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Abstract

In this paper, we study the problem of exchanging knowl-
edge between a source and a target knowledge base (KB),
connected through mappings. Differently from the tradi-
tional database exchange setting, which considers only the
exchange of data, we are interested in exchanging implicit
knowledge. As representation formalism we use Description
Logics (DLs), thus assuming that the source and target KBs
are given as a DL TBox+ABox, while the mappings have the
form of DL TBox assertions. We study the problem of trans-
lating the knowledge in the source KB according to these
mappings. We define a general framework of KB exchange,
and address the problems of representing implicit source in-
formation in the target, and of computing different kinds of
solutions, i.e., target KBs with specified properties, given a
source KB and a mapping. We develop first results and study
the complexity of KB exchange for DL-LiteRDFS , a DL corre-
sponding to the FOL fragment of RDFS, and for DL-LiteR.

1 Introduction
In data exchange, data structured under one schema (called
source schema) must be restructured and translated into an
instance of a different schema (called target schema) as it is
specified by a mapping from the source schema to the target
schema (Fagin et al. 2005). Such a problem has been stud-
ied extensively in recent years, under various choices for the
languages used to specify the source and target schema, and
the mappings (Barceló 2009). While incomplete information
in this setting is introduced by the mapping layer (see also
(Libkin and Sirangelo 2011)), one fundamental assumption
in the works on data exchange is that the source is a (com-
pletely specified) database.

In this paper, we go beyond this setting by following
the line of the work in (Arenas, Pérez, and Reutter 2011),
where a general framework for data exchange is proposed,
in which the source data may be incompletely specified, and
thus (possibly infinitely) many source instances are implic-
itly represented. We refine that framework to the case where
source and target are represented by description logic (DL)
knowledge bases (KBs) constituted by a TBox (implicit in-
formation) and an ABox (explicit information), and where
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mappings are sets of DL inclusions. In such a setting, in or-
der to minimize the exchange (and hence transfer and ma-
terialization) of explicit (i.e., ABox) information, we are in-
terested in computing translations, from now on referred to
as solutions, that contain as much implicit knowledge as
possible. This leads us to define the novel notion of rep-
resentability, which helps us in understanding the capacity
of solutions to transfer implicit knowledge. Checking repre-
sentability and computing a representation of a source TBox
under a mapping turn out to be crucial problems in the con-
text of knowledge base exchange.

Furthermore, we argue that the right notion of solution, on
which to base our investigations, should not be the standard
one based on the correspondence between models of source
and target KBs. Indeed, we show that such solutions present
severe limitations since, on the one hand, they do not allow
for the use of implicit target information to represent implicit
source information, and on the other hand, they may lead to
exponentially large target ABoxes. To overcome these draw-
backs, we introduce the weaker notion of Q-solution, for a
query languageQ, which is based on the correspondence be-
tween answers to queries in Q over source and target KBs.
Notice that such a notion, though weaker, is in line with the
objective of (data and) knowledge base exchange of provid-
ing in the target sufficient information to answer queries in
Q that could also be posed over the source.

We then develop results and techniques for KB exchange
and for the Q-representability problem in the case where
Q are unions of conjunctive queries (UCQs), and where
KBs are expressed in DL-LiteRDFS , a member of the DL-Lite
family (Calvanese et al. 2007) that corresponds to the FOL
fragment of RDFS (Brickley and Guha 2004), the widely
adopted standard Semantic Web language.

