
E L E N A B OT O E VA

D E S C R I P T I O N L O G I C K N OW L E D G E BA S E E X C H A N G E

T1 T2

M

Σ1Σ1

A1

A1

B1 C1

D1

Σ2Σ2

A2

A2

B2 C2

D E S C R I P T I O N L O G I C K N OW L E D G E BA S E E X C H A N G E

E L E N A B OT O E VA

PhD Dissertation

PhilosophiæDoctor (PhD)
Faculty of Computer Science

Elena Botoeva: Description Logic Knowledge Base Exchange, PhD Dissertation, ©
April 2014

To my parents Svetlana and Yury,
to my sisters Olga and Maria,

and to my nephews Diana and Sayan.

A B S T R AC T

In this thesis, we study the problem of exchanging knowledge between a source and
a target knowledge base, connected through mappings. This problem emerges as a fu-
sion of the data exchange problem considered in the traditional database setting on the
one hand, and of the knowledge translation problem considered in the knowledge rep-
resentation and reasoning communities one the other hand: thus, we are interested in
exchanging both data and implicit knowledge. As representation formalism we use De-
scription Logics (DLs), thus assuming that the source and target knowledge bases are
given as a DL TBox (encoding implicit knowledge) and ABox (encoding data), while
the mappings have the form of DL TBox assertions.

To investigate the problem of translating the knowledge in the source knowledge base
according to the mapping, we define a general framework of description logic knowl-
edge base exchange and specialize it to the case of DL-LiteR, a lightweight DL of
the DL-Lite family. Within this framework we specify three types of translations to be
considered that we define as universal solutions, universal UCQ-solutions, and UCQ-
representations. Universal solutions are the most precise solutions: they preserve all
the meaning from the source knowledge base with respect to the mapping. Universal
UCQ-solutions is a relaxation of the notion of universal solutions, and they preserve
all answers to unions of conjunctive queries (UCQs). UCQ-representations are similar
to universal UCQ-solutions, but they do not depend on the source ABox, only on the
source TBox and the mapping. The rationale behind the notion of UCQ-representation
is to maximize the implicit knowledge in the target, thus, a UCQ-representation of a
source TBox captures at best the implicit knowledge that can be extracted from the
source according to a mapping using UCQs.

We then develop results for OWL 2 QL, one of the profiles of the standard Web Ontol-
ogy Language OWL 2, which is based on the DL DL-LiteR, and for RDFS, another stan-
dard Semantic Web language, which is based on a fragment of DL-LiteR denoted DL-
LiteRDFS. To obtain a good understanding of the knowledge base exchange problem, we
study the computational complexity of the membership and non-emptiness problems for
each kind of translation. For universal solutions, e.g., the membership problem checks
whether a given candidate target knowledge base is a universal solution for the source
knowledge base and the mapping, i.e., whether it belongs to the class of all universal so-
lutions, while the non-emptiness problem answers to the question whether there exists
any universal solution for the source knowledge base and the mapping, i.e., whether the
class of universal solutions is non-empty. Note that the latter problem is directly related
to the task of materializing a translation, moreover, determining UCQ-representability is
a crucial task, since it allows one to use the obtained target TBox to infer new knowledge
in the target, thus reducing the amount of extensional information to be transferred from
the source. Adopting a variety of techniques, that include reachability games on graphs
and automata on infinite trees, we obtain both upper and lower complexity bounds. For
several of the considered cases we are able to precisely characterize the computational
complexity of the membership and non-emptiness problems.

vii

P U B L I C AT I O N S

The following publications are related to this PhD work:

Conference Publications

• Elena Botoeva, Roman Kontchakov, Vladislav Ryzhikov, Frank Wolter, and Michael
Zakharyaschev. Query inseparability for description logic knowledge bases. In
Proc. of the 14th Int. Conf. on Knowledge Representation and Reasoning (KR 2014).
AAAI Press, 2014

• Marcelo Arenas, Elena Botoeva, Diego Calvanese, and Vladislav Ryzhikov. Ex-
changing OWL 2 QL knowledge bases. In Proc. of the 23rd Int. Joint Conf. on
Artificial Intelligence (IJCAI 2013), pages 703–710, 2013

• Marcelo Arenas, Elena Botoeva, Diego Calvanese, Vladislav Ryzhikov, and Evgeny
Sherkhonov. Exchanging description logic knowledge bases. In Proc. of the 13th
Int. Conf. on Knowledge Representation and Reasoning (KR 2012), pages 563–
567. AAAI Press, 2012

Workshop Publications

• Marcelo Arenas, Elena Botoeva, Diego Calvanese, and Vladislav Ryzhikov. Com-
puting solutions in OWL 2 QL knowledge exchange. In Proc. of the 26th Int.
Workshop on Description Logic (DL 2013), volume 1014 of CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/, pages 4–16, 2013

• Marcelo Arenas, Elena Botoeva, Diego Calvanese, Vladislav Ryzhikov, and Evgeny
Sherkhonov. Representability in DL-Liter knowledge base exchange. In Proc. of
the 25th Int. Workshop on Description Logic (DL 2012), volume 846 of CEUR
Electronic Workshop Proceedings, http://ceur-ws.org/, 2012

• Marcelo Arenas, Elena Botoeva, and Diego Calvanese. Knowledge base exchange.
In Proc. of the 24th Int. Workshop on Description Logic (DL 2011), volume 745
of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2011

Technical Reports

• Marcelo Arenas, Elena Botoeva, Diego Calvanese, and Vladislav Ryzhikov. Ex-
changing OWL 2 QL knowledge bases (extended version). CoRR Technical
Report arXiv:1304.5810, arXiv.org e-Print archive, 2013. Available at http:
//arxiv.org/abs/1304.5810

Under Submission

• Marcelo Arenas, Elena Botoeva, Diego Calvanese, and Vladislav Ryzhikov. Knowl-
edge base exchange: The case of OWL 2 QL. Under submission to an interna-
tional journal, 2014

ix

http://ceur-ws.org/
http://ceur-ws.org/
http://ceur-ws.org/
http://arxiv.org/abs/1304.5810
http://arxiv.org/abs/1304.5810

AC K N OW L E D G M E N T S

I would like to thank my scientific supervisor Diego Calvanese, my academic father,
for everything that he taught me and for being always kind, patient, encouraging and
supportive. I am grateful to Marcelo Arenas who has become my second supervisor and
without whom the topic of this PhD thesis would have been something different.

