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PhD research overview

Aggregative games

. Large population, algorithms
[TAC18a]

. Equilibrium efficiency
[L-CSS18], [CDC18]

. Algorithms and applications
[CDC16], [ECC16], [CPS18]

. Traffic and Inertial equilibria
[IFAC17], [CDC17]

Combinatorial allocation

. Optimal utility design
[Submitted, J18a]
[Submitted, J18b]

. Role of information
[TAC18b]
[Allerton17]

. Worst vs best perf. tradeoff
[Submitted, J18c]

Others [CDC15], [PLANS14]
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Aggregative games

- Introduction

- Convergence between Nash and Wardrop

- Efficiency of equilibria
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Aggregative games

players: i ∈ {1, . . . ,M}

constraints: x i ∈ X i ⊆ Rn

cost: J i (x i , )

σ(x) =
1

M

M∑
i=1

x i

Aggregative game:

Nash equilibrium

J i (x̂ i ,�(x̂))  J i (x i ,�(x i , x̂�i ))

Wardrop equilibrium

J i (x̄ i ,�(x̄))  J i (x i ,�(x̄))

Strong monotonicity condition:

rx [

rxi J i (x i ,�(x))

]Ni=1 � ↵INn

Under strong monotonicity and uniform Lipschitzianity:
kx̂ � x̄k  constp

N

3/ 7

N agents
x i 2 Xi ⇢ Rn

J i (x i ,�(x))

demand-response energy markets smart urban mobility

identical replicas [1] heterogeneous new agents

[1] Haurie, Marcotte “On the relationship between Nash-Cournot and Wardrop equilibria” (1985).
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Two equilibrium notions

x̂ Nash equilibrium

J i (x̂ i , σ(x̂)) ≤ J i (x i , σ(x i , x̂−i ))

x̄ Wardrop equilibrium

J i (x̄ i , σ(x̄)) ≤ J i (x i , σ(x̄))

= x i

M + 1
M

∑
j 6=i x̂

j = 1
M

∑
j x̄

j

What is the relation between x̂ and x̄?

Nash operator

F̂ (x) = [∇x i J
i (x i , σ(x))]Mi=1

Wardrop operator

F̄ (x) = [∇x i J
i (x i , z)|z=σ(x)]Mi=1

6



Two equilibrium notions

x̂ Nash equilibrium

J i (x̂ i , σ(x̂)) ≤ J i (x i , σ(x i , x̂−i ))

x̄ Wardrop equilibrium

J i (x̄ i , σ(x̄)) ≤ J i (x i , σ(x̄))

= x i

M + 1
M

∑
j 6=i x̂

j

= 1
M

∑
j x̄

j

What is the relation between x̂ and x̄?

Nash operator

F̂ (x) = [∇x i J
i (x i , σ(x))]Mi=1

Wardrop operator

F̄ (x) = [∇x i J
i (x i , z)|z=σ(x)]Mi=1

6



Two equilibrium notions

x̂ Nash equilibrium

J i (x̂ i , σ(x̂)) ≤ J i (x i , σ(x i , x̂−i ))

x̄ Wardrop equilibrium

J i (x̄ i , σ(x̄)) ≤ J i (x i , σ(x̄))

= x i

M + 1
M

∑
j 6=i x̂

j = 1
M

∑
j x̄

j

What is the relation between x̂ and x̄?

Nash operator

F̂ (x) = [∇x i J
i (x i , σ(x))]Mi=1

Wardrop operator

F̄ (x) = [∇x i J
i (x i , z)|z=σ(x)]Mi=1

6



Two equilibrium notions

x̂ Nash equilibrium

J i (x̂ i , σ(x̂)) ≤ J i (x i , σ(x i , x̂−i ))

x̄ Wardrop equilibrium

J i (x̄ i , σ(x̄)) ≤ J i (x i , σ(x̄))

= x i

M + 1
M

∑
j 6=i x̂

j = 1
M

∑
j x̄

j

What is the relation between x̂ and x̄?