2 Preliminaries
The DLs of the DL-Lite family (Calvanese et al. 2007) are
characterized by the fact that reasoning can be done in poly-
nomial time, and that data complexity of reasoning and con-
junctive query answering is in AC0. Here, we adopt DL-
LiteR, a prominent member of the DL-Lite family, where
roles R are either atomic roles, denoted P , or their inverses
P−, and concepts B are either atomic, denoted A, or of the
form ∃R. In the following, we use N to denote either a con-
cept or a role. A DL-LiteR TBox is constituted by a finite set



of concept and role inclusions N1 v N2, and of concept and
role disjointness assertions N1 v ¬N2. We call DL-LiteRDFS

the fragment of DL-LiteR in which there are no disjointness
assertions and only atomic concepts and atomic roles in the
right-hand side of inclusions. ABoxes, KBs, and their se-
mantics are defined as usual, see (Calvanese et al. 2007) for
details. We just remark that we adopt the standard name as-
sumption, that is, we assume given a fixed infinite set U of
individuals, and we assume that for every interpretation I, it
holds that ∆I ⊆ U and aI = a for every individual a. This
also implies that interpretations satisfy the unique name as-
sumption over individuals.

A signature Σ is a set of concept and role names. An inter-
pretation I is said to be an interpretation of Σ if it is defined
exactly on the concept and role names in Σ. Given a KB
K, the signature Σ(K) of K is the alphabet of concept and
role names occurring in K, and K is said to be defined over
(or simply, over) a signature Σ if Σ(K) ⊆ Σ (and likewise
for a TBox T , an ABox A, and a concept or role inclusion
N1 v N2). A k-ary query q over a signature Σ, with k ≥ 0,
is a function that maps every interpretation 〈∆I , ·I〉 of Σ
into a k-ary relation qI ⊆ ∆k.

As our main query formalism we adopt unions of con-
junctive queries (UCQs), with certain answer semantics. In
particular, given a query q and a knowledge base K, term
cert(q,K) is used to denote the set of certain answers for q
over K. Note that in DL-LiteR certain answers can be char-
acterized through the notion of chase (for more details see,
e.g., (Calvanese et al. 2007)).

3 Exchanging Knowledge Bases
In this section, we introduce the knowledge exchange frame-
work used in the paper. The starting point to define this
framework is the notion of mapping. Assume that Σ1, Σ2

are signatures with no concepts or roles in common. Then
we say that an inclusion N1 v N2 is an inclusion from Σ1 to
Σ2, if N1 is a concept or a role over Σ1 and N2 is a concept
or a role over Σ2. For a DL L (e.g., DL-LiteR), we define an
L-mapping (or just mapping, when L is clear from the con-
text) as a tupleM = (Σ1,Σ2, T12), where T12 is a TBox in
L consisting of concept and role inclusions from Σ1 to Σ2.

Let M = (Σ1,Σ2, T12) be a mapping. Intuitively, M
specifies how a KB over the vocabulary Σ1 should be trans-
lated into a KB over the vocabulary Σ2. More specifically,
given an interpretation I1 of Σ1 and an interpretation I2 of
Σ2, pair (I1, I2) satisfies TBox T12, denoted by (I1, I2) |=
T12, if for each concept inclusion C1 v C2 ∈ T12, it holds
that C1

I1 ⊆ C2
I2 , and for each role inclusion Q1 v Q2 ∈

T12, it holds that Q1
I1 ⊆ Q2

I2 . Moreover, given an in-
terpretation I of Σ1, SATM(I) is defined as the set of in-
terpretations J of Σ2 such that (I,J ) |= T12, and given
a set X of interpretations of Σ1, SATM(X ) is defined as
SATM(X ) =

⋃
I∈X SATM(I). This notion of satisfaction

is the key ingredient in the definition of the notion of solu-
tion under a mapping, which is a reformulation of the con-
cept of solution for representation systems proposed in (Are-
nas, Pérez, and Reutter 2011).

Definition 1. LetM = (Σ1,Σ2, T12) be a mapping, K1 a

KB over Σ1, and K2 a KB over Σ2. Then K2 is a solution
for K1 underM if MOD(K2) ⊆ SATM(MOD(K1)).

In other words, a target KB K2 is a solution for a source
KB K1 under a mapping M if for every model I2 of K2,
there exists a model I1 of K1 such that (I1, I2) |= T12.

Next we introduce the notion of universal solution, which
is a simple extension of the concept of solution introduced in
Definition 1, based on the notion of universal solution pro-
posed in (Arenas, Pérez, and Reutter 2011).