I want to thank our Knowledge Representation and Database (KRDB) group and the
Free University of Bozen-Bolzano that provided me with all necessary means to carry
out my research and, specifically, let me travel to Santiago, Chile where I could start a
very fruitful collaboration with Marcelo Arenas.

Also, I would like to express my gratitude to Roman Kontchakov, Michael Zakharya-
schev and Frank Wolter for a very enlightening and motivating collaboration. I am very
thankful to the reviewers of my PhD thesis, Carsten Lutz and Pablo Barcelò, that pro-
vided me with very helpful and constructive comments and that have been and probably
will be the only persons who read my entire thesis.

I am sure that accomplishing these PhD studies would not have been possible without
my school in my home town Ulan-Ude, Gymnasium 14, my school in Novosibirsk, the
Specialized Educational Scientific Center of Novosibirsk State University, and my uni-
versity in Russia, Novosibirsk State University, where I could get such a great education
for free (thanks to my country). In particular, I would like to mention my teachers that
contributed to my education: Ul’yana Sergeevna Afanas’eva, Viktor Aleksandrovich
Kosteev, Zoya Borisovna Kosteeva, Lyubov’ Petrovna Akulova, Larisa Nikolaevna Ko-
reneva, Valeriy Avdeevich Churkin, Aleksandr Ivanovich Kozhanov, Viktor Alekseevich
Debelov, Evgeniy Petrov, and many others.

I am very happy that I was surrounded by wonderful people in Bolzano that made
and continue making my life here interesting and full of new discoveries, those are
Paola Soccio, Yuri Oh, Lucia Veronese and Antonio DeSarro, Magdalena Putz, Oksana
Tverdokhlebova, my friends Oksana and Timofey, Babak Bagheri Hariri, Joy and Paul,
Naomi and Luis, Tania and Anton, Josef, Evgeny Sherkhonov, Dmitry Milaev, Rumi,
Cvetan, Natalia Dikun, Lena Balaeva and Arina, my colleagues at KRDB and at the
Faculty of Computer Science.

I am thankful to Providence that brought me to Bolzano and made writing this thesis
possible. My endless gratitude and love to my parents for bringing me up the person I
am and for being always there for me.

And of course, my special thanks to Vlad for being part of my life.

xi

C O N T E N T S

I M A I N B O DY 1
1 I N T RO D U C T I O N 3

1.1 Motivation . 3
1.1.1 Knowledge Translation . 4
1.1.2 Data Exchange . 5
1.1.3 Data Exchange with Incomplete Information 6
1.1.4 Description Logics as Ontology Language 7

1.2 Contribution . 8
1.3 Structure of the Thesis . 11

2 P R E L I M I N A R I E S 13
2.1 Description Logics . 13

2.1.1 The Description Logic DL-LiteR and Its Sublogics 14
2.1.2 The Canonical Model Property 16

2.2 Queries and certain answers . 19
2.3 Complexity Measures and Complexity Classes 20

3 K N O W L E D G E B A S E E X C H A N G E F R A M E W O R K 21
3.1 Knowledge Exchange Framework . 21

3.1.1 Universal Solutions . 22
3.1.2 Universal UCQ-Solutions . 23
3.1.3 UCQ-Representations . 24

3.2 The Space of Reasoning Problems . 25
4 T H E S H A P E O F S O L U T I O N S 29

4.1 Universal solutions . 29
4.2 Universal UCQ-Solutions . 33
4.3 UCQ-representations . 35

5 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S 39
5.1 Characterization of Universal Solutions 39

5.1.1 Characterization of the membership problem 40
5.1.2 Characterization of the non-emptiness problem 43

5.2 Simple Universal Solutions . 44
5.2.1 The non-emptiness problem 44
5.2.2 The membership problem . 47

5.3 Extended Universal solutions . 52
5.3.1 The membership problem . 52
5.3.2 The non-emptiness problem 54

5.4 Universal Solutions in DL-LiteRDFS 67
6 R E A S O N I N G A B O U T U N I V E R S A L U C Q - S O L U T I O N S 69

6.1 Characterization of Universal UCQ-solutions 69
6.2 Universal UCQ-solutions with Simple ABoxes 71

6.2.1 The membership problem . 71
6.2.2 The non-emptiness problem 85

xiii

xiv C O N T E N T S

6.3 Universal UCQ-Solutions with Extended ABoxes 86
6.3.1 The membership problem . 86
6.3.2 The non-emptiness problem 87

6.4 Universal UCQ-Solutions in DL-LiteRDFS 88
7 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S 91

7.1 The Membership Problem . 91
7.2 The Non-emptiness Problem . 104

7.2.1 Computing UCQ-representations 118
7.3 Weak UCQ-Representability . 118

8 R E L AT E D W O R K 121
8.1 Data Exchange . 121

8.1.1 Data Exchange with Complete Data 121
8.1.2 Data Exchange with Incomplete Data 122

8.2 Ontology Modularity and Conservative Extensions 123
8.3 Ontology Alignment . 124

9 D I S C U S S I O N 127
9.1 Conclusions . 127
9.2 What Is a Preferred Solution? . 128
9.3 Open Problems . 130

II A P P E N D I X 133
A A P P E N D I X 135

A.1 The Theory of Automata, Logic, and Infinite Games 135
A.1.1 Two-way Alternating Tree Automata 135
A.1.2 Reachability games on graphs 136

B I B L I O G R A P H Y 139

Part I

M A I N B O DY

1
I N T RO D U C T I O N

1.1 M OT I VAT I O N

Ontologies are at the heart of various Computer Science disciplines, among which the
most prominent ones are Semantic Web, Biomedical informatics, and of course, Artifi-
cial Intelligence and Knowledge Representation. Here, for simplicity, by ontology we
mean a formal representation of the knowledge about a domain in terms of axioms ex-
pressed over concepts (unary predicates) and roles (binary predicates). In the biomedical
domain, e.g., Pneumonia and Lung could be concepts, and finding_site could be a role,
and the knowledge about the domain could be asserted in an axiom expressing that “The
finding site of pneumonia is lungs” [35, 97]. The advantages of using ontologies is that,
first, they provide frameworks for organizing and structuring information, and second,
it is possible to perform reasoning about the modeled domain.

