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Abstract

Ontology-based data access (OBDA) is a novel paradigm fa-
cilitating access to relational data, realized by linking data
sources to an ontology by means of declarative mappings.
DL-LiteR, which is the logic underpinning the W3C ontol-
ogy language OWL 2 QL and the current language of choice
for OBDA, has been designed with the goal of delegating
query answering to the underlying database engine, and thus
is restricted in expressive power. E.g., it does not allow one
to express disjunctive information, and any form of recur-
sion on the data. The aim of this paper is to overcome these
limitations of DL-LiteR, and extend OBDA to more expres-
sive ontology languages, while still leveraging the underlying
relational technology for query answering. We achieve this
by relying on two well-known mechanisms, namely conser-
vative rewriting and approximation, but significantly extend
their practical impact by bringing into the picture the map-
ping, an essential component of OBDA. Specifically, we de-
velop techniques to rewrite OBDA specifications with an ex-
pressive ontology to “equivalent” ones with a DL-LiteR on-
tology, if possible, and to approximate them otherwise. We
do so by exploiting the high expressive power of the mapping
layer to capture part of the domain semantics of rich ontology
languages. We have implemented our techniques in the pro-
totype system ONTOPROX, making use of the state-of-the-
art OBDA system ONTOP and the query answering system
CLIPPER, and we have shown their feasibility and effective-
ness with experiments on synthetic and real-world data.

1 Introduction
Ontology-Based Data Access (OBDA) is a popular para-
digm that enables end users to access data sources through
an ontology, abstracting away low-level details of the data
sources themselves. The ontology provides a high-level de-
scription of the domain of interest, and is semantically lin-
ked to the data sources by means of a set of mapping asser-
tions (Calvanese et al. 2009; Giese et al. 2015). Typically,
the data sources are represented as relational data, the ontol-
ogy is constituted by a set of logical axioms over concepts
and roles, and each mapping assertion relates an SQL query
over the database to a concept or role of the ontology.

As an example, consider a bank domain, where we can
specify that a checking account in the name of a person is a
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simple account by means of the axiom (expressed in descrip-
tion logic notation) CAcc u ∃inNameOf.Person v SAcc.
We assume that the information about the accounts and their
owners is stored in a databaseD, and that the ontology terms
CAcc, inNameOf, and Person are connected to D respec-
tively via the mapping assertions sql1(x)  CAcc(x),
sql2(x, y)  inNameOf(x, y) and sql3(x)  Person(x),
where each sql i is a (possibly very complex) SQL query
overD. Suppose now that the user intends to extract all sim-
ple accounts fromD. Formulating such a query directly over
D would require to know precisely how D is structured, and
thus could be complicated. Instead, exploiting OBDA, the
user can simply query the ontology with q(x) = SAcc(x),
and rely on the OBDA system to get the answers.

Making OBDA work efficiently over large amounts of
data, requires that query answering over the ontology is
first-order (FO)-rewritable1 (Calvanese et al. 2007; Artale
et al. 2009), which in turn limits the expressiveness of the
ontology language, and the degree of detail with which
the domain of interest can be captured. The current lan-
guage of choice for OBDA is DL-LiteR, the logic under-
lying OWL 2 QL (Motik et al. 2009), which has been specif-
ically designed to ensure FO-rewritability of query answer-
ing. Hence, it does not allow one to express disjunctive infor-
mation, or any form of recursion on the data (e.g., as result-
ing from qualified existentials on the left-hand side of con-
cept inclusions), since using such constructs in general cau-
ses the loss of FO-rewritability (Calvanese et al. 2013). For
this reason, in many situations the expressive power of DL-
LiteR is too restricted to capture real-world scenarios; e.g.,
the axiom in our example is not expressible in DL-LiteR.

The aim of this work is to overcome these limitations of
DL-LiteR by allowing the use of additional constructs in
the ontology. To be able to exploit the added value com-
ing from OBDA in real-world settings, an important re-
quirement is the efficiency of query answering, achieved
through a rewriting-based approach. This is only possible
for ontology languages that are FO-rewritable. Two gen-
eral mechanisms that have been proposed to cope with
computational complexity coming from high expressive-
ness of ontology languages, and that allow one to regain
FO-rewritability, are conservative rewriting (Lutz, Piro, and

1Recall that FO queries constitute the core of SQL.



Wolter 2011) and approximation (Ren, Pan, and Zhao 2010;
Console et al. 2014). Given an ontology in a powerful lan-
guage, in the former approach it is rewritten, when possible,
into an equivalent one in a restricted language, while in the
latter it is approximated, thus losing part of its semantics.

In this work, we significantly extend the practical impact
of both approaches by bringing into the picture the mapping,
an essential component of OBDA that has been ignored so
far. Indeed, it is a fairly expressive component of an OBDA
system, since it allows one to make use of arbitrary SQL
(hence FO) queries to relate the content of the data source
to the elements of the ontology. Hence, a natural question is
how one can use the mapping component to capture as much
as possible additional domain semantics, resulting in better
approximations or more cases where conservative rewritings
are possible, while maintaining a DL-LiteR ontology.

We illustrate how this can be done on our running examp-
le, where the non-DL-LiteR axiom can be encoded by add-
ing the assertion sql1(x) ./ sql2(x, y) ./ sql3(y)  
SAcc(x) to the mapping. This assertion connects D directly
to the ontology term SAcc by making use of a join of the
SQL queries in the original mapping. We observe that the
resulting mapping, together with the ontology in which the
non-DL-LiteR axiom has been removed, constitutes a con-
servative rewriting of the original OBDA specification.

In this paper, we elaborate on this idea, by introducing a
novel framework for rewriting and approximation of OBDA
specifications. Specifically, we provide a notion of rewriting
based on query inseparability of OBDA specifications (Bi-
envenu and Rosati 2015). To deal with those cases where
it is not possible to rewrite the OBDA specification into a
query inseparable one whose ontology is in DL-LiteR, we
give a notion of approximation that is sound for query an-
swering. We develop techniques for rewriting and approxi-
mation of OBDA specifications based on compiling the extra
expressiveness into the mappings. We target rather expres-
sive ontology languages, and for Horn-ALCHIQ, a Horn
fragment of OWL 2, we study decidability of existence of
OBDA rewritings, and techniques to compute them when
they exist, and to approximate them, otherwise.

We have implemented our techniques in a prototype sys-
tem called ONTOPROX, which exploits functionalities pro-
vided by the ONTOP (Rodriguez-Muro, Kontchakov, and Za-
kharyaschev 2013) and CLIPPER systems (Eiter et al. 2012)
to rewrite or approximate an OBDA specification expressed
in Horn-SHIQ to one that can be directly processed by any
OBDA system. We have evaluated ONTOPROX over synthetic
and real OBDA instances against (i) the default ONTOP be-
havior, (ii) local semantic approximation (LSA), (iii) global
semantic approximation (GSA), and (iv) CLIPPER over ma-
terialized ABoxes. We observe that using ONTOPROX, for a
few queries we have been able to obtain more answers (in
fact, complete answers, as confirmed by CLIPPER). However,
for many queries ONTOPROX showed no difference with re-
spect to the default ONTOP behavior. One reason for this
is that in the considered real-world scenario, the mapping
designers put significant effort to manually create complex
mappings that overcome the limitations of DL-LiteR. Es-
sentially they followed the principle of the technique pre-

sented here, and therefore produced an OBDA specification
that was already “complete” by design.

The observations above immediately suggest a signifi-
cant practical value of our approach, which can be used to
facilitate the design of new OBDA specifications for exist-
ing expressive ontologies: instead of a manual compilation,
which is cumbersome, error-prone, and difficult to maintain,
mapping designers can write straightforward mappings, and
the resulting OBDA specification can then be automatically
transformed into a DL-LiteR OBDA specification with rich
mappings.

The paper is structured as follows. In Section 2, we
provide some preliminary notions, and in Section 3, we
present our framework of OBDA rewriting and approxima-
tion. In Section 4, we illustrate a technique for comput-
ing the OBDA-rewriting of a given Horn-ALCHIQ spec-
ification. In Section 5, we address the problem of OBDA-
rewritability, and show how to obtain an approximation
when a rewriting does not exist. In Section 6, we discuss our
prototype ONTOPROX and experiments. Finally, in Section 7,
we conclude the paper. The omitted proofs can be found in
the appendix.