Definition 2. Let M = (Σ1,Σ2, T12) be a mapping,
K1 a KB over Σ1, and K2 a KB over Σ2. Then K2 is
a universal solution for K1 under M if MOD(K2) =
SATM(MOD(K1)).

In this definition, KBK2 is considered a good solution for
KBK1 under mappingM as the models ofK2 exactly corre-
spond to the valid translations of the models ofK1 according
toM. We illustrate Definitions 1 and 2 in an example.

Example 1. Let M = (Σ1,Σ2, T12), where Σ1 =
{A1(·), B1(·)}, Σ2 = {A2(·), B2(·)}, and T12 = {A1 v
A2, B1 v B2}. Furthermore, assume that K1 = 〈T1,A1〉,
where T1 = {B1 v A1} and A1 = {B1(a)}. Then the KB
K2 = 〈T2,A2〉, where T2 = ∅ and A2 = {B2(a), A2(a)},
is a universal solution for K1 underM.

In the data exchange scenario (Fagin et al. 2005; Barceló
2009), as well as in the knowledge exchange scenario (Are-
nas, Pérez, and Reutter 2011), the problems of defining a
notion of good solution and of finding algorithms to mate-
rialize them are arguably the most important problems to
solve. When finding a notion of good solution in the con-
text of knowledge exchange, one has to take into consider-
ation the fact that good solutions should transfer as much
implicit knowledge as possible in this scenario. To this end,
next we define two properties that will help us to understand
the capacity of universal solutions, and also of the query-
languages based notions of solutions that will be introduced
in Section 5, to transfer implicit knowledge. In what follows,
we use chaseT (A) to denote the chase of A w.r.t. T (as de-
fined in (Calvanese et al. 2007)), and we use chaseT ,Σ(A)
to denote the projection of chaseT (A) on the signature Σ.

Definition 3. Let L be a DL, M = (Σ1,Σ2, T12) an L-
mapping, and T1 an L-TBox over Σ1. Then,

• T1 is representable under M if there exists an L-TBox
T2 over Σ2, called a representation of T1 underM, such
that for every ABox A1 over Σ1, if 〈T1 ∪ T12,A1〉 is con-
sistent, then 〈T2, chaseT12,Σ2(A1)〉 is a universal solution
for 〈T1,A1〉 underM.

• T1 is weakly representable under M if there exists a
mapping M? = (Σ1,Σ2, T ?

12) such that T12 ⊆ T ?
12,

T1 ∪ T12 |= T ?
12, and T1 is representable underM?.

Some remarks about the definition of representability
need to be made. First, notice that in the definition of repre-
sentability, target TBox T2 depends only on the source TBox
T1 and the mappingM. Thus, representability of T1 would
mean that we can construct the TBox of a solution by con-
sidering only T1 andM, independently of the source ABox.
Second, our definition of representability takes into account



that the implicit knowledge of the source TBox T1 is repre-
sented “entirely” in the TBox of the solution, so that the only
knowledge that remains to be transferred via the assertions
in the mapping M is the explicit knowledge of the source
ABox. Third, notice that in the computation of the universal
solution 〈T2, chaseT12,Σ2

(A1)〉 from 〈T1,A1〉, the chase is
used to translate the input ABox A1 according to the asser-
tions in M. The reason for this is that the chase has been
shown to be the right tool to compute solutions in the sce-
nario where one is given explicit source data (a relational
database or an ABox) and a mapping (Fagin et al. 2005;
Barceló 2009). Fourth, notice that we only consider in the
definition of representability source ABoxes A1 such that
〈T1∪T12,A1〉 is consistent, that is, we consider only knowl-
edge bases that can be effectively translated through the
mapping M. Finally, the main goal of this paper is to find
polynomial time algorithms to solve the representability
problem, as the existence of such algorithms would allow
one to materialize good solutions of polynomial size, that is,
solutions that can be effectively used in practice.