Nash operator

F̂ (x) = [∇x i J
i (x i , σ(x))]Mi=1

Wardrop operator

F̄ (x) = [∇x i J
i (x i , z)|z=σ(x)]Mi=1

easier to study

6



Two equilibrium notions

x̂ Nash equilibrium

J i (x̂ i , σ(x̂)) ≤ J i (x i , σ(x i , x̂−i ))

x̄ Wardrop equilibrium

J i (x̄ i , σ(x̄)) ≤ J i (x i , σ(x̄))

= x i

M + 1
M

∑
j 6=i x̂

j = 1
M

∑
j x̄

j

What is the relation between x̂ and x̄?

Nash operator

F̂ (x) = [∇x i J
i (x i , σ(x))]Mi=1

Wardrop operator

F̄ (x) = [∇x i J
i (x i , z)|z=σ(x)]Mi=1

easier to study

6



Two equilibrium notions

x̂ Nash equilibrium

J i (x̂ i , σ(x̂)) ≤ J i (x i , σ(x i , x̂−i ))

x̄ Wardrop equilibrium

J i (x̄ i , σ(x̄)) ≤ J i (x i , σ(x̄))

= x i

M + 1
M

∑
j 6=i x̂

j = 1
M

∑
j x̄

j

What is the relation between x̂ and x̄?

Nash operator

F̂ (x) = [∇x i J
i (x i , σ(x))]Mi=1

Wardrop operator

F̄ (x) = [∇x i J
i (x i , z)|z=σ(x)]Mi=1

easier to study

6



Two equilibrium notions

x̂ Nash equilibrium

J i (x̂ i , σ(x̂)) ≤ J i (x i , σ(x i , x̂−i ))

x̄ Wardrop equilibrium

J i (x̄ i , σ(x̄)) ≤ J i (x i , σ(x̄))

= x i

M + 1
M

∑
j 6=i x̂

j = 1
M

∑
j x̄

j

What is the relation between x̂ and x̄?

Nash operator

F̂ (x) = [∇x i J
i (x i , σ(x))]Mi=1

Wardrop operator

F̄ (x) = [∇x i J
i (x i , z)|z=σ(x)]Mi=1

easier to study

6



Main result I

Theorem (Convergence for large M) [TAC18a]

Lipschitzianity of J i , boundedness of X i , ∇x F̂ (x) � αI or ∇x F̄ (x) � αI ,

||x̂ − x̄ || ≤ const/
√
M

0 100 200 300 400 500 600 700 800
0

0.03

0.06

0.09

0.12

0.15

Population size M

Distance

‖σ(x̂)− σ(x̄)‖
1/
√
M

Consequences:
– equilibrium computation (algorithms)
– equilibrium efficiency
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Equilibrium efficiency: electric vehicle charging

- A fleet of EVs to recharge

- Each vehicle min bill in [1, n]

- Charging requirements

players: i ∈ {1, . . . ,M}
cost of i : p(σ(x) + d)>x i

constr: x i ∈ X i

System level objective

- Minimize congestion min
x∈X

Js(x) = p(σ(x)+d)>(σ(x)+d)

How much does selfish behaviour degrade the performance?

PoA =
maxx∈NE(G) Js(x)

Js(xopt)

≥ 1

8
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How much does selfish behaviour degrade the performance?

PoA =
maxx∈NE(G) Js(x)

Js(xopt)

≥ 1
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Main result II

Theorem (Equilibrium efficiency) [L-CSS18]

Assume sufficient regularity
Assume p(z + d) = [g(z1 + d1); . . . ; g(zn + dn)], g : R≥0 → R≥0

. If g is a pure monomial

=⇒ WE are efficient for any M
=⇒ NE are efficient for large M

1 ≤ PoA ≤ 1 + const/
√
M

. If g is not a pure monomial =⇒ there exists inefficient instances
(both NE/WE)
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PhD research overview

Aggregative games

. Large population, algorithms
[TAC18a]

. Equilibrium efficiency
[L-CSS18], [CDC18]

. Algorithms and applications
[CDC16], [ECC16]

. Traffic and Inertial equilibria
[IFAC 17], [CDC17]

Combinatorial allocation

. Optimal utility design
[Submitted, J18a]
[Submitted, J18b]

. Role of information
[TAC18b]
[Allerton17]

. Worst vs best perf. tradeoff
[Submitted, J18c]

Others [CDC15], [PLANS14]
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Combinatorial allocation

- Introduction

- GMMC problems are intractable

- Utility design approach and performance guarantees
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Combinatorial resource allocation

. a set of resources

. a set of agents

Goal: assign resources to agents to maximize a given welfare function

About 548.000.000 results (0,59 seconds) 
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CHF 99,33
€ 86,03
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By Google
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Free shipping
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sneakers - ...
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Free shipping
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Running Shoes - Runner's World
https://www.runnersworld.com/running-shoes/
Black Running Shoes You'll Want to Wear On the Run and Beyond. Black is always in style, and these
kicks combine top-notch performance with street-savvy ...
The Best Running Shoes · The 7 Best Running Shoes ... · Pronation, Explained

More places

Rating Hours

Och Sport
4.1  (44) · Running Store
Bahnhofstrasse 56 · 044 215 21 21
Open ⋅ Closes 7PM

On AG
3.5  (8) · Manufacturer
Pfingstweidstrasse 106 · 044 225 15 55

"Best running company in the world based in Zurich!"
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Stadelhoferstrasse 8 · 044 252 50 77
Open ⋅ Closes 8PM
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https://www.on-running.com/en-ch/
Test shoes or Performance Running Gear commitment free. Love them ... Your perfect partner in the
world's lightest fully-cushioned shoe for Running Remixed.

Mens Running Shoes & Running Clothing for Men | On
https://www.on-running.com/en-ch/t/mens
Shop On's collection of men's running shoes & running clothes. Made with innovative technology for
unparalleled comfort. Free shipping & returns.

Men's Running Shoes | Running Warehouse
https://www.runningwarehouse.com/mens-running-shoes.html
Find your favorite running shoes at Running Warehouse! Huge selection and top-rated customer
service. Free 2 day shipping & free returns on all orders.
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from the best brands and top styles available on the ...

Running | Clothing, Shoes, Trainers | Accessories, Watches ...
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leading brands like Nike and Karrimor. Order today!

616 Best Running Shoes (June 2018) | RunRepeat
https://runrepeat.com/ranking/rankings-of-running-shoes
All 618 running shoes ranked by the best – based on reviews from 2351 experts & runners. The
ultimate list. Updated June 2018!

Men's Running Shoes. Nike.com
https://store.nike.com/us/en_us/pw/mens-running-shoes/7puZ8yzZoi3
Dominate your run and find the right fit for your running style with the latest men's running shoes from
Nike. Enjoy free shipping and returns with NikePlus.
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Sneakers are shoes primarily designed for sports or other forms of
physical exercise, but which are now also often used for everyday wear.
Wikipedia
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Product type: Shoe

People also search for
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View 10+ more
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Generalized Multiagent Maximum Coverage (GMMC)

resources: r ∈ R, vr ≥ 0

agents: i ∈ {1, . . . ,M}
allocations: ai ∈ Ai ⊆ 2R

welfare: W (a) =
∑

r∈∪iai
vrw(|a|r ) w : N→ R≥0

System-level objective: maxa∈AW (a)

Hardness and approximability

. Reduces to max-cover for w(j) = 1, Ai = Aj

. NP-hard

. If w is concave and Ai = Aj , best poly-algorithm achieves 1− c/e
and is centralized, c = 1− [w(M)− w(M − 1)]
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Utility design and approximation ratio

ui (ai , a−i )

=
∑
r∈ai

vrw(|a|r )f (|a|r ) f : N→ R≥0 (distributed)

How to design f ? Maximize worst-case performance

Given instance I, fix f → game Gf = {I, f } → NE(Gf )

PoA(f ) =

inf
Gf : #agents ≤M

mina∈NE(Gf ) W (a)

W (aopt)
≤ 1

PoA(f ) is the approx. ratio of any equilibrium-computing algorithm
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Theorem (Characterizing PoA) [J18a], [J18b]

PoA(f ) is the solution to a tractable LP in 2 variables, O(M2) constraints

PoA(f ) =
1

W ?

W ? =

min
f ∈RM

≥0

inf
λ∈R≥0, µ∈R

µ

s.t. 1{b+x≥1}w(b + x)− µ1{a+x≥1}w(a + x)+

+ λ[af (a + x)w(a+x)− bf (a + x + 1)w(a + x + 1)] ≤ 0

∀(a, x , b) ∈ I ⊂ {0, . . . ,M}3

Corollary Optimizing PoA

Determining f ∈ RM
≥0 maximizing PoA(f ) is a tractable linear program
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Conclusions and Outlook

Aggregative games
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