Usually, some logical language, e.g., first-order logic or predicate logic, is used to
formalize ontologies. Each language has an associated expressivity, determined by the
logical constructs that can be used; these in turn determine the complexity of reasoning
algorithms, i.e., how efficient or inefficient reasoning in that language is. As observed
first by Brachman and Levesque [24], there is a tradeoff between expressiveness and
complexity of reasoning, i.e., the more expressive the language is, the more inefficient
reasoning is. E.g., the standard reasoning task of checking consistency of an ontology
written in the horn fragment of predicate logic can be done in polynomial time, while
there exists no algorithm at all (i.e., it is undecidable) to check whether an ontology
written in first-order logic is consistent. Therefore, the task of choosing the ontology
language is not trivial, and there has been a lot of research dedicated to studying var-
ious languages, such as fragments of first-order logic or extensions of predicate logic,
and their computational properties. Nowadays, there exists a whole variety of ontology
formalisms. These languages can be roughly divided by their computational complexity
into three groups: tractable (first candidates to be used in practice, allow for efficient
algorithms), intractable (there exist algorithms, but inefficient), and undecidable (not us-
able at all). Among the decidable languages, the notable ones are Description Logics,
Datalog, and relational databases.

When developing ontologies, one is free to choose the exact terminology and the
exact formalism to be used, and there is no single solution to it. For instance, when cre-
ating a biomedical ontology about deseases, the lungs can be modeled as Pair_of _lungs
or Both_lungs. Moreover, the ontology developer might choose a description logic, or
datalog, or simply a relational database format for modeling and structuring the domain
of interest. This led to having complex forms of information, maintained in different
formats and organized according to different structures. Often, this information need to
be shared between agents: to reuse the existing ontologies, to integrate knowledge from
different agents, and so on. Therefore in recent years, both in the data management and

3

4 I N T RO D U C T I O N

in the knowledge representation communities, several settings have been investigated
that address this problem from various perspectives:

• in information integration, uniform access is provided to a collection of data
sources by means of an ontology (or global schema) to which the sources are
mapped [83];

• in peer-to-peer systems, a set of peers declaratively linked to each other collec-
tively provide access to the information assets they maintain [74, 2, 57];

• in ontology matching, the aim is to understand and derive the correspondences
between elements in two ontologies [47, 99, 48];

• in ontology modularity, the aim is to extract independent, possibly small, subsets
of an ontology, so called modules [39, 37, 38];

• in knowledge translation, axioms are being translated from one representation
(i.e., logical language and vocabulary) into another [28, 42, 43];

• finally, in data exchange, the information stored according to a source schema
needs to be restructured and translated so as to conform to a target schema [51,
20].

The work we present in this thesis is inspired by the two latter settings, the first
one being investigated in knowledge bases and the second one being investigated in
databases. In the following, we elaborate on these two settings.

1.1.1 Knowledge Translation

The problem of knowledge translation has been addressed in 1995 in [28] to formal-
ize the task of reusing/sharing existing encoded knowledge in the process of the de-
velopment of new intelligent systems, emerged already in the early nineties [56]. An
interlingua-based methodology for this problem is proposed, where logical theories en-
coded in one representation (source) need to be translated to another representation (tar-
get) by making use of a first-order logic interlingua. Interlingua is a mediating language
designed for communicating knowledge between the source and the target represen-
tations, and a representation is formed using a declarative representation language, a
vocabulary and a base theory (associated with the language). Then, the authors devise a
formalism for producing translations based on a theory of contexts [88, 27, 64]: a trans-
lation is specified as a set of first-order logic sentences each of which describes a rule
for deriving a sentence in a target output context that is a translation of a sentence in
a source input context. Such an approach, first, provides a formal semantics for trans-
lation, and second, enables translation to be done as deduction by a standard theorem
prover.

A decade later there has been again an interest in knowledge translation in the con-
text of the Semantic Web, where the problem of communicating knowledge between
heterogeneous agents is especially relevant [42, 41, 43]. The focus of these works is
to translate axioms represented in a rule-based formalism, where the mapping axioms,
that is, the axioms defining how the source and target vocabularies are related, are rep-
resented as first-order axioms (although of quite a simple form). The authors devise an

1.1 M OT I VAT I O N 5

Σ1Σ1

source schema

I1

Σ2Σ2

target schema

I2

mappingM

solution

Figure 1: Data Exchange Framework.

algorithm for translating axioms and implement an inference engine that performs the
translation.

While the first work [28] is a rather abstract and high level view on the problem of
knowledge translation, the other works [42, 41, 43] are more on the practical side and
lack solid theoretical foundations. Thus, none of these papers gives a precise under-
standing of how difficult it is to translate knowledge, for which logical languages it is
decidable and for which ones it is undecidable.

1.1.2 Data Exchange

Data exchange is a field of database theory, motivated by several applications from in-
dustry [98, 65], that deals with transferring data between differently structured databases.
The starting point of intensive investigation of the problem of data exchange was given
in [51] where it was defined as follows: given data structured according to a source
schema and a mapping that provides a declarative account of the relationship between
elements of the source schema and elements of a target schema, one wants to transform
the source data into data structured according to the target schema so that it accurately
reflects the source data with respect to the mapping. The obtained target data instance
is referred to as a solution. This problem, which can be depicted as in Figure 1, has
been extensively studied for different combinations of languages used to specify the
source and target schemas, and the mappings [20]. Most of the results in the literature
consider source-to-target tuple generating dependencies as the language to specify map-
pings. Tuple generating dependencies (tgds) allow one to express containment between
two conjunctive queries: if a conjunction of several predicates holds, then a conjunction
of some other predicates must hold, for example,

∀a, b
(
AuthorOf (a, b)→ ∃y, g . BookInfo(b, a, y) ∧ BookGenre(b, g)

)
, (1)

which says that if a is the author of a book b, then there exist y and g such that the infor-
mation about b is that its author is a and it was written in the year y, and b has genre g.
Here, y and g are existentially quantified variables. Many database integrity constraints
can be expressed by tgds, so they have been widely employed in all areas of database
theory. Source-to-target tgds (st-tgds) are tgds of a special shape: the conjunction on the
left-hand side uses only symbols from the source schema, while the conjunction on the
right-hand side uses only symbols from the target schema.

A fundamental assumption in the traditional data exchange setting is that the source
is a complete database: every fact is either true or false. This is not the case for target
instances, since incomplete information can be introduced by the mapping layer (see

6 I N T RO D U C T I O N

also [84]). As a consequence, for a given source data instance, there can exist many
distinct target instances that are solutions for that source data instance.

Example 1.1.1. If we consider the mapping consisting of the constraint in (1), and a
source instance consisting of one entry AuthorOf (tolkien, lotr), encoding that Tolkien
is the author of The Lord of the Rings, then the following two target instances are solu-
tions:

I2 = {BookInfo(lotr, tolkien, 1937), BookGenre(lotr, fantasy)},

and

I′2 = {BookInfo(lotr, tolkien, NULL1), BookGenre(lotr, NULL2)}.

Note that here incompleteness is caused by the existential restriction ∃y, g . . . , which
can be satisfied by introducing new objects: either named individuals (or constants), like
fantasy, or anonymous, like NULL1. Note also that NULL1 and NULL2 are labeled nulls,
which are the standard way in databases to represent anonymous objects.

To characterize good transformations, several criteria have been considered [67]. We
emphasize two types of good translations, universal solutions and query solutions. Uni-
versal solutions are the most general solutions: any other solution is more specific (or,
detailed). E.g., in Example 1.1.1, I′2 is a universal solution. On the other hand, query so-
lutions are good solutions from the point of view of answering queries formulated over
the target schema, so called target queries.

Furthermore, the assumption about completeness of the source does not take into
account the scenarios in which the source contains some uncertainty. This issue had not
been considered until recently, when in [55] the problem of reverse data exchange and
in [6] the problem of data exchange with data in the source incompletely specified were
addressed. The latter problem is discussed in the next section.

1.1.3 Data Exchange with Incomplete Information

In [6], the problem of data exchange with incomplete source data is introduced. Incom-
plete specification of the source data means that (possibly infinitely) many actual source
instances are being represented. A simple example of incomplete data is a database
with nulls: consider a table storing information about book genres, and assume that it is
known that The Lord of The Rings is a book, but its exact genre is unknown. So this ta-
ble would contain an entry of the form BookGenre(lotr, NULL), which represents all dif-
ferent instances containing tuples BookGenre(lotr, fantasy), BookGenre(lotr, history),
BookGenre(lotr, scifi), . . . , etc, as depicted in Figure 2. In this setting, when the source
is not a complete database, the problem of data exchange becomes substantially more
complex. To deal with that, in [6] a general framework for exchanging incomplete infor-
mation is proposed. This framework is based on the notion of representation system as
a mechanism to describe in a finite way (infinitely) many complete instances of a data
schema.

Knowledge bases are another example of incompletely specified data. A knowledge
base (KB) is a description of a domain of interest that includes ground facts, i.e., infor-
mation of the form “John is a student”, “Databases is a course”, “John attends the
Databases course”, which can be stored in a database (hence extensional information),

1.1 M OT I VAT I O N 7

BookGenre(lotr, NULL)

I

Interpretations of I

BookGenre(lotr, fantasy)

. . .

I1

BookGenre(lotr, history)

. . .

I2

BookGenre(lotr, scifi)

. . .

I3

. . .

Figure 2: Possible Interpretations of I = {BookGenre(lotr, NULL)}.

and logical axioms, or what we call an ontology, that structure the knowledge about
the domain. E.g., information of the form “Every course must be taught by somebody”,

“A student cannot be a professor” (hence intensional information) . It is intrinsic in the
standard semantics of knowledge bases that the knowledge they describe is only a partial
description of a domain of interest. It means that a single knowledge base usually repre-
sents many actual states of the world. For instance, if we consider the knowledge base
consisting of the five axioms mentioned above, then it could represent one possible state
of the world, where John also attends the statistics course, David teaches databases and
Peter teaches statistics. However, knowledge bases are considerably more expressive
than databases with nulls, and even for relatively simple ontology languages, there are
knowledge bases that represent infinitely large instances. Importantly, in [6] a general
knowledge exchange framework is proposed for the case when the source is a knowl-
edge base as opposed to a plain database instance. Then it is shown that already for
knowledge bases where the ontological part is expressed by tgds and mappings that are
source-to-target tgds, the problem of knowledge base exchange is undecidable, however,
if one considers knowledge bases built using full tgds, i.e., tgds without existentially
quantified variables, then the problem becomes decidable.

To achieve decidability one has to consider less expressive ontological languages. A
good candidate for that role is the formalism of Description Logics, which provides fair
expressive power, and at the same time possesses good computational properties.

1.1.4 Description Logics as Ontology Language

Description Logics (DLs) [17] is a family of formal languages, fragments of first-order
logic, specifically designed to serve as ontology languages. They exhibit a reasonable
tradeoff between their expressive power and their computational complexity. Nice com-
putational properties in DLs are achieved by restricting attention to unary and binary
predicates, called concepts and roles respectively, and to restricted forms of logical ax-
ioms. Ground facts in DLs are encoded in the form of an ABox, which is a set of mem-
bership assertions, and logical axioms are stored in a TBox, which is a set of concept
and role inclusions. For instance, the DL KB containing the five axioms listed above
describing the university domain looks as follows:

Student(john)

Course(database)

attends(john, database)

Course v ∃teaches−

Student v ¬Professor

8 I N T RO D U C T I O N

where the two inclusions on the right-hand side are concept inclusions, teaches− denotes
the inverse of the binary relationship denoted by teaches, and ∃teaches− denotes the
projection on the second component of teaches.

Thus, the main motivation and the starting point for the work done within this thesis are
on the one hand, the knowledge translation problem defined in [28], and on the other
hand, the knowledge exchange framework defined in [6]. The goal of this PhD work,
then, is to investigate the problem of knowledge base exchange, where a source KB is
connected to a target KB by means of a declarative mapping specification, and the aim
is to exchange knowledge from the source to the target by exploiting the mapping. We
do so in a setting where the source KB, the target KB, and the mapping are all expressed
in variants of Description Logics.

1.2 C O N T R I B U T I O N

This PhD work is concerned with the problem of knowledge base exchange in a De-
scription Logic setting. The contribution of this thesis and the results obtained during
my PhD studies can be summarized as follows.

First of all, we propose and develop a framework for KB exchange based on Descrip-
tion Logics (DLs): both source and target are KBs constituted by a DL TBox, represent-
ing implicit information, and an ABox, representing explicit information, and mappings
are sets of DL concept and role inclusions. We then specialize this framework to the
case of lightweight DLs of the DL-Lite family [30]. In particular, the most expressive
DL we consider is DL-LiteR whose distinguishing feature within the DL-Lite family is
the presence of role inclusions. In this framework, we are interested in three types of
translations that we define as universal solutions, universal UCQ-solutions, and UCQ-
representations. Universal solutions are the most “precise” solutions: a target KB K2

is a universal solution for a source KB K1 under a mapping M if it preserves all the
meaning (i.e., models) of K1 with respect toM. Universal UCQ-solutions are a relax-
ation of the notion of universal solutions: a target KB K2 is a universal UCQ-solution
for a source KB K1 under a mapping M if it preserves all answers to unions of con-
junctive queries (UCQs) formulated in the target signature and answered over K1 and
M. UCQ-representations are similar to universal UCQ-solutions, but they do not de-
pend on the source ABox, only on the source TBox and the mapping: a target TBox T2

is a UCQ-representation of a source TBox T1 under a mappingM if for each possible
source ABox A1, we have that T2,M and A1 give the same answers to UCQs as T1,
M and A1. The rationale behind the notion of UCQ-representation is to maximize the
implicit knowledge in the target, thus, a UCQ-representation of a source TBox captures
at best the intensional information that can be extracted from the source according to a
mapping using UCQs.

Secondly, we study and analyze each notion of translation for KBs and mappings
defined using the DL DL-LiteR. We provide examples that justify the need for target
ABoxes with labeled nulls in order for universal solutions and universal UCQ-solutions
to exist in some cases, as the language of DL-LiteR is capable of implying existence
of new objects. Such ABoxes are called extended ABoxes and they can mention anony-
mous objects implied by the source KB and the mapping by means of labeled nulls, as

1.2 C O N T R I B U T I O N 9

Universal solutions simple ABoxes extended ABoxes

Membership PTIME-complete (T 5.2.12) NP-complete (T 5.3.3)

Non-emptiness PTIME-complete (T. 5.2.11) PSPACE-hard (L. 5.3.4)

in EXPTIME (T. 5.3.9)

Universal UCQ-solutions simple ABoxes extended ABoxes

Membership PSPACE-hard (T. 6.2.1) PSPACE-hard (T. 6.2.1)

in EXPTIME (T. 6.2.9) in EXPTIME (C. 6.3.1)

Non-emptiness PSPACE-hard (T. 6.3.2)

in EXPTIME (T. 6.2.10)

UCQ-representations Complexity

Membership NLOGSPACE-complete (T. 7.1.8)

Non-emptiness NLOGSPACE-complete (T. 7.2.12)

Weak UCQ-representability NLOGSPACE-complete (T. 7.3.5)

Table 1: Complexity results for the membership and non-emptiness problems in DL-LiteR.

opposed to simple ABoxes, which mention exactly the same set of objects as the source
ABox. In general, in DL-LiteR tree-shaped labeled nulls can be seen as a syntactic sugar,
however it is not the case when one cannot freely extend the alphabet or introduce new
TBox axioms. Then, we show several cases when universal solutions do not exist, while
universal UCQ-solutions do, and that, in general, universal UCQ-solutions display a
more robust behavior than universal solutions. For these reasons, we argue that in the
context of knowledge base exchange, especially if we consider applications where users
only extract information from the translated data by using specific queries (usually con-
junctive queries), universal UCQ-solutions and UCQ-representations are the preferred
translations over universal solutions.

Finally, we develop results for OWL 2 QL [91], one of the profiles of the standard
Web Ontology Language OWL 2 [19], which is based on the DL DL-LiteR, and for
RDFS [25], another standard Semantic Web language, which is based on a fragment
of DL-LiteR denoted DL-LiteRDFS. To obtain a good understanding of the knowledge
base exchange problem, we study the computational complexity of the membership and
non-emptiness problems for each kind of translations and target ABoxes. For universal
solutions, e.g., the membership problem checks whether a given candidate target KB
is a universal solution for the source KB and the mapping, i.e., whether it belongs to
the class of all universal solutions, while the non-emptiness problem answers to the
question whether there exists any universal solution for the source KB and the mapping,
i.e., whether the class of universal solutions is non-empty. Note that the latter problem
is directly related to the task of materializing a translation. Moreover, determining UCQ-
representability is a crucial task, since it allows one to use the obtained target TBox to
infer new knowledge in the target, thus reducing the amount of extensional information

10 I N T RO D U C T I O N

Universal solutions simple ABoxes extended ABoxes

Membership NLOGSPACE-c. (T. 5.4.2) NP-complete (T. 5.4.3)

Non-emptiness TRIVIAL (T. 5.4.1) TRIVIAL (T. 5.4.1)

Universal UCQ-solutions simple ABoxes extended ABoxes

Membership NLOGSPACE-c. (T. 6.4.2) NP-complete (T. 6.4.3)

Non-emptiness TRIVIAL (T. 6.4.1) TRIVIAL (T. 6.4.1)

UCQ-representations Complexity

Membership NLOGSPACE-complete (T. 7.1.8)

Non-emptiness NLOGSPACE-complete (T. 7.2.12)

Weak UCQ-representability TRIVIAL (T. 7.3.6)

Table 2: Complexity results for the membership and non-emptiness problems in DL-LiteRDFS.

to be transferred from the source. For UCQ-representations we also study the problem
of weak UCQ-representability, which answers to the question of whether it is possible to
enrich the mapping so as to give a positive answer to the UCQ-representability problem.

The obtained complexity results for DL-LiteR can be summarized as in Table 1. For
universal solutions with simple ABoxes, we show that both the membership and the non-
emptiness problems are decidable in polynomial time by employing techniques based on
infinite games on graphs with a reachability acceptance condition (reachability games).
We reduce the membership and non-emptiness problems to the problem of finding a win-
ning strategy, which is known to be solvable in PTIME. Then, for universal solutions
with extended ABoxes, we prove that the membership problem is NP-complete, while
the non-emptiness problem is PSPACE-hard, and provide for the latter an EXPTIME up-
per bound based on a novel approach exploiting two-way alternating automata. Univer-
sal UCQ-solutions show to be more complex, and in contrast to the PTIME upper-bound
for the membership problem for universal solutions with simple ABoxes, we show that
the membership problem for universal UCQ-solutions with simple ABoxes is already
PSPACE-hard. Then, we provide an EXPTIME upper-bound for the membership prob-
lem with extended ABoxes by an involved reduction to the reachability games. This al-
gorithm in turn provides us with an EXPTIME algorithm for deciding the non-emptiness
problem for universal UCQ-solutions with simple ABoxes. We also show that the non-
emptiness problem for universal UCQ-solutions with extended ABoxes is PSPACE-hard.
As for UCQ-representations, recall that they do not depend on the shape of the target
ABoxes, so we show three complexity bounds for the membership, non-emptiness and
weak UCQ-representability problems, which all turn out to be NLOGSPACE-complete.

The complexity results for the case of DL-LiteRDFS are shown in Table 2. First of
all note that in the case of DL-LiteRDFS, the complexity results for universal solutions
and universal UCQ-solutions are exactly the same. Importantly, all non-emptiness prob-
lems are decidable in constant time; in fact we show that there always exist a univer-
sal solution (and hence, a universal UCQ-solution), so the answer is trivially “Yes” in

1.3 S T RU C T U R E O F T H E T H E S I S 11

each of these cases. Then the membership problems considering simple target ABoxes
are NLOGSPACE-complete, and considering extended ABoxes are NP-complete. As
for UCQ-representations, the complexity results of the membership and non-emptiness
problems are inherited from the case of DL-LiteR. Remarkably, the weak UCQ-represen-
tability is decidable in constant time, which again in this case means that DL-LiteRDFS

TBoxes are always weakly UCQ-representable.

1.3 S T RU C T U R E O F T H E T H E S I S

This thesis is structured as follows. We start with presenting in Chapter 2 the prelimi-
nary common notions and notations required to read this document. Then, in Chapter 3
we introduce our Knowledge Base exchange framework: we formally define the three
notions of translations we are interested in, and set up the space of the complexity prob-
lems studied in this thesis. Chapter 4 gives some intuition and basic results about each
translation, and provides several illustrative examples when certain translations exist
and when they do not. Then, the complexity results and the technical development are
presented in Chapter 5 for universal solutions, in Chapter 6 for universal UCQ-solutions,
and in Chapter 7 for UCQ-representations. In Chapter 8 we discuss related work, and,
in Chapter 9 we summarize and comment on the results obtained in the thesis. We intro-
duce in an appendix some background notions on automata and games that are used in
parts of the technical development in the thesis.

2
P R E L I M I NA R I E S

In this chapter we introduce the necessary notions and notations employed in the thesis.

2.1 D E S C R I P T I O N L O G I C S

Description logics (DLs) [17, 40, 44, 69, 68] is a family of formal languages designed
to model a particular domain, and subsequently, to derive new knowledge about it. They
provide nice modelling and reasoning capabilities exhibiting a trade-off between ex-
pressiveness of a logic and computational complexity of reasoning in that logic.1 The
advances in the field of Description Logics determined their popularity as (underlying
logical basis for) formalisms in knowledge representation, ontology-based data access,
information and data integration, the Semantic Web, biomedical informatics, etc.

First of all, DLs are languages for building knowledge bases. In DLs, the elements
of the domain of interest are structured into concepts (unary predicates) and their prop-
erties are specified by means of roles (binary predicates). General knowledge about the
domain of interest is asserted by means of concept and role inclusions that constitute
the TBox of a knowledge base (‘T’ for terminological). Knowledge specific to a partic-
ular problem is asserted in the ABox (‘A’ for assertional) in the form of membership
assertions, also called facts. Thus, the TBox talks about the intensional level, while
the ABox talks about the extensional level. Characteristic features of DLs compared to
other modeling formalisms like ER diagrams, UML and datalog, is their concise syntax
and intuitive logic-based semantics. The syntax of DLs, which inherits many constructs
from the syntax of first-order logic, is variable free and allows to represent complex
concept expressions in a compact way. The semantics, which defines the meaning of the
information present in the KB, is the standard first-order semantics, where concepts are
interpreted as sets of individuals, and roles are interpreted as sets of pairs of individuals.

Second, reasoning is a central service of DLs, it allows one to infer knowledge implic-
itly represented in the knowledge base. The standard reasoning services over a DL KB
include knowledge base satisfiability and query answering. The knowledge base satisfia-
bility problem is to check whether the information encoded in the TBox and the ABox is
non-contradictory. Query answering in knowledge bases is similar to query answering
in database only now the information in the TBox should also be taken into account.

Decidability and complexity of reasoning are one of the main concerns in DLs: one
is interested in decision procedures (always terminating) that have nice computational
properties. Decidability and complexity of the inference problems depend on the ex-
pressive power of the DL at hand: in general, the more expressive the logic is, the more
complex reasoning becomes. Most of the known DLs are intractable, which means that
there exist no efficient (polynomial time) reasoning algorithms. Therefore, there were
several lines of research that led to introduction of two families of lightweight DLs with

1 See e.g., http://www.cs.man.ac.uk/~ezolin/dl/ for a summary of complexity results.

13

http://www.cs.man.ac.uk/~ezolin/dl/

14 P R E L I M I N A R I E S

limited expressive power but polynomial algorithms for the basic reasoning tasks: DL-
Lite [30, 96, 15] and EL [16, 18]. Most of the result in this thesis are for DL-LiteR, a
prominent member of the DL-Lite family, the logic underlying OWL 2 QL, one of the
profiles of OWL 2. In the rest of this section, we define the DLs used later in the thesis
and some basic results and notions related to DLs and reasoning with DLs.

2.1.1 The Description Logic DL-LiteR and Its Sublogics

The DLs of the DL-Lite family [30] of light-weight DLs are characterized by the fact
that standard reasoning can be done in polynomial time, and that data complexity of
reasoning and conjunctive query answering is in AC0.

We adapt here DL-LiteR, the DL underlying OWL 2 QL, and present now its syntax
and semantics. Let NC, NR, Na, N` be pairwise disjoint sets of concept names, role
names, constants, and labeled nulls, respectively. Assume in the following that A ∈ NC
and P ∈ NR; in DL-LiteR, B and C are used to denote basic and arbitrary (or complex)
concepts, respectively, and R and Q are used to denote basic and arbitrary (or complex)
roles, respectively, defined as follows:

R ::= P | P−

Q ::= R | ¬R

B ::= A | ∃R

C ::= B | ¬B

From now on, for a basic role R, we use R− to denote P− when R = P, and P when
R = P−.

A TBox is a finite set of concept inclusions B v C and role inclusions R v Q. We
call an inclusion of the form B1 v ¬B2 or R1 v ¬R2 a disjointness assertion. An ABox
is a finite set of membership assertions B(a), R(a, b), where a, b ∈ Na.

Example 2.1.1. An ontology PhotoCamera about digital photo cameras underlying the
structure of an electronics selling website can be described using DL-LiteR syntax.

T :

DigitalCamera v ∃cameraBattery

CompactCamera v DigitalCamera

CameraWithExchange v DigitalCamera

CompactCamera v ¬CameraWithExchange

CompactCamera v ∃compactCameraLens

∃compactCameraLens− v BuiltInLens

CameraWithExchange v ∃cameraMounts

∃cameraMounts− v LensMount

LensMount v ∃lensMounts−

∃lensMounts v ExchangeLens

A :

CameraWithExchange(canon5d)

CompactCamera(lumixFX100)

The ER diagram of this TBox can be depicted as follows, where concepts are shown in
blue color, arrows of the form denote “IS A” relation, arrows of the form with
a label R on them denote the binary relationship (i.e., role) R between the corresponding
concepts.

2.1 D E S C R I P T I O N L O G I C S 15

DigitalCamera

CompactCamera BuiltInLens

CameraWithExchange

LensMount

ExchangeLens

cameraBattery

compactCameraLens

cameraMounts

lensMounts

mountsOn

In this thesis, we also consider extended ABoxes, which are obtained by allowing
labeled nulls in membership assertions. Observe that in the traditional data exchange
setting, labeled nulls are allowed to appear in target instances to be used as placeholders
for unknown values [62]. Formally, an extended ABox is a finite set of membership
assertions B(u) and R(u, v), where u, v ∈ (Na ∪ N`). Moreover, a(n extended) KB K
is a pair 〈T ,A〉, where T is a TBox and A is an (extended) ABox.

In data and knowledge exchange, it is important to distinguish between source and
target signatures, and the signatures of different KBs. A signature Σ is a finite set of
concept and role names, that is, Σ ⊆ NC ∪ NR. A KB K is said to be defined over
(or simply, over) Σ if all the concept and role names occurring in K belong to Σ (and
likewise for TBoxes, ABoxes, concept inclusions, role inclusions and membership as-
sertions). Moreover, the signature of K, denoted by Σ(K) is the set of all concept and
roles names occurring in K.

DL-LiteR is a fragment of first-order logic, so the semantics of DL-LiteR is inher-
ited from the classical semantics of this logic. Formally, given a signature Σ, an inter-
pretation I over Σ is a pair 〈∆I , ·I 〉, where ∆I is a non-empty domain and ·I is an
interpretation function such that:

(1) aI ∈ ∆I , for every constant a ∈ Na interpreted by I ;

(2) AI ⊆ ∆I , for every concept name A ∈ Σ; and

(3) PI ⊆ ∆I × ∆I , for every role name P ∈ Σ.

Function ·I is extended to also interpret concept and role constructs:

(∃R)I = {x ∈ ∆I | ∃y ∈ ∆I such that (x, y) ∈ RI};
(P−)I = {(y, x) ∈ ∆I × ∆I | (x, y) ∈ PI};

(¬B)I = ∆I \ BI ;

(¬R)I = (∆I × ∆I) \ RI .

Note that, depending on whether we make the unique name assumption (UNA) or not
distinct constants a, b ∈ Na may not be allowed to be interpreted as the same object, i.e.,
aI = bI .

Let I = 〈∆I , ·I 〉 be an interpretation over a signature Σ. Then the satisfaction rela-
tion |= is defined as follows:

I |= B v C if BI ⊆ CI

I |= R v Q if RI ⊆ QI
I |= B(a) if aI ∈ BI

I |= R(a, b) if (aI , bI) ∈ RI

16 P R E L I M I N A R I E S

I is said to satisfy a TBox T over Σ, denoted by I |= T , if I |= α for every α ∈
T . Moreover, satisfaction of membership assertions over Σ is defined as follows. A
substitution over I is a partial function h : (Na ∪ N`) → ∆I such that for every
a ∈ Na, h(a) is defined iff aI is defined, moreover h(a) = aI . Then I is said to satisfy
an (extended) ABox A, denoted by I |= A, if there exists a substitution h over I such
that:

• for each B(u) ∈ A, it holds h(u) is defined and h(u) ∈ BI ; and

• for each R(u, v) ∈ A, it holds h(u), h(v) are defined and (h(u), h(v)) ∈ RI .

Finally, I is said to satisfy a KB K = 〈T ,A〉, denoted by I |= K, if I |= T and
I |= A. Such I is called a model of K, and we use MOD(K) to denote the set of all
models of K. We say that K is consistent if MOD(K) 6= ∅.

As is customary, given a KB K over a signature Σ and a membership assertion or an
inclusion α over Σ, we use notation K |= α to indicate that for every interpretation I of
Σ, if I |= K, then I |= α.

In this thesis we will also consider a fragment of DL-LiteR that corresponds to RDFS
[25] and is denoted with DL-LiteRDFS. Formally, DL-LiteRDFS is the fragment of DL-LiteR
in which there are only atomic concepts and atomic roles in the right-hand side of inclu-
sions (hence, no disjointness assertions).

2.1.2 The Canonical Model Property

The logics of the DL-Lite family, and in particular DL-LiteR, enjoy the canonical model
property. It means that given a KB, if it is consistent, then it is possible to construct a
model of that KB with certain characteristics. The first one is that any other model can
be obtained from this model. The second one is that it can be used to characterize the
certain answers to UCQs (it will be discussed in Chapter 6).

There exist several ways to define the(/a) canonical model. Traditionally in the database
theory (in particular, in data exchange), the canonical model of a database instance to-
gether with integrity constraints is defined through the notion of chase [72, 1], and since
a DL-LiteR KB can be seen as such a database, in one of the first papers on DL-Lite
the canonical model was also defined through the chase [30]. Here we adapt a different
definition of the canonical model, which is better suited for the technical development
in the scope of this thesis, and can also be found in [77]. Below, we show how the canon-
ical model can be constructed for a DL-LiteR KB. Then, we also define the generating
model, which can be used as a small representation of the possibly infinite canonical
model.

T H E C A N O N I C A L M O D E L . Consider a non-extended KB K = 〈T ,A〉. Denote
by Ind(A) the set of constants occurring in A. Define the equivalence class [R] of a
basic role R in K as

[R] = {S | T |= R v S and T |= S v R}.

We introduce a witness w[R] for each equivalence class [R], and write [R] ≤T [S] if
T |= R v S. Then, the generating relationship K between the set Ind(A) ∪ {w[R] |
R is a basic role} and the set {w[R] | R is a basic role} is defined as follows:

2.1 D E S C R I P T I O N L O G I C S 17

• a K w[R], if (1) K |= ∃R(a); (2) K 6|= R(a, b) for every b ∈ Ind(A);
(3) [R′] = [R] for every [R′] such that [R′] ≤T [R] and K |= ∃R′(a).

• w[S] K w[R], if (1) T |= ∃S− v ∃R; (2) [S−] 6= [R]; (3) [R′] = [R] for every
[R′] such that [R′] ≤T [R] and T |= ∃S− v ∃R′.

Intuitively, the generating relationship defines when an existing object can be reused to
satisfy an axiom of the form B v ∃R, or a new object has to be generated. We denote by
Wit(K) the set of all witnesses w[R] such that for some a ∈ Ind(A), a K w[R1] K
· · · K w[Rn], and w[Rn] = w[R].

Next, we call K-path a sequence aw[R1] . . . w[Rn] such that n ≥ 0, a ∈ Na, a K
w[R1] and w[Ri] K w[Ri+1] for i ∈ {1, . . . , n − 1}, and denote by path(K) the set
of all K-paths. A K-path aw[R1] . . . w[Rn] with n > 0 encodes one object that has to
be generated to satisfy all axioms in K, and is called an anonymous individual as it is
distinct from any named individual (i.e., constant). Moreover, for every σ ∈ path(K),
denote by tail(σ) the last element in σ. Finally, the canonical (or, universal) model of
K, denoted UK, is defined as:

∆UK = path(K),
aUK = a, for a ∈ Ind(A),

AUK = {a ∈ Ind(A) | K |= A(a)} ∪ {σ · w[R] ∈ ∆UK | T |= ∃R− v A},
PUK = {(a, b) ∈ Ind(A)× Ind(A) | K |= P(a, b)} ∪

{(σ, σ · w[R]) | tail(σ) K w[R], [R] ≤T [P]} ∪
{(σ · w[R], σ) | tail(σ) K w[R], [R−] ≤T [P]}.

Note that the anonymous part of UK formed by the anonymous individuals has a tree
shape. At the same time, constants can be connected in an arbitrary way. We illustrate
graphically several examples of the canonical models below.

Example 2.1.2. Let K = {T ,A}, where T = {A v ∃R, ∃R− v ∃R} and A =

{A(a)}. Then the canonical model UK can be seen as an infinite R-path starting in a,
and can depicted according to the following convention, which will be used throughout
the thesis: dots and lowercase labels represent domain elements, a label A on a domain
element x represents x ∈ AUK , and a label R on an arrow between x and y represents
that (x, y) ∈ RUK :

a awR awRwR awRwRwR
· · ·

A R R R

Example 2.1.3. LetK = {T ,A}, where T = {R v S, ∃R− v ∃S, ∃S− v ∃T, ∃S− v
∃Q} and A = {R(a, b), ∃S(a)}. Then the canonical model UK can be depicted as fol-
lows:

a b

bwS

bwSwT bwSwQ

R, S
S

T Q

18 P R E L I M I N A R I E S

Example 2.1.4. Let K = 〈T ,A〉 where T and A are from Example 2.1.1. Then the
canonical model UK can be depicted as below.

lumixFX100

CompactCamera
DigitalCamera

lumixFX100 · wcameraBattery

lumixFX100 · wcompactCameraLens
BuiltInLens

canon5d

CameraWithExchange
DigitalCamera

canon5d · wcameraBattery

canon5d · wcameraMounts

LensMount

canon5d · wcameraMounts · wlensMounts−
ExchangeLens

cameraBattery

cameraMounts

lensMounts

cameraBattery

compactCameraLens

UK is called the canonical model because every other model of K is more restricted
(or less general) that UK. We formalize generality in terms of homomorphisms. For
an interpretation I and a signature Σ, the Σ-types tIΣ(x) and rIΣ(x, y) for x, y ∈ ∆I

are given by the set of concepts B (respectively, roles R) over Σ, such that x ∈ BI

(respectively, (x, y) ∈ RI). We also use tI (x) and rI (x, y) to refer to the types over
the signature of all DL-LiteR concepts and roles.

Given interpretations I and J , a Σ-homomorphism from I to J is a function h :
∆I 7→ ∆J such that

• h(aI) = aJ , for all constants a interpreted in I ,

• tIