)] \leq 0 \\
& \quad \forall(a, x, b) \in \mathcal{I} \subset\{0, \ldots, M\}^{3}
\end{aligned}
$$

Corollary Optimizing PoA

Determining $f \in \mathbb{R}_{\geq 0}^{M}$ maximizing $\operatorname{PoA}(f)$ is a tractable linear program

Back to the main result

Example:

- \# agents ≤ 40

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0.2$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0.4$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0.6$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=0.8$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=1$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=1$

Back to the main result

Example:

- \# agents ≤ 40
$-w(j)=j^{d}, d=1$

Conclusions and Outlook

Conclusions and Outlook

Aggregative games
\triangleright Convergence between Nash and Wardrop
\triangleright Equilibrium efficiency

Conclusions and Outlook

Aggregative games
\triangleright Convergence between Nash and Wardrop
\triangleright Equilibrium efficiency

Combinatorial allocation

\triangleright GMMC problems and utility design approach
\triangleright Characterization and optimization of PoA

Conclusions and Outlook

Aggregative games
\triangleright Convergence between Nash and Wardrop
\triangleright Equilibrium efficiency
\triangleright Stochasticity and data

Combinatorial allocation

\triangleright GMMC problems and utility design approach
\triangleright Characterization and optimization of PoA

Conclusions and Outlook

Aggregative games
\triangleright Convergence between Nash and Wardrop
\triangleright Equilibrium efficiency
\triangleright Stochasticity and data

Combinatorial allocation
\triangleright GMMC problems and utility design approach
\triangleright Characterization and optimization of PoA
\triangleright Submodular maximization

Acknowledgment to collaborators

Prof. J. Lygeros

Dr. B. Gentile

R. Chandan

Prof. J.R. Marden

Dr. F. Parise

G. Burger

Prof. M. Kamgarpour

B. Ogunsola

Publications - part 1 of 2

[L-CSS18] D. Paccagnan, F. Parise and J. Lygeros. "On the Efficiency of Nash Equilibria in Aggregative Charging Games". IEEE Control Systems Letters, 2018.
[TAC18a] D. Paccagnan^, B. Gentile^, F. Parise^, M. Kamgarpour, and J. Lygeros. "Nash and Wardrop equilibria in aggregative games with coupling constraints". IEEE Transactions on Automatic Control, 2018.
[CPS18] B. Gentile^, F. Parise^, D. Paccagnan ${ }^{\star}$, M. Kamgarpour and J. Lygeros. "A game theoretic approach to decentralized charging of plug-in electric vehicles". Challenges in Engineering and Management of Cyber-Physical Systems, River Publishers, 2018.
[CDC17] B. Gentile, D. Paccagnan, B. Ogunsola and J. Lygeros. "A Novel Concept of Equilibrium Over a Network". IEEE Conference on Decision and Control, 2017.
[IFAC17] G. Burger, D. Paccagnan, B. Gentile, and J. Lygeros. "Guarantees of convergence to a dynamic user equilibrium for a network of parallel roads". IFAC World Congress, 2017.
[CDC16] D. Paccagnan ${ }^{\star}$, B. Gentile^, F. Parise^, M. Kamgarpour, and J. Lygeros. "Distributed computation of generalized Nash equilibria in quadratic aggregative games with affine coupling constraints". IEEE Conference on Decision and Control, 2016.
[ECC16] D. Paccagnan, M. Kamgarpour, and J. Lygeros. "On Aggregative and Mean Field Games with Applications to Electricity Markets". European Control Conference, 2016.

Publications - part 2 of 2

[TAC18b] D. Paccagnan and J.R. Marden. "The Importance of System-Level Information in Multiagent Systems Design: Cardinality and Covering Problems". IEEE Transactions on Automatic Control, 2018.
[J18a] D. Paccagnan, R. Chandan and J.R. Marden. "Distributed resource allocation through utility design - Part I: optimizing the performance certificates via the price of anarchy". Submitted; arXiv:1807.01333, 2018.
[J18b] D. Paccagnan and J.R. Marden. "Distributed resource allocation through utility design - Part II: applications to submodular, supermodular and set covering problems". Submitted; arXiv:1807.01343, 2018.
[J18c] V. Ramaswamy, D. Paccagnan and J.R. Marden. "Multiagent Coverage Problems: The Trade-off Between Anarchy and Stability". Submitted; arXiv:1710.01409, 2017.
[ALL17] D. Paccagnan and J.R. Marden. "The Risks and Rewards of Conditioning Noncooperative Designs to Additional Information". Allerton Conference on Communication, Control, and Computing, 2017.
[CDC15] D. Paccagnan, M. Kamgarpour, and J. Lygeros. "On the Range of Feasible Power Trajectories for a Population of Thermostatically Controlled Loads". IEEE Conference on Decision and Control, 2015.
[PLANS14] M.J. Joergensen, D. Paccagnan, N.K. Poulsen, and M.B. Larsen. "IMU Calibration and Validation in a Factory, Remote on Land and at Sea". IEEE Position Location and Navigation Symposium, 2014.