2 Preliminaries
We give some basic notions about ontologies and OBDA.

2.1 Ontologies
We assume to have the following pairwise disjoint countably
infinite alphabets: NC of concept names, NR of role names,
and NI of constants (also called individuals). We consider
ontologies expressed in Description Logics (DLs). Here we
present the logics Horn-ALCHIQ, the Horn fragment of
SHIQ without role transitivity, and DL-LiteR, for which
we develop some of the technical results in the paper. How-
ever, the general approximation framework is applicable to
any fragment of OWL 2.

A Horn-ALCHIQ TBox in normal form is a finite set of
axioms: concept inclusions (CIs)

d
iAi v C, role inclusions

(RIs) R1 v R2 and role disjointness axioms R1 u R2 v ⊥,
where A, Ai denote concept names, R, R1, R2 denote role
names P or their inverses P−, and C denotes a concept of
the form ⊥, A, ∃R.A, ∀R.A, or ≤1R.A (Kazakov 2009).
For an inverse role R = P−, we use R− to denote P . ⊥
denotes the empty concept/role. A DL-LiteR TBox is a finite
set of axioms of the formB1 v B2,B1uB2 v ⊥,R1 v R2,
andR1uR2 v ⊥, whereBi denotes a concept of the formA
or ∃R.>. In what follows, for simplicity we write ∃R instead
of ∃R.>, and we use N to denote either a concept or a role
name. We also assume that all TBoxes are in normal form.

An ABox is a finite set of membership assertions of the
form A(c) or P (c, c′), where c, c′ ∈ NI. For a DL L, an
L-ontology is a pair O = 〈T ,A〉, where T is an L-TBox
and A is an ABox. A signature Σ is a finite set of concept
and role names. An ontologyO is said to be defined over (or
simply, over) Σ if all the concept and role names occurring
in it belong to Σ (and likewise for TBoxes, ABoxes, concept
inclusions, etc.). When T is over Σ, we denote by sig(T )
the subset of Σ actually occurring in T . Moreover we denote
with Ind(A), the set of individuals appearing in A.



The semantics, models, and the notions of satisfaction and
consistency of ontologies are defined in the standard way.
We only point out that we adopt the Unique Name Assump-
tion (UNA), and for simplicity we also assume to have stan-
dard names, i.e., for every interpretation I and every con-
stant c ∈ NI interpreted by I, we have that cI = c.

2.2 OBDA and Mappings
Let S be a relational schema over a countably infinite set
NS of database predicates. For simplicity, we assume to deal
with plain relational schemas without constraints, and with
database instances that directly store abstract objects (as op-
posed to values). In other words, a database instance D of
S is a set of ground atoms over the predicates in NS and the
constants in NI.2 Queries over S are expressed in SQL. We
use ϕ(~x) to denote that query ϕ has ~x = x1, . . . , xn as free
(i.e., answer) variables, where n is the arity of ϕ. Given a
database instance D of S and a query ϕ over S, ans(ϕ,D)
denotes the set of tuples of constants in NI computed by eval-
uating ϕ over D.

In OBDA, one provides access to an (external) database
through an ontology TBox, which is connected to the
database by means of a mapping. Given a source schema S
and a TBox T , a (GAV) mapping assertion between S and T
has the form ϕ(x)  A(x) or ϕ′(x, x′)  P (x, x′), where
A and P are respectively concept and role names, and ϕ(x),
ϕ′(x, x′) are arbitrary (SQL) queries expressed over S. In-
tuitively, given a database instance D of S and a mapping
assertionm = ϕ(x) A(x), the instances of the conceptA
generated by m from D is the set ans(ϕ,D); similarly for a
mapping assertion ϕ(x, x′) P (x, x′).

An OBDA specification is a triple P = 〈T ,M,S〉, where
T is a DL TBox, S is a relational schema, and M is a fi-
nite set of mapping assertions. Without loss of generality,
we assume that all concept and role names appearing inM
are contained in sig(T ). An OBDA instance is a pair 〈P,D〉,
where P is an OBDA specification, and D is a database in-
stance of S. The semantics of the OBDA instance 〈P,D〉
is specified in terms of interpretations of the concepts and
roles in T . We define it by relying on the following (vir-
tual3) ABox
AM,D = {N(~o) | ~o ∈ ans(ϕ,D) and ϕ(~x) N(~x) inM}
generated byM fromD, where N is a concept or role name
in T . Then, a model of 〈P,D〉 is simply a model of the on-
tology 〈T ,AM,D〉.

Following Di Pinto et al. (2013), we split each mapping
assertion m = ϕ(~x)  N(~x) in M into two parts by in-
troducing an intermediate view name Vm for the SQL query
ϕ(~x). We obtain a low-level mapping assertion of the form
ϕ(~x)  Vm(~x), and a high-level mapping assertion of the
form Vm(~x)  N(~x). In our technical development, we
deal only with the high-level mappings. Hence, we abstract
away the low-level mapping part, and in the following we
directly consider the intermediate views as our data sources.

2All our results easily extend to the case where objects are con-
structed from retrieved database values (Calvanese et al. 2009).

3We call such an ABox ‘virtual’, because we are not interested
in actually materializing its facts.

2.3 Query Answering
We consider conjunctive queries, which are the basic and
most important querying mechanism in relational database
systems and ontologies. A conjunctive query (CQ) q(~x)
over a signature Σ is a formula ∃~y. ϕ(~x, ~y), where ϕ is a
conjunction of atoms N(~z), such that N is a concept or role
name in Σ, and ~z are variables from ~x and ~y. The set of
certain answers to a CQ q(~x) over an ontology 〈T ,A〉, de-
noted cert(q, 〈T ,A〉), is the set of tuples ~c of elements from
Ind(A) of the same length as ~x, such that q(~c) (considered
as a FO sentence) holds in every model of 〈T ,A〉. We men-
tion two more query classes. An atomic query (AQ) is a CQ
consisting of exactly one atom whose variables are all free.
A CQ with inequalities (CQ6=) is a CQ that may contain in-
equality atoms between the variables of the predicate atoms.

Given a CQ q, an OBDA specification P = 〈T ,M,S〉
and a database instance D of S, the answer to q over the
OBDA instance 〈P,D〉, denoted cert(q,P,D), is defined
as cert(q, 〈T ,AM,D〉). Observe that, when D is incon-
sistent with P (i.e., 〈P,D〉 does not have a model), then
cert(q,P,D) is the set of all possible tuples of constants
in AM,D (of the same arity as q).

3 An OBDA Rewriting Framework
We extend the notion of query inseparability of ontologies
(Botoeva et al. 2014) to OBDA specifications. We adopt the
proposal by Bienvenu and Rosati (2015), but we do not en-
force preservation of inconsistency.

Definition 1. Let Σ be a signature. Two OBDA specifica-
tions P1 = 〈T1,M1,S〉 and P2 = 〈T2,M2,S〉 are Σ-CQ
inseparable if cert(q,P1,D) = cert(q,P2,D), for every
CQ q over Σ and every database instance D of S .

In OBDA, one must deal with the trade-off between the
computational complexity of query answering and the ex-
pressiveness of the ontology language. Suppose that for an
OBDA specification P = 〈T ,M,S〉, T is expressed in an
ontology language L that does not allow for efficient query
answering. A possible solution is to exploit the expressive
power of the mapping layer to compute a new OBDA spec-
ification P ′ = 〈T ′,M′,S〉 in which T ′ is expressed in a
language Lt more suitable for query answering than L. The
aim is to encode inM′ not onlyM but also part of the se-
mantics of T , so that P ′ is query-inseparable from P . This
leads to the notion of rewriting of OBDA specifications.

Definition 2. Let Lt be an ontology language. The OBDA
specification P ′ = 〈T ′,M′,S〉 is a CQ-rewriting in Lt of
the OBDA specification P = 〈T ,M,S〉 if (i) sig(T ) ⊆
sig(T ′), (ii) T ′ is an Lt-TBox, and (iii) P and P ′ are Σ-CQ
inseparable, for Σ = sig(T ). If such P ′ exists, we say that
P is CQ-rewritable into Lt.

We observe that the new OBDA specification can be de-
fined over a signature that is an extension of that of the origi-
nal TBox. This is specified by condition (i). In condition (ii),
we impose that the new ontology is specified in the target
language Lt. Finally, condition (iii) imposes that the OBDA
specifications cannot be distinguished by CQs over the orig-
inal TBox. Note that the definition allows for changing the



ontology and the mappings, but not the source schema, ac-
counting for the fact that the data sources might not be under
the control of the designer of the OBDA specification.