4 Are Universal Solutions Appropriate?
Universal solutions are the preferred solutions to material-
ize when exchanging relational databases (Fagin et al. 2005;
Fagin, Kolaitis, and Popa 2005; Barceló 2009), also in the
case of relational databases with incomplete information
(Arenas, Pérez, and Reutter 2011). However, universal solu-
tions were not thought to take into consideration source data
including implicit knowledge (in the form of TBoxes), so it
is natural to ask whether they are appropriate for transferring
this type of knowledge. In this section, we provide evidence
that universal solutions, as defined in Section 3 and (Arenas,
Pérez, and Reutter 2011), might not be appropriate in this
scenario because of their limited capacity to represent im-
plicit knowledge, and the high cost of computing them. We
start with a motivating example exhibiting these limitations.
Example 2. LetM = (Σ1,Σ2, T12) and K1 = 〈T1,A1〉 be
as in Example 1. Furthermore, assume that K′2 = 〈T ′2 ,A′2〉,
where T ′2 = {B2 v A2} and A′2 = {B2(a)}. Then we have
that K′2 is a solution for K1 under M. However, we also
have that K′2 is not a universal solution for K1 underM. In
fact, if I1 is an interpretation of Σ1 such that ∆I1 = {a},
A1
I1 = {a} and B1

I1 = {a}, and I2 is an interpretation of
Σ2 such that ∆I2 = {a, b}, A2

I2 = {a} and B2
I2 = {a, b},

then we have that I1 is a model of K1 and (I1, I2) |= T12

and, therefore, I2 ∈ SATM(MOD(K1)). Thus, we conclude
that SATM(MOD(K1)) 6= MOD(K′2) as I2 is not a model
of K′2 since it does not satisfy inclusion B2 v A2.

In Examples 1 and 2, a case is shown where universal so-
lutions are not appropriate to represent the implicit source
knowledge, as we are only able to construct a universal so-
lution with an empty TBox. In the following proposition, we
prove that this is not an isolated phenomenon. In this propo-
sition, we say that a TBox T over a signature Σ is trivial if
for every interpretation I of Σ, it holds that I |= T (or, in
other words, if T is equivalent to the empty set of formulas).
Proposition 4.1. Let M = (Σ1,Σ2, T12) be a DL-LiteR-
mapping, K1 = 〈T1,A1〉 a DL-LiteR KB over Σ1, and

K2 = 〈T2,A2〉 a DL-LiteR KB over Σ2. If 〈T1 ∪T12,A1〉 is
consistent and K2 is a universal solution for K1 underM,
then T2 is a trivial TBox.

This proposition shows that universal solutions are not ap-
propriate to transfer implicit knowledge if DL-LiteR KBs
and mappings are considered, as the TBox in the generated
universal solutions is trivial.

We now turn to the problem of computing universal so-
lutions in the context of knowledge exchange, that is, we
consider the problem of computing, given an L-mapping
M = (Σ1,Σ2, T12) and an L KB K1 over Σ1, an L KB
K2 over Σ2 such thatK2 is a universal solution forK1 under
M. Our main goal here is to show that this problem can-
not be solved efficiently for DL-LiteR KBs and mappings,
essentially because no implicit knowledge can be used in
universal solutions (see Proposition 4.1).

Universal Solutions in DL-LiteRDFS . The chase has been
shown to be a powerful tool to compute universal solu-
tions in data exchange and knowledge exchange (Fagin et al.
2005; Arenas, Pérez, and Reutter 2011). For the case of DL-
LiteRDFS , the chase can also be used to compute universal
solutions. More specifically, given a DL-LiteRDFS -mapping
M = (Σ1,Σ2, T12) and a DL-LiteRDFS KB K1 = 〈T1,A1〉,
we have that chaseT1(A1) and chaseT12,Σ2(chaseT1(A1))
are finite sets of assertions, and, thus, they can be consid-
ered as ABoxes1. As a corollary of Theorem 8.11 in (Arenas,
Pérez, and Reutter 2011) we obtain the following result.
Proposition 4.2. LetM = (Σ1,Σ2, T12) be a DL-LiteRDFS -
mapping and K1 = 〈T1,A1〉 a DL-LiteRDFS KB over Σ1.
Then 〈∅, chaseT12,Σ2(chaseT1(A1))〉 is a universal solution
for K1 underM.