As expected, it is not always possible to obtain a CQ-
rewriting of P in an ontology language Lt that allows for
efficient query answering. Indeed, the combined expressive-
ness of Lt with the new mappings might not be sufficient
to simulate query answering over P without loss. In these
cases, we can resort to approximating query answers over
P in a sound way, which means that the answers to queries
posed over the new specification are contained in those pro-
duced by querying P . Hence, we say that the OBDA speci-
fication P ′ = 〈T ′,M′,S〉 is a sound CQ-approximation in
Lt of the OBDA specification P = 〈T ,M,S〉 if P ′ satisfies
(i), (ii), and cert(q,P ′,D) ⊆ cert(q,P,D), for each CQ q
over sig(T ) and for each instance D of S.

Next, we study CQ-rewritability of OBDA specifications
into DL-LiteR, developing suitable techniques.

4 Rewriting OBDA Specifications
In this section, we develop our OBDA rewriting technique,
which relies on Datalog rewritings of the TBox (and map-
pings). Recall that a Datalog program (with inequalities) is
a finite set of definite Horn clauses without functions sym-
bols, i.e., rules of the form head ← ϕ, where ϕ is a finite
non-empty list of predicate atoms and guarded inequalities
called the body of the rule, and head is an atom, called the
head of the rule, all of whose variables occur in the body.
The predicates that occur in rule heads are called intensional
(IDB), the other predicates are called extensional (EDB).

4.1 ET-mappings
Now, we extend the notion of T-mappings introduced by
Rodriguez-Muro, Kontchakov, and Zakharyaschev (2013),
and define the notion of an ET-mapping that results from
compiling into the mapping the expressiveness of ontology
languages that are Datalog rewritable, as introduced below.

We first introduce notation we need. Let Π be a Datalog
program and N an IDB predicate. For a database D over
the EDB predicates of Π, let N i

Π(D) denote the set of facts
about N that can be deduced fromD by at most i ≥ 1 appli-
cations of the rules in Π, and let N∞Π (D) =

⋃
i≥1N

i
Π(D).

It is known that the predicate N∞Π (·) defined by N in Π
can be characterized by a possibly infinite union of CQ6=s
(Cosmadakis et al. 1988), i.e., there exist CQ 6=s ϕN

0 , ϕ
N
1 , . . .

such that N∞Π (D) =
⋃

i≥0{N(~a) | ~a ∈ ans(ϕN
i ,D)}, for

every D. The ϕN
i ’s are called the expansions of N and can

be described in terms of expansion trees(see Appendix A.1).
We denote by ΦΠ(N) the set of expansion trees for N in
Π, and abusing notation also the (possibly infinite) union of
CQ6=s corresponding to it. Note that ΦΠ(N) might be infi-
nite due to the presence of IDB predicates that are recursive,
i.e., either directly or indirectly refer to themselves.

We call a TBox T Datalog rewritable if it admits a trans-
lation ΠT to Datalog that preserves consistency and answers
to AQs (see, e.g., the translations by Hustadt, Motik, and
Sattler (2005), Eiter et al. (2012), and Trivela et al. (2015)
for Horn-SHIQ, and by Cuenca Grau et al. (2013) for

SHI). We assume that ΠT makes use of a special nullary
predicate ⊥ that encodes inconsistency, i.e., for an ABoxA,
〈T ,A〉 is consistent iff ⊥∞ΠT

(A) is empty.4 We also assume
that ΠT includes the following auxiliary rules, which ensure
that ΠT derives all possible facts constructed over sig(T )
and Ind(A) whenever 〈T ,A〉 is inconsistent:

>∆(x)← A(x); >∆(x)← P (x, y); >∆(y)← P (x, y);
A(x)← ⊥,>∆(x); P (x, y)← ⊥,>∆(x),>∆(y);

where A and P respectively range over concept and role
names in sig(T ), and >∆ is a fresh unary predicate denot-
ing the set of all the individuals appearing in A.

In the following, we denote with ΠM the (high-level)
mappingM viewed as a Datalog program, and with ΠT ,M
the Datalog program ΠT ∪ ΠM associated to a Datalog
rewritable TBox T and a mappingM. From the properties
of the translation ΠT (and the simple structure of ΠM), we
obtain that ΠT ,M satisfies the following:
Lemma 3. Let 〈T ,M,S〉 be an OBDA specification where
T is Datalog rewritable. Then, for every database instance
D of S, concept or role name N of T , and ~a in Ind(AM,D),
we have that 〈T ,AM,D〉 |= N(~a) iff N(~a) ∈ N∞ΠT ,M

(D).

For a predicate N , we say that an expansion ϕN ∈
ΦΠT ,M(N) is DB-defined if ϕN is defined over database
predicates. Now we are ready to define ET-mappings.
Definition 4. Let 〈T ,M,S〉 be an OBDA specification
where T is Datalog rewritable. The ET-mapping forM and
T , denoted etmT (M), is defined as the set of assertions of
the form ϕN (~x)  N(~x) such that N is a concept or role
name in T , and ϕN ∈ ΦΠT ,M(N) is DB-defined.

It is easy to show that, for M′ = etmT (M) and each
database instance D, the virtual ABox AM′,D (which can
be defined for ET-mappings as for ordinary mappings) con-
tains all facts entailed by 〈T ,AM,D〉. In this sense, the ET-
mapping etmT (M) plays for a Datalog rewritable TBox T
the same role as T-mappings play for (the simpler) DL-LiteR
TBoxes. Note that, in general, an ET-mapping is not a map-
ping, as it may contain infinitely many assertions. However,
AM′,D is still finite, given that it is constructed over the fi-
nite number of constants appearing in D.

4.2 Rewriting Horn-ALCHIQ OBDA
Specifications to DL-LiteR

Let 〈T ,M,S〉 be an OBDA specification, where T is a
Horn-ALCHIQ TBox over a signature Σ. Figure 1 de-
scribes the algorithm RewObda(T ,M), which constructs
a DL-LiteR TBox Tr and an ET-mapping Mc such that
〈Tr,Mc,S〉 is Σ-CQ inseparable from 〈T ,M,S〉.

In Step 2, the algorithm applies to T1 the normalization
procedure norm∃, which gets rid of concepts of the form
∃R.(

d
A′j) in the right-hand side of CIs. This is achieved by

the following well-known substitution (Artale et al. 2009):
every CI

dm
i=1Ai v ∃R.(

dn
j=1A

′
j) in T1 is replaced withdm

i=1Ai v ∃Pnew , Pnew v R, and> v ∀Pnew .A′j , for 1 ≤
j ≤ n, where Pnew is a fresh role name. Notice that the latter

4Here we simply consider A as a database.



Input: Horn-ALCHIQ TBox T and mappingM.
Output: DL-LiteR TBox Tr and ET-mappingMc.
Step 1: T1 is obtained from T by adding all CIs of the

form
d
Ai v ∃R.(

d
A′j) entailed by T , for con-

cept names Ai, A
′
j ∈ sig(T ).

Step 2: T2 = norm∃(T1).
Step 3: T3 = normu(T2).
Step 4:Mc is etmT3(M), and Tr is the DL-LiteR TBox

consisting of all DL-LiteR axioms over sig(T3)
entailed by T3 (including the trivial onesN v N ).

Figure 1: OBDA specification rewriting algorithm RewObda.

two forms of inclusions introduced by norm∃ are actually in
DL-LiteR, as > v ∀Pnew .A′j is equivalent to ∃P−new v A′j .
In Step 3, the algorithm applies to T2 a further normalization
procedure, normu, which introduces a fresh concept name
AA1u···uAn

for each concept conjunction A1 u · · · uAn ap-
pearing in T2, and adds A1 u · · · u An ≡ AA1u···uAn

5 to
the TBox. Note that norm∃(T1) and normu(T2) are model-
conservative extensions of T1 and T2, respectively (Lutz,
Walther, and Wolter 2007), as one can easily show. We de-
note by rew(T ) the resulting TBox Tr, which in general is
exponential in the size of T , and by comp(T ,M) the result-
ing ET-mappingMc, which in general is infinite.
Example 5. Assume that the domain knowledge is rep-
resented by the axiom about bank accounts from Sec-
tion 1. The normalization of this axiom is the TBox T b =
{Person v ∀inNameOf−.A1,CAccuA1 v SAcc}. Assume
that the database schema Sb consists of the two relations
ENT(ID,TYPE,EMPID), PROD(NUM,TYPE,CUSTID), whose
data are mapped to the ontology terms by means of the fol-
lowing mappingM:

mP: SELECT ID AS X FROM ENT WHERE ENT.TYPE=’P’ Person(X)
mN: SELECT NUM AS X,CUSTID AS Y FROM PROD inNameOf(X,Y)
mC: SELECT NUM AS X FROM PROD P WHERE P.TYPE=’B’ CAcc(X)

We will work with the corresponding high-level mapping
Mb consisting of the assertions:

hP : {x | VPerson(x)} Person(x)
hN : {x, y | VinNameOf(x, y)} inNameOf(x, y)
hC : {x | VCAcc(x)} CAcc(x)

Now, consider the OBDA specification Pb = 〈T b,Mb,Sb〉.
The RewObda algorithm invoked on (T b,Mb) produces:
• The intermediate TBoxes T b

1 and T b
2 coinciding with T b,

and T b
3 extending T b with ACAccuA1

≡ CAcc uA1.
• The ET-mappingMb

c = etmT b
3

(Mb), which extendsMb

with the assertions {x | VinNameOf(x, y), VPerson(y)} A1(x),
{x | VCAcc(x), VinNameOf(x, y), VPerson(y)} SAcc(x), and
{x | VCAcc(x), VinNameOf(x, y), VPerson(y)} ACAccuA1(x).

The algorithm returns the DL-LiteR TBox T b
r =

{ACAccuA1
v CAcc, ACAccuA1

v A1, ACAccuA1
v SAcc}

and the mappingMb
c. It is possible to show that Pb

DL-LiteR =

〈T b
r ,Mb

c,Sb〉 is a CQ-rewriting of Pb into DL-LiteR.
5We use ‘≡’ to abbreviate inclusion in both directions.

The TBox T3 obtained as an intermediate result in Step 3
of RewObda(T ,M), is a model-conservative extension of
T that is tailored towards capturing in DL-LiteR the an-
swers to tree-shaped CQs. This is obtained by introducing
in Step 2 sufficiently new role names, and in Step 3 new
concept names, so as to capture entailed axioms that gener-
ate the tree-shaped parts of models. On the other hand, the
ET-mapping Mc = comp(T ,M) is such that it generates
from a database instance a virtual ABoxAv that is complete
with respect to all ABox facts that might be involved in the
generation of the tree-shaped parts of models of Tr and Av .
This allows us to prove the main result of this section.

Theorem 6. Let 〈T ,M,S〉 be an OBDA specification such
that T is a Horn-ALCHIQ TBox, and let 〈Tr,Mc〉 =
RewObda(T ,M). Then 〈T ,M,S〉 and 〈Tr,Mc,S〉 are Σ-
CQ inseparable, for Σ = sig(T ).

Clearly, 〈Tr,Mc,S〉 is a candidate for being a CQ-rewri-
ting of 〈T ,M,S〉 into DL-LiteR. However, sinceMc might
be an infinite set, 〈Tr,Mc,S〉 might not be an OBDA spec-
ification and hence might not be effectively usable for query
answering. Next we address this issue, and show that in
some cases we obtain proper CQ-rewritings, while in oth-
ers we have to resort to approximations.

5 Approximating OBDA Specifications
To obtain from an ET-mapping a proper mapping, we exploit
the notion of predicate boundedness in Datalog, and use a
bound on the depth of Datalog expansion trees.

An IDB predicate N is said to be bounded in a Datalog
program Π, if there exists a constant k depending only on Π
such that, for every databaseD, we have Nk

Π(D) = N∞Π (D)
(Cosmadakis et al. 1988). If N is bounded in Π, then there
exists an equivalent Datalog program Π′ such that ΦΠ′(N)
is finite, and thus represents a finite union of CQ 6=s. It is
well known that predicate boundedness for Datalog is unde-
cidable in general (Gaifman et al. 1987). We say that Ω is a
boundedness oracle if for a Datalog program Π and a pred-
icate N it returns one of the three answers: N is bounded
in Π, N is not bounded in Π, or unknown. When N is
bounded, Ω returns also a finite union of CQ 6=s, denoted
ΩΠ(N), defining N . Given a constant k, Φk

Π(N) denotes
the set of trees (and the corresponding union of CQ 6=s) in
ΦΠ(N) of depth at most k, hence Φk

Π(N) is always finite.
We introduce a cutting operator cutΩk , which is parametric

with respect to the cutting depth k > 0 and the boundedness
oracle Ω, which, when applied to a predicate N and a Data-
log program Π, returns a finite union of CQ6=s as follows:

cutΩk
(
N,Π

)
=

{
ΩΠ(N), if N is bounded in Π w.r.t. Ω

Φk
Π(N), otherwise.

We apply cutting also to ET-mappings: given an ET-mapping
etmT (M), the mapping cutΩk (etmT (M)) is the (finite) set
of mapping assertions ϕN (~x) N(~x) s.t.N is a concept or
role name in T , and ϕN ∈ cutΩk (N,ΠT ,M) is DB-defined.

The following theorem provides a sufficient condition for
CQ-rewritability into DL-LiteR in terms of the well-known
notion of first-order (FO)-rewritability, which we recall here:



a query q is FO-rewritable with respect to a TBox T , if there
exists a FO query q′ such that cert(q, 〈T ,A〉) = ans(q′,A),
for every ABox A over sig(T ) (viewed as a database). It
uses the fact that if an AQ is FO-rewritable with respect to a
Horn-ALCHIQ TBox T , then it is actually rewritable into
a union of CQ 6=s, and the fact that if T is FO-rewritable
for AQs (i.e., every AQ is FO-rewritable with respect to T ),
then each concept and role name is bounded in ΠT (Lutz
and Wolter 2011; Bienvenu, Lutz, and Wolter 2013).
Theorem 7. Let 〈T ,M,S〉 be an OBDA specification such
that T is a Horn-ALCHIQ TBox. Further, let Tr = rew(T )
and M′ = cutΩk (comp(T ,M)), for a boundedness oracle
Ω and some k > 0. If T is FO-rewritable for AQs, then
〈T ,M,S〉 is CQ-rewritable into DL-LiteR, and 〈Tr,M′,S〉
is its CQ-rewriting. Otherwise, 〈Tr,M′,S〉 is a sound CQ-
approximation of 〈T ,M,S〉 in DL-LiteR.

The above result provides us with decidable conditions
for rewritability of OBDA specifications in several signifi-
cant cases. It is shown by Bienvenu, Lutz, and Wolter (2013)
and Lutz and Wolter (2011) that FO-rewritability of AQs
relative to Horn-SHI-TBoxes, Horn-ALCF-TBoxes, and
Horn-ALCIF-TBoxes of depth two is decidable. In fact,
these FO-rewritability algorithms provide us with a bound-
edness oracle Ω: for each concept and role name N in T ,
they return a FO-rewriting of the AQ N(~x) that combined
with the mappingM results in ΩΠT ,M(N).

Unfortunately, a complete characterization of CQ-
rewritability into DL-LiteR is not possible if arbitrary FO-
queries are allowed in the (low-level) mapping.
Theorem 8. The problem of checking whether an OBDA
specification with an EL ontology and FO source queries in
the mapping is CQ-rewritable into DL-LiteR is undecidable.

However, if we admit only unions of CQs in the (low-
level) mapping, we can fully characterize CQ-rewritability.
Theorem 9. The problem of checking whether an OBDA
specification with a Horn-ALCHI ontology of depth one
and unions of CQs as source queries in the mapping is CQ-
rewritable into DL-LiteR is decidable.

6 Implementation and Experiments
To demonstrate the feasibility of our OBDA specifica-
tion rewriting technique, we have implemented a proto-
type system called ONTOPROX6 and evaluated it over syn-
thetic and real OBDA instances. Our system relies on the
OBDA reasoner ONTOP7 and the complete Horn-SHIQ
CQ-answering system CLIPPER8, used as Java libraries.
ONTOPROX also relies on a standard Prolog engine (SWI-
PROLOG9) and on an OWL 2 reasoner (HERMIT10).

Essentially, ONTOPROX implements the rewrit-
ing and compiling procedure described in Figure 1,
but instead of computing the (possibly infinite) ET-
mapping comp(T ,M), it computes its finite part

6
https://github.com/ontop/ontoprox/

7
http://ontop.inf.unibz.it/

8
http://www.kr.tuwien.ac.at/research/systems/clipper/

9
http://www.swi-prolog.org/

10
http://hermit-reasoner.com/

cutk(comp(T ,M)). So, it gets as input an OWL 2 OBDA
specification 〈TOWL2,M,S〉 and a positive integer k, and
produces a DL-LiteR OBDA specification that can be used
with any OBDA system. Below we describe some of the
implementation details:
(1) TOWL2 is first approximated to the Horn-SHIQ TBox
T by dropping the axioms outside this fragment.

(2) T is translated into a (possibly recursive) Datalog pro-
gram Π and saturated with all CIs of the form

d
Ai v

∃R.(
d
A′j), using functionalities provided by CLIPPER.

(3) The expansions cutk(ΦΠ(X)) are computed by an aux-
iliary Prolog program using Prolog meta-programming.

(4) To produce actual mappings that can be used by an
OBDA reasoner, the views in the high-level mapping
cutk(comp(T ,M)) are replaced with their original
SQL definitions using functionalities of ONTOP.

(5) The DL-LiteR closure is computed by relying on the
OWL 2 reasoner for Horn-SHIQ TBox classification.

For the experiments, we have considered two scenarios:
UOBM. The university ontology benchmark (UOBM) (Ma
et al. 2006) comes with a SHOIN ontology (with 69 con-
cepts, 35 roles, 9 attributes, and 204 TBox axioms), and
an ABox generator. We have designed a database schema
for the generated ABox, converted the ABox to a 10MB
database instance for the schema, and manually created the
mapping, consisting of 96 assertions11.

Among others, we have considered the following queries:
Qu

1 : SELECT DISTINCT ?X WHERE
{ ?X a ub:Person . }

Qu
2 : SELECT DISTINCT ?X WHERE

{ ?X a ub:Employee . }
Qu

3 : SELECT DISTINCT ?X ?Y WHERE
{ ?X rdf:type ub:ResearchGroup .
?X ub:subOrganizationOf ?Y . }

Qu
4 : SELECT DISTINCT ?X ?Y ?Z WHERE

{ ?X rdf:type ub:Chair .
?X ub:worksFor ?Y .
?Y rdf:type ub:Department .
?Y ub:subOrganizationOf ?Z . }

Telecom benchmark. The telecommunications ontology
models a portion of the network of a leading telecommuni-
cations company, namely the portion connecting subscribers
to the operating centers of their service providers. The cur-
rent specification consists of an OWL 2 ontology with 152
concepts, 53 roles, 73 attributes, 458 TBox axioms, and of
a mapping with 264 mapping assertions. The database in-
stance contains 32GB of real-world data.

In the following, we only provide a description of some of
the queries because the telecommunications ontology itself
is bound by a confidentiality agreement.
• Query Qt

1 asks, for each cable in the telecommunications
network, the single segments of which the cable is com-
posed, and the network line (between two devices) that the
11
https://github.com/ontop/ontop-examples/tree/master/

aaai-2016-ontoprox/uobm



Table 1: Query evaluation with respect to 5 setups (number of answers / running time in seconds)
ONTOP LSA GSA ONTOPROX CLIPPER

UOBM Qu
1 14,129 / 0.08 14,197 / 0.11 14,197 / 0.43 14,197 / 0.42 14,197 / 21.4

Qu
2 1,105 / 0.09 2,170 / 0.15 2,170 / 0.42 2,170 / 0.44 2,170 / 21.3

Qu
3 235 / 0.20 235 / 0.24 235 / 0.88 247 / 0.83 247 / 19.6

Qu
4 19 / 0.13 19 / 0.15 19 / 0.43 38 / 0.52 38 / 21.4

Telecom Qt
1 0 / 2.91 0 / 0.72 0 / 1.91 82,455 / 5.21 N/A

Qt
2 0 / 0.72 0 / 0.21 0 / 0.67 16,487 / 198 N/A

Qt
3 5,201,363 / 128 5,201,363 / 105 5,201,363 / 538 5,260,346 / 437 N/A

Table 2: ONTOPROX pre-computation time and output size
UOBM Telecom

Time (s) 8.47 8.72
Number of mapping assertions 441 907
Number of TBox axioms 294 620
Number of new concepts 26 60
Number of new roles 30 7

cable covers. For each cable, it also returns its bandwidth
and its status (functioning, non-functioning, etc.).

• Query Qt
2 asks for each path in the network that runs on

fiber-optic cable, to return the specific device from which
the path originates, and also requires to provide the num-
ber of different channels available in the path.

• Query Qt
3 asks, for each cable in the telecommunications

network, the port to which the cable is attached, the slot
on the device in which the port is installed, and, for each
such slot, its status and its type. For each cable, it also
returns its status.
For each OBDA instance 〈〈T ,M,S〉,D〉, we have eval-

uated the number of query answers and the query answering
time with respect to five different setups:
(1) The default behavior of ONTOP v1.15, which sim-

ply ignores all non-DL-LiteR axioms in T , i.e., using
〈T 1,M,S〉where T 1 are all the DL-LiteR axioms in T .

(2) The local semantic approximation (LSA) of T in DL-
LiteR, i.e., using 〈T 2,M,S〉 where T 2 is obtained as
the union, for each axiom α ∈ T , of the set of DL-LiteR
axioms Γ(α) entailed by α (Console et al. 2014).

(3) The global semantic approximation (GSA) of T in DL-
LiteR, i.e., using 〈T 3,M,S〉 where T 3 is the DL-LiteR
closure of T (Pan and Thomas 2007).

(4) Result of ONTOPROX, 〈rew(T ), cut5(comp(T ,M)),S〉.
(5) CLIPPER over the materialization of the virtual ABox.
In Table 1, we present details of the evaluation for some
of the queries for which we obtained significant results.
In Table 2, we provide statistics about the ONTOPROX pre-
computations. The performed evaluation led to the following
findings:
• For the considered set of queries LSA and GSA produce

the same answers.

• Compared to the default ONTOP behavior, LSA/GSA pro-
duces more answers for 2 queries out of 4 for UOBM.

• ONTOPROX produces more answers than LSA/GSA for 2
queries out of 4 for UOBM, and for all Telecom queries.
In particular, note that for Qt

1 and Qt
2, LSA and GSA re-

turned no answers at all.

• For UOBM, ONTOPROX answers are complete, as con-
firmed by the comparison with the results provided by
CLIPPER. We cannot determine completeness for the Tele-
com queries, because the Telecom database was too large
and its materialization in an ABox was not feasible.

• Query answering of ONTOPROX is ~3–5 times slower than
ONTOP, when the result sets are of comparable size (note
that for Qt

2 the result set is significantly larger).

• The size of the new DL-LiteR OBDA specifications is
comparable with that of the original specifications.

7 Conclusions

We proposed a novel framework for rewriting and approx-
imation of OBDA specifications in an expressive ontology
language to specifications in a weaker language, in which
the core idea is to exploit the mapping layer to encode part
of the semantics of the original OBDA specification, and we
developed techniques for DL-LiteR as the target language.

We plan to continue our work along the following direc-
tions: (i) extend our technique to Horn-SHIQ, and, more
generally, to Datalog rewritable TBoxes (Cuenca Grau et
al. 2013); (ii) deepen our understanding of the computa-
tional complexity of deciding CQ-rewritability of OBDA
specifications into DL-LiteR; (iii) extend our technique to
SPARQL queries under different OWL entailment regimes
(Kontchakov et al. 2014); (iv) carry out more extensive
experiments, considering queries that contain existentially
quantified variables. This will allow us to verify the effec-
tiveness of RewObda, which was designed specifically to
deal with existentially implied objects.
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A Appendix
A.1 Expansion of Datalog Programs
We recall here the notion of the expansion trees (Cos-
madakis et al. 1988). Formally, an expansion tree for a pred-
icateN in a Datalog program Π is a finite tree ϕN

Π satisfying
the following conditions:
• Each node x of ϕN

Π is labeled by a pair of the form
(αx, ρx), where αx is an IDB atom and ρx is an instance
of a rule of Π such that the head of ρx is αx. Moreover,
the variables in the body of ρx either occur in αx or they
do not occur in the label of any node above x in the tree.

• The IDB atom labeling the root of ϕN
Π is an N -atom.

• If x is a node, where αx = Y (~t), ρx = Y (~t) ←
Y1(~t1), . . . , Ym(~tm), and the IDB atoms in the body of
ρx are Yi1(~ti1), . . . , Yi`(~t

i`), then x has ` children, re-
spectively labeled with the atoms Yi1(~ti1), . . . , Yi`(~t

i`).
In particular, if ρx is an initialization rule (i.e., the body
of ρx does not contain an IDB predicate), then x is a leaf.

A.2 Proofs of Section 4.1
In the following, for an OBDA specification P and a
database instanceD, if 〈P,D〉 has a model, we say thatD is
consistent with P .
Lemma 3. Let 〈T ,M,S〉 be an OBDA specification where
T is Datalog rewritable. Then, for every database instance
D of S, concept or role name N of T , and ~a in Ind(AM,D),
we have that 〈T ,AM,D〉 |= N(~a) iff N(~a) ∈ N∞ΠT ,M

(D).

Proof. We assume that the Datalog translation ΠT of T sat-
isfies the following properties (see, e.g., Theorem 1 in (Hus-
tadt, Motik, and Sattler 2005) and Proposition 2 in (Eiter et
al. 2012)):

? for every ABox A, 〈T ,A〉 is consistent iff ⊥∞ΠT
(A) is

empty, and if 〈T ,A〉 is consistent, then for every concept
or role name N of T and ~a in Ind(A), 〈T ,A〉 |= N(~a) iff
N(~a) ∈ N∞ΠT

(A).

Recall that for an ABox A such that 〈T ,A〉 is inconsis-
tent, 〈T ,A〉 entails all possible facts of the form N(~a) for
a concept or role name N of T and ~a in Ind(AM,D). We
prove that the translation ΠT containing the auxiliary rules
involving >∆ and ⊥ satisfies a stronger property:

?? for every ABox A, for every concept or role name N of
T and ~a in Ind(A), 〈T ,A〉 |= N(~a) iffN(~a) ∈ N∞ΠT

(A).

Indeed, it is easy to see that considering that (i) >∆ con-
tains precisely Ind(A), i.e., >∆(a) ∈ >∆∞ΠT

(A) for each
a ∈ Ind(A), and (ii) if ⊥ is true in ΠT (A), then for each
concept or role name N of T and ~a in Ind(AM,D), we have
that N(~a) ∈ N∞ΠT

(A).
As ΠT ,M = ΠT ∪ ΠM, the statement of the lemma fol-

lows directly from the property ?? of ΠT and the fact that
the rules in ΠM connect two disjoint vocabularies.

Lemma 10. Let 〈T ,M,S〉 be an OBDA specification where
T is Datalog rewritable, and M′ = etmT (M). Then for
every database instance D of S, we have that AM′,D is

exactly the set of all facts entailed by 〈T , AM,D〉, i.e., as-
sertions of the form A(a), P (a, b) for a, b ∈ Ind(AM,D),
A,P ∈ sig(T ).

Proof. Let D be a database instance of S, a ∈ Ind(AM,D),
A a concept name in sig(T ). Then

• 〈T , AM,D〉 |= A(a) iff (by Lemma 3)
• A(a) ∈ A∞ΠT ,M

(D) iff (by the properties of expansions)

• there exists DB-defined ϕ ∈ ΦΠT ,M(A) such that a ∈
ans(ϕ,D).

Let 〈T , AM,D〉 |= A(a). By construction of M′, the
mapping assertion ΦΠT ,M(A)  A(x) is in M′. We con-
clude that A(a) ∈ AM′,D. Now, assume that A(a) ∈
AM′,D. It follows that in M′ there is a mapping asser-
tion ΦΠT ,M(A)  A(x) and a ∈ ans(ϕ,D) for some
ϕ ∈ ΦΠT ,M(A). We conclude that 〈T , AM,D〉 |= A(a).

The proof for role assertions is analogous.

A.3 Proof of Theorem 6
We start by showing a sufficient condition for Σ-CQ insepa-
rability of OBDA specifications.

A homomorphism between two interpretations is a map-
ping between their domains that preserves constants and re-
lations. A model of an ontology O that can be homomor-
phically embedded in every model of O is called a canon-
ical model of O, from now on denoted CO. The notion of
canonical model is important in the context of CQ answer-
ing, since answers to CQs are preserved under homomor-
phisms, i.e., if q(~a) holds in an interpretation I, and there is
a homomorphism from I to an interpretation I ′, then q(~a)
holds in I ′ (Chandra and Merlin 1977). It follows that cer-
tain answers can be characterized as the answers over the
canonical model.

Lemma 11. Let O = 〈T ,A〉 be a consistent ontology that
has a canonical model CO, q(~x) a CQ, and ~a a tuple from
Ind(A). Then ~a ∈ cert(q,O) iff CO satisfies q(~a).

It is well known that Horn variants of DLs have the canon-
ical model property (Eiter et al. 2012; Botoeva et al. 2014),
i.e., every satisfiable ontology O admits a (possibly infinite)
canonical model.

A Σ-homomorphism is a mapping that preserves con-
stants and relations in Σ. Given two interpretations I and
J , we say that I is (Σ-)homomorphically embeddable
into J if there exists a (Σ-)homomorphism from I to J .
Moreover, I and J are (Σ-)homomorphically equivalent if
they are (Σ-)homomorphically embeddable into each other.
The following characterization can be easily derived from
Lemma 11, the property of canonical models, and the defi-
nitions of certain answers.

Lemma 12. Let Σ be a signature, and P1 = 〈T1,M1,S〉
and P2 = 〈T2,M2,S〉 two OBDA specifications. Assume
that for every ABox A, both 〈T1,A〉 and 〈T2,A〉 admit a
canonical model. If

• for every database instance D of S that is consistent
with both P1 and P2, we have that C〈T1,AM1,D〉 and
C〈T2,AM2,D〉 are Σ-homomorphically equivalent, and



• for every database instance D of S that is inconsis-
tent with P1 or P2, we have that 〈T1,AM1,D〉 and
〈T2,AM2,D〉 entail the same ABox facts over Σ,

then P1 and P2 are Σ-CQ inseparable.

Now we show several properties of the intermediate and
final TBoxes obtained during the RewObda(T ,M) proce-
dure. First, we show that, for ABoxes containing a single as-
sertion, the DL-LiteR TBox Tr generates a canonical model
equivalent to the canonical model generated by the interme-
diate Horn-ALCHIQ TBox T3.
Lemma 13. Let T be a Horn-ALCHIQ TBox, T3 the TBox
obtained in step 3 of RewObda(T ,M), and Tr = rew(T ).
Also, for A a concept name in sig(T3) and a ∈ NI, let A =
{A(a)} be an ABox such that 〈T3,A〉 is consistent. Then
C〈T3,A〉 is homomorphically equivalent to C〈Tr,A〉.

Proof. In this proof, we call an element σ′ a successor of
σ in a canonical model C of 〈T ,A〉, for σ, σ′ ∈ ∆C , if
σ′ is added (i.e., generated) to satisfy an existential asser-
tion α of the form

d
Ai v ∃(

d
Qj).(

d
A′k) such that

σ ∈ ACi . Here we assume a construction of the canonical
model that is “minimal” and uniquely defined: a new suc-
cessor σ′ of σ is generated only if there is no other element
δ of ∆C that can be used to satisfy α, in this case we em-
ploy the following naming convention: σ′ is a path of the
form σ ·w({Qj},{A′

k}). In particular, if there is a role P in T
such that it only appears on the left-hand side of role inclu-
sions, and T |= {

d
Ai v ∃P, P v Qj ,∃P− v A′k}, then

σ has to have a successor δ introduced to satisfy the asser-
tion

d
Ai v ∃P , so δ can be used to satisfy α and no new

successor σ′ is generated. Also, if the predecessor δ′ of σ is
such that δ′ ∈ (A′k)C and (σ, δ′) ∈ QCj , then no new succes-
sor is introduced. Here, we call each fresh role name Pnew

introduced by the normalization procedure norm∃ a gener-
ating DL-LiteR-role precisely because it satisfies the above
properties. Note that for a generating DL-LiteR-role P , the
concept ∃P− has no non-empty sub-concepts and P does
not appear in constructs ∃P .C where C is a concept distinct
from >. Therefore, the element introduced as a P -successor
of σ can be simply named σ · wP (or σ · vP to distinguish
between two canonical models).

Observe that sig(T3) = sig(Tr). Let A be a satisfiable
concept name in sig(T3), andA = {A(a)}. Denote by C1 the
canonical model of 〈T3,A〉, and by C2 the canonical model
of 〈Tr,A〉.

First, for each element in ∆C1 distinct from a, we prove
that it is of the form aw1 · · ·wn, where each wi = wP for
some generating DL-LiteR-role P . Suppose that σ ∈ ∆C1 ,
σ ∈ BC1i , 1 ≤ i ≤ k, and T3 |= α where α = B1 u · · · u
Bk v ∃Q.(A1 u · · · u Am). By induction on the length of
σ, we find an element δ ∈ ∆C1 such that δ ∈ AC1i , 1 ≤
i ≤ m, (σ, δ) ∈ QC1 , and δ is of the desired form. Note
that without loss of generality we may assume that none of
B1, . . . , Bk and none ofA1, . . . , Am is a fresh concept name
introduced by normu as we can substitute each such name
with its definition. Therefore, {B1, . . . , Bk, A1, . . . , Am} ⊆
sig(T ). Consider the following cases:

(a) If Q ∈ sig(T ), then by step 1 α ∈ T1, and by norm∃ in
step 2, T2 (hence, T3) contains axioms B1 u · · · uBk v ∃P ,
P v Q, ∃P− v Ai, 1 ≤ i ≤ m, for a fresh role name P .
If σ = a, then we set δ = awP ∈ ∆C1 , for which it holds
that that awP ∈ AC1i , 1 ≤ i ≤ m, and (a, awP ) ∈ QC1 . If
σ = σ′wS for some generating DL-LiteR-role S, and it is
not the case that T3 |= S v Q− and σ′ ∈ AC1i , then we set
δ = σwP , for which we have that σwP ∈ AC1i , 1 ≤ i ≤ m,
and (σ, σwP ) ∈ QC1 . Otherwise we set δ = σ′, which is of
the desired form.
(b) If Q /∈ sig(T ), then Q is a fresh generating DL-LiteR
role introduced by norm∃. It means that there exists a CId
A′j v ∃S.(

d
A′′l ) in T1 such that T2 contains axiomsd

A′j v ∃Q, Q v S, and > v ∀Q.A′′l . Since Q oc-
curs only in these axioms, it must be the case that T3 |=
B1 u · · · u Bk v

d
A′j and T3 |=

d
A′′l v A1 u · · · u Am.

Because of the former, we obtain that σ ∈ (A′j)
C1 , and

similarly to (a) that there is an element δ ∈ ∆C1 such that
δ ∈ (A′′l )C1 and (σ, δ) ∈ QC1 . Because of the latter, we also
have that δ ∈ AC1i , 1 ≤ i ≤ m.

Second, we show that there exists a Σ-homomorphism
from C1 to C2, by constructing one. Let a ∈ BC1 for a basic
concept B. Then it must be that T3 |= A v B. By construc-
tion, Tr |= A v B, and therefore a ∈ BC2 . So we can set
h(a) = a.

Let σ ∈ ∆C1 such that h(σ) is set, h(σ) = δ, and σwP ∈
∆C1 . Then σ ∈ (∃P )C1 , hence δ ∈ (∃P )C2 . Since P is
a generating DL-LiteR-role in T3, and Tr is derived from
T3, it follows that P is a generating DL-LiteR-role in Tr,
hence there exists a successor δvP ∈ ∆C2 . By construction
of Tr, it follows that we can set h(σwP ) = δvP (that is, the
homomorphism conditions are satisfied).

Finally, as for a homomorphism from C2 to C1, its exis-
tence follows from the fact that T3 |= Tr: C2 is homomor-
phically embeddable into each model I of 〈Tr,A〉 and as
T3 |= Tr, C1 is a model of 〈Tr,A〉 as well.

In general, however, Tr does not preserve ABox entail-
ments for non-singleton ABoxes.

Example 14. Consider the following TBox T , together with
the computed T3 and Tr:

T = {B u C v A, B u C v ∃P}
T3 = T ∪ {ABuC ≡ B u C, ABuC v ∃P}
Tr = {ABuC v A,ABuC v B,ABuC v C,ABuC v ∃P}

Then, for A = {B(a), C(a)} an ABox, 〈T3,A〉 |= A(a),
however 〈Tr,A〉 6|= A(a).

Next, we extend Lemma 13 towards arbitrary ABoxes.
To do so, we consider ABoxes that are closed with respect
to T3, where an ABox A is closed with respect to a TBox
T if A = EABox(T ,A) where EABox(T ,A) is the set
of all membership assertions over sig(T ) and Ind(A) en-
tailed by 〈T ,A〉. We say that an ABoxA is complete (within
RewObda(T ,M)), if it is closed with respect to T3. The fol-
lowing result is a corollary of Lemma 13.



Lemma 15. Let T be a Horn-ALCHIQ TBox, T3 the TBox
obtained in step 3 of RewObda(T ,M), and Tr = rew(T ).
Then for each ABoxA that is complete and such that 〈T3,A〉
is consistent, we have that C〈T3,A〉 and C〈Tr,A〉 are homo-
morphically equivalent.

Proof. We use the same assumptions for the canonical
model as in the proof of Lemma 13. Denote by C1 the canon-
ical model of 〈T3,A〉, and by C2 the canonical model of
〈Tr,A〉 for a complete ABox A. The existence of a homo-
morphism from C2 to C1 is straightforward. We show that
there exists a homomorphism from C1 to C2. Let a ∈ Ind(A),
it is sufficient to show that for each successor awP of a in
C1, there is a successor avP of a in C2. The rest of the proof
follows from Lemma 13.

Let σ be a successor of a in C1. It follows from the proof of
Lemma 13 that σ is of the form awP where P is a generating
DL-LiteR role and 〈T3,A〉 |= ∃P (a) (moreover, there exists
no individual b ∈ Ind(A) such that R(a, b) ∈ A for each
role R with T3 |= P v R and B(b) ∈ A for each concept
name B with T3 |= ∃P− v B).

We show that 〈Tr,A〉 |= ∃P (a). Recall that T3 con-
tains all possible CIs with ∃P on the right-hand side. From
〈T3,A〉 |= ∃P (a), it follows that there exists a CIA1u· · ·u
An v ∃P in T3, n ≥ 1, such that Ai(a) ∈ A. If n = 1, then
Tr |= A1 v ∃P , hence 〈Tr,A〉 |= ∃P (a). Assume that n >
1, then by step 3 T3 contains AA1u···uAn

≡ A1 u · · · u An,
therefore Tr contains AA1u···uAn v ∃P , and since A is
closed with respect to T3, A contains AA1u···uAn(a). Fi-
nally, we obtain that Tr |= ∃P (a).

Now, as no individual b can be used as a P -successor of
a, in C2 there is a successor avP of a.

The result above is significant, because the mapping
Mc = comp(T ,M) is such that it generates from a
database instance a virtual ABox that is complete (within
comp(T ,M)). Finally, combined with Lemmas 10 and 15,
we are ready to prove Theorem 6.
Theorem 6. Let 〈T ,M,S〉 be an OBDA specification, Σ =
sig(T ), and 〈Tr,Mc〉 = RewObda(T ,M). Then, for each
database instance D of S and for each Σ-query q, we have
that cert(q, 〈T ,M,S〉,D) = cert(q, 〈Tr,Mc,S〉,D).

Proof. (a) Let D be an instance of S inconsistent with
〈T ,M,S〉. By Lemma 10 AMc,D = EABox(〈T3,AM,D〉),
and since D is inconsistent with 〈T3,M,S〉, we have that
AMc,D contains all possible facts over sig(T ). The axioms
in Tr do not add more facts.

(b) We show that for each database instance D of S con-
sistent with 〈T ,M,S〉, the canonical models C〈T ,AM,D〉
and C〈Tr,AMc,D〉 are Σ-homomorphically equivalent.

(I) We observe that by Lemma 10, it follows that AMc,D
is closed with respect to T3.

(II) We show that C〈T ,A〉 is Σ-homomorphically equiva-
lent to C〈T3,A〉, where A is an ABox and Σ = sig(T ). The
interesting direction is the existence of a Σ-homomorphism
from C〈T3,A〉 to C〈T ,A〉. Since T3 is a model-conservative ex-
tension of T , C〈T ,A〉 can be extended without changing the
interpretations of symbols in Σ to a model I of 〈T3,A〉. By

definition of canonical model, there exists a homomorphism
from C〈T3,A〉 to I and since I agrees with C〈T ,A〉 on Σ, we
obtain that there exists a Σ-homomorphism from C〈T3,A〉 to
C〈T ,A〉.

(III) We show that EABoxΣ(T ,AMc,D) =
EABoxΣ(T ,AM,D), where Σ = sig(T ) and
EABoxΣ(T ,A) is the projection of EABox(T ,A) on
Σ. Assume that A(a) ∈ EABox(T3,AMc,D) such that
A(a) /∈ EABox(T ,AM,D). Then A is a fresh concept intro-
duced in step 3, hence A /∈ Σ and EABoxΣ(T3,AMc,D) =
EABoxΣ(T ,AM,D). Combining it with (II), we conclude
that EABoxΣ(T ,AMc,D) = EABoxΣ(T ,AM,D).

Now, by Lemma 15 and (I), by (II) and by (III) we obtain
the following (Σ-)homomorphic equivalences ≡ (≡Σ):

C〈Tr,AMc,D〉 ≡ C〈T3,AMc,D〉 ≡Σ C〈T ,AMc,D〉 ≡Σ C〈T ,AM,D〉.

Hence, C〈Tr,AMc,D〉 and C〈T ,AM,D〉 are Σ-homomorphically
equivalent.

Finally, by Lemma 12 and (a), (b), we conclude that
〈T ,M,S〉 and 〈Tr,Mc,S〉 are Σ-CQ inseparable.

A.4 Proofs of Section 5
Theorem 7. Let 〈T ,M,S〉 be an OBDA specification such
that T is a Horn-ALCHIQ TBox. Further, let Tr = rew(T )
and M′ = cutΩk (comp(T ,M)), for a boundedness oracle
Ω and some k > 0. If T is FO-rewritable for AQs, then
〈T ,M,S〉 is CQ-rewritable into DL-LiteR, and 〈Tr,M′,S〉
is its CQ-rewriting. Otherwise, 〈Tr,M′,S〉 is a sound CQ-
approximation of 〈T ,M,S〉 in DL-LiteR.

Proof. We note that since T is a TBox of depth 1 (it is
assumed to be in normal form), if T is FO-rewritable for
AQs then by (Lutz and Wolter 2011, Lemma 5) T is FO-
rewritable for CQs.

Theorem 8. The problem of checking whether an OBDA
specification with an EL ontology and FO source queries in
the mapping is CQ-rewritable into DL-LiteR is undecidable.

Proof. Proof by reduction from the satisfiability problem of
first-order logic.

Let ϕ be a closed first-order formula. We construct an
OBDA specification P = 〈T ,M,S〉 such that P is CQ-
rewritable into DL-LiteR iff ϕ is unsatisfiable.

We set T = {∃R.A v A}. S contains all predicates
in ϕ, a binary relation tableR and a unary relation tableA
such that tableR, tableA do not occur in ϕ.M consists of
two mapping assertions: tableR(x, y) ∧ ϕ  R(x, y) and
tableA(x) A(x).

Assume that ϕ is unsatisfiable. Then for each database
instance D of S we have that R is empty in AM,D. It is
straightforward to see that 〈∅,M,S〉 is a CQ-rewriting of P
into DL-LiteR.

Assume that ϕ is satisfiable and, for the sake of contra-
diction, suppose that P is CQ-rewritable into DL-LiteR and
P ′ = 〈T ′,M′,S〉 is such a CQ-rewriting where T ′ is a
DL-LiteR TBox. Now, consider an instance of the reach-
ability problem G = (V,E) and two vertices s, t ∈ V .



Let D be a database instance that satisfies ϕ and such that
for each (v, u) ∈ E, (v, u) ∈ tableR and s ∈ tableA.
It is the standard reduction of the reachability problem to
query answering in EL, therefore t ∈ cert(A(x), 〈P,D〉)
iff t is reachable from s in G. Since P ′ is a rewriting of
Pand T ′ is a DL-LiteR TBox, there exists a FO-query qA(x)
such that cert(A(x), 〈P,D〉) = cert(A(x), 〈P ′,D〉) =
ans(qA(x),D). Thus, we obtain that t ∈ ans(qA(x),D)
iff t is reachable from s in G. It means that we can solve
the reachability problem by evaluating a FO-query over
the database encoding the graph, which contradicts the
NLOGSPACE-hardness of the reachability problem. Contra-
diction rises from the assumption that P is CQ-rewritable
into DL-LiteR.

Theorem 9. The problem of checking whether an OBDA
specification with a Horn-ALCHI ontology of depth one
and unions of CQs as source queries in the mapping is CQ-
rewritable into DL-LiteR is decidable.

Proof. Let P = 〈T ,M,S〉 be an OBDA specification (here
we do not splitM into high- and low-level mappings). We
construct a monadic Datalog program Π without inequalities
worst case exponential in the size of T andM such that

Π is program bounded iff P is CQ-rewritable into DL-LiteR,
(1)

where Π is said to be program bounded if each predicate N
mentioned in Π is bounded in Π, and a Datalog program Π
is monadic if all its IDB predicates are monadic (unary). It is
known that program boundedness of monadic Datalog pro-
grams without inequalities in decidable in 3EXPTIME (Cos-
madakis et al. 1988). Thus, we obtain a 4EXPTIME algo-
rithm for deciding CQ-rewritability into DL-LiteR.

Let T3 be the TBox obtained as an intermediate result in
Step 3 of RewObda(T ,M). Then Π is the monadic Datalog
program such that

A∞Π (D) = A∞ΠT3,M
(D), (2)

for each instance D of S and each concept A in T3,

and ϕA is DB-defined for each ϕA ∈ ΦΠ(A). Observe that
the Datalog translation ΠT3,M of the Horn-ALCHI TBox
T3 is a Datalog program without inequalities. Therefore, we
have that Π is a monadic Datalog program without inequal-
ities and its program boundedness is decidable. Moreover,
observe that ΦΠ1

(P ) is a finite union of CQs for each role
name P in T3. We first prove (1), then we show how Π is
constructed.

Assume that Π is program bounded and let Ω be a bound-
edness oracle for it. Note that since Π is bounded, for a con-
cept nameA, cutΩk (A,Π) does not depend on the value of k.
Next, let Tr = rew(T ), andMc be the set of
• mapping assertions ϕA(x)  A(x) such that A is a con-

cept name in T3 and ϕA ∈ cutΩk (A,Π), and of
• mapping assertions ϕP (x, y)  P (x, y) such that P is a

role name in T3 and ϕP ∈ ΦΠT3,M(P ).
It is straightforward to see that 〈Tr,Mc,S〉 is a CQ-
rewriting of 〈T ,M,S〉 into DL-LiteR.

Assume that Π is CQ-rewritable into DL-LiteR and
〈T ′,M′,S〉 is its CQ-rewriting where the source queries in
M′ are unions of CQs. Let N be a concept or role name
in T and denote by qN (~x) the rewriting of the query N(~x)
into a union of CQs over S with respect to 〈T ′,M′,S〉 (re-
call that the rewriting of N(~x) with respect to T ′ is a union
of CQs, and since M′ contains unions of CQs as source
queries, qN (~x) is also a union of CQs).

We construct now a Datalog program Π′ consisting of
the rules N(~x) ← ϕN (~x), for a concept or role name
N in T and a CQ ϕN (~x) ∈ qN (~x). Obviously, Π′ is
program bounded. Since 〈T ′,M′,S〉 is a CQ-rewriting of
〈T ,M,S〉, and T3 is a model-conservative extension of T ,
we have that N∞Π′ (D) = N∞ΠT ,M

(D) = N∞ΠT3,M
(D), for

each instance D of S and each concept or role name N in
T . Next, because of (2), we have thatA∞Π′(D) = A∞Π (D) for
each instance D of S and each concept name A in T . Now,
we set the finite union of CQs ΩΠ(A) for each concept name
A in T3:
• if A is a concept name in T , then ΩΠ(A) = ΦΠ′(A)
• otherwise,A is introduced for a concept conjunctionA1u
· · ·uAn in Step 3, then ΩΠ(A) is the DNF of the formula
ΦΠ′(A1)∧ · · · ∧ΦΠ′(An) where each ΦΠ′ is viewed as a
formula in DNF.

Hence, we obtain that Π is program bounded.

We now show how Π is constructed from ΠT3,M.
First, we remove from ΠT3,M the rules which are not

reachable from the database predicates. Namely, let Π1 be
the set of rules π = head ← X1, . . . , Xn in ΠT3,M such
that there are sets of rules ρ1, . . . , ρm in ΠT3,M such that
ρm is a set of rules from ΠM, the predicates in the bodies
of the rules in ρi−1 are exactly the predicates in the heads of
the rules in ρi, for 2 ≤ i ≤ m, and ρ1 = {π}. It should be
clear that N∞Π1

(D) = N∞ΠT3,M
(D), for each instance D of S

and each concept or role name N in T3.
Then Π is the monadic Datalog program such that for each

instance D of S and each concept name A in T3, A∞Π (D) =
A∞Π1

(D). We obtain Π by substituting each occurrence in
the body of a rule of an atom of the form R(x, y), for R a
role in T , by ΦΠ1

(R), and by removing all rules whose head
predicates are roles. Namely for the former, let ρ = head ←
ϕ,R(x, y) be a rule in Π1. Then we replace ρ with the rules,
head ← ϕ,ψ, for each CQ ψ ∈ ΦΠ1(R). We repeat this
procedure until we get a Datalog program Π where no atom
of the form R(x, y), for a role R in T3, occurs in the a body
of a rule. Observe that ΦΠ1(R) is always finite.

It is easy to see that Π is as required.