Thus, given that the chase can be computed in polyno-
mial time for DL-LiteRDFS (Calvanese et al. 2007), we obtain
as a corollary of Proposition 4.2 that the problem of com-
puting universal solutions for DL-LiteRDFS -mappings can be
solved in polynomial time. Moreover, we also obtain as a
corollary of Proposition 4.2 that every DL-LiteRDFS KB has
a polynomial-size universal solution under a DL-LiteRDFS -
mapping, which is a desirable condition in practice.

Universal Solutions in DL-LiteR. Unfortunately, allow-
ing for existentials on the right-hand side of concept inclu-
sions ruins the nice computational properties holding for
DL-LiteRDFS -mappings. In fact, for DL-LiteR, infinite sets
of assertions can be generated by the chase, which leads to
cases of mappings having source KBs without universal so-
lutions (recall that a solution is a KB, which by definition
must be finite). This is shown by the following example.
Example 3. Let M = (Σ1,Σ2, T12), where Σ1 =
{A(·), P (·, ·)}, Σ2 = {T (·, ·)}, and T12 = {P v T}. Fur-
thermore, assume that K1 = 〈T1,A1〉, where A1 = {A(a)}
and T1 = {A v ∃P, ∃P− v ∃P}. In this case, we
have that chaseT1(A1) contains an infinite path of the form
P (a, n1), P (n1, n2), P (n2, n3), . . ., where n1, n2, . . . is an
infinite sequence of pairwise distinct existentially implied

1Recall that ABoxes are assumed to be finite, while interpreta-
tions can be infinite.



objects. Thus, chaseT12,Σ2
(chaseT1(A1)) is the infinite path

T (a, n1), T (n1, n2), T (n2, n3), . . .. In this case, it follows
that if K2 is a DL-LiteR KB over Σ2, then K2 cannot be a
universal solution for K1 underM.

At this point it is natural to ask how expensive it is to
compute universal solutions. We show that universal solu-
tions can be of exponential size for the case of DL-LiteR-
mappings, thus indicating that it can be difficult to deal with
them in practice. In this proposition, |M| and |K| are used to
denote the sizes of a mappingM and a KB K, respectively.
Proposition 4.3. There exists a family of DL-LiteR-
mappings {Mn = (Σn

1 ,Σ
n
2 , T n

12)}n≥1 and a family of DL-
LiteR KBs {Kn}n≥1 such that every Kn is defined over Σn

1
(n ≥ 1), and the smallest universal solution for Kn under
Mn is of size 2Ω(|Mn|+|Kn|).

The exact complexity of computing universal solutions
for DL-LiteR mappings and KBs remains open.

5 Transferring Implicit Knowledge: Query
Languages to the Rescue

In Section 4, we have provided strong evidence that univer-
sal solutions are not appropriate in the context of knowledge
exchange, mainly because of their poor capacity to repre-
sent implicit knowledge. We show now that this limitation
can be overcome by simply parametrizing the notion of uni-
versal solution by a query language. In fact, we show that
the notion of representability defined in Section 3 can be
easily adapted to the new setting based on a query language,
thus providing a natural and useful notion of solution in the
context of knowledge exchange.

LetM be the mapping and K1, K2, K′2 the KBs shown in
Examples 1 and 2. In these examples, K′2 is not a universal
solution for K1 under M since inclusion B2 v A2 cannot
be deduced from the information in K1 and M. Or, more
formally, K′2 is not a universal solution as B2 v A2 is not
implied by 〈T1 ∪ T12,A1〉. However, K′2 can also be con-
sidered as a solution of K1 that is desirable to materialize,
as the implicit knowledge in K′2 (i.e., TBox T ′2 ) represents
the implicit knowledge in K1 (i.e., TBox T1), given the way
that concepts A1 and B1 have to be translated according to
mappingM. In fact, if one focuses on a particular query lan-
guage to compare the information in these two solutions, as
it has been done to solve some fundamental problems in data
exchange (Madhavan and Halevy 2003; Fagin et al. 2008;
Arenas et al. 2009), then one discovers that K′2 is as good as
K2 but with the advantage that K′2 represents knowledge in
a more compact way. In what follows, we introduce a new
class of good solutions that captures this intuition.
Definition 4. Let Q be a class of queries, M =
(Σ1,Σ2, T12) a mapping, K1 = 〈T1,A1〉 a KB over Σ1,
and K2 a KB over Σ2. Then K2 is said to be a Q-solution
for K1 under M if for every query q ∈ Q over Σ2,
cert(q, 〈T1∪T12,A1〉) ⊆ cert(q,K2). Moreover,K2 is said
to be a universal Q-solution for K1 under M if for every
query q ∈ Q over Σ2, cert(q, 〈T1∪T12,A1〉) = cert(q,K2).

Notably, for the widely used class UCQ of unions con-
junctive queries, we have in Examples 1 and 2 that both K2

and K′2 are universal UCQ-solutions for K1 underM.
The main goal when introducing universal Q-solutions is

to propose a natural notion of solution that overcomes the
limitations of universal solutions reported in Section 4. The
relationship between the different notions of solution that we
introduced is established in the following proposition.
Proposition 5.1. Let Q be a class of queries, M =
(Σ1,Σ2, T12) a mapping, K1 a KB over Σ1, and K2 a KB
over Σ2. If K2 is a (universal) solution for K1 under M,
then K2 is a (universal) Q-solution for K1 underM.

We can now adapt the notions of representability and
weak representability given in Definition 3 to the parame-
terized notion of solution introduced above.
Definition 5. Let Q be a class of queries, L a DL, M =
(Σ1,Σ2, T12) an L-mapping, and T1 an L-TBox over Σ1.
• T1 is Q-representable underM if there exists an L-TBox
T2 over Σ2, called a Q-representation of T1 under M,
such that for every ABox A1 over Σ1, if 〈T1 ∪ T12,A1〉 is
consistent, then 〈T2, chaseT12,Σ2(A1)〉 is a universal Q-
solution for 〈T1,A1〉 underM.

• T1 is weakly Q-representable under M if there exists a
mappingM? = (Σ1,Σ2, T ?

12) such that T12 ⊆ T ?
12, T1 ∪

T12 |= T ?
12, and T1 is Q-representable underM?.

We illustrate these notions in the following example.
Example 4. LetM = (Σ1,Σ2, T12) and K1 = 〈T1,A1〉 be
as in Examples 1 and 2. Then we have that T2 = {B2 v A2}
is a UCQ-representation of T1 underM.

On the other hand, if M′ = (Σ1,Σ2, T ′12) with T ′12 =
{A1 v A2}, then T1 is not UCQ-representable underM′:
let A′1 = {B1(a)}, then chaseT ′

12,Σ2
(A′1) = ∅ and for

no TBox T ′2 , 〈T ′2 , chaseT ′
12,Σ2

(A′1)〉 is a universal UCQ-
solution for 〈T1,A′1〉 under M′. However, T ?

12 = T ′12 ∪
{B1 v A2} witnesses that T1 is weakly UCQ-representable
underM′, as T ′12 ⊆ T ?

12, T1 ∪ T ′12 |= T ?
12, and T1 is UCQ-

representable underM? = (Σ1,Σ2, T ?
12) (the empty TBox

does the job).

6 UCQ-Representability for DL-LiteRDFS

We present now the results for the UCQ-representability
and weak UCQ-representability problems for the case where
TBoxes and mappings are expressed in DL-LiteRDFS .

We start by considering the decision problem associated
with UCQ-representability: Given a DL-LiteRDFS -mapping
M = (Σ1,Σ2, T12), a DL-LiteRDFS -TBox T1 over Σ1, and a
DL-LiteRDFS -TBox T2 over Σ2, check whether T2 is a UCQ-
representation of T1 underM, i.e., for each ABox A1 over
Σ1, 〈T2, chaseT12,Σ2

(A1)〉 is a universal UCQ-solution for
〈T1,A1〉 underM.

For a DL-LiteRDFS TBox T and a concept or role N , we
define the upward closure of N with respect to T as the set
UT (N) = {N ′ | N ′ is concept or role and T |= N v N ′},
and the strict closure Us

T (N) as UT (N) \ {N}. Then,
for a set N of concepts and roles we define UT (N) =⋃

N∈N UT (N), and its strict version Us
T (N). Notice that

both Us
T12(UT1(N)) and UT2(Us

M(N)) are sets over Σ2, for
each concept or role N over Σ1. We are ready to provide a
characterization of UCQ-representations.



Proposition 6.1. LetM = (Σ1,Σ2, T12) be a DL-LiteRDFS -
mapping, T1 a DL-LiteRDFS -TBox over Σ1, and T2 a DL-
LiteRDFS -TBox over Σ2. Then T2 is a UCQ-representation of
T1 underM iff Us

T12(UT1(N)) = UT2(Us
T12(N)), for each

concept or role N over Σ1.
The necessary and sufficient condition in Proposition 6.1

can be checked in polynomial time, as the implication prob-
lem for DL-LiteRDFS can be solved in polynomial time (Cal-
vanese et al. 2007). This characterization gives us a way
to construct an algorithm for checking representability of
T1 under M. The idea of this algorithm is to create the
“maximum” representation candidate and then to check
whether it is a UCQ-representation. If yes, then T1 is UCQ-
representable underM, otherwise it is not. The candidate T2

is obtained, by first collecting all inclusions over Σ2 in order
to satisfy the condition Us

T12(UT1(N)) ⊆ UT2(Us
T12(N)),

and then removing some of them to satisfy the opposite con-
dition Us

T12(UT1(N)) ⊇ UT2(Us
T12(N)).

Theorem 6.2. There exists a polynomial time algorithm
that, given a DL-LiteRDFS -mappingM = (Σ1,Σ2, T12) and
a DL-LiteRDFS -TBox T1 over Σ1, decides whether T1 is rep-
resentable underM.

Interestingly, when source TBoxes are expressed in DL-
LiteRDFS , they are always weakly representable by enriching
mappings as follows. Given a DL-LiteRDFS -mapping M =
(Σ1,Σ2, T12) and a DL-LiteRDFS -TBox T1 over Σ1, define
the enriched mapping M? = (Σ1,Σ2, T ?

12), where T ?
12 =

{N1 v N2 | N1 is over Σ1, N2 is over Σ2, and T1 ∪ T12 |=
N1 v N2}. It follows that T12 is contained in T ?

12 and T1 ∪
T12 |= T ?

12.
Theorem 6.3. Let M = (Σ1,Σ2, T12) be a DL-LiteRDFS -
mapping and T1 a DL-LiteRDFS TBox over Σ1. Then T1 is
UCQ-representable underM? and, thus, T1 is weakly UCQ-
representable underM.

7 Conclusions
In this paper, we have specialized the framework of KB
exchange proposed in (Arenas, Pérez, and Reutter 2011)
to the case of DLs, and introduced the novel problems
of representability and representability with respect to a
query language. We have studied KB exchange for DL-LiteR
and developed techniques for UCQ-representability for DL-
LiteRDFS . We are currently working on extending our results
to DL-LiteR, addressing also the problem of deciding the
existence of universal solutions in this case. Interesting di-
rections for future work are to study KB exchange and rep-
resentability for other DLs, e.g., those of the EL family and
(very) expressive DLs, and to address the problems studied
in data exchange, such as composition and inversion of map-
pings, in the setting of KB exchange. The precise connection
to conservative extensions remains also to be explored.
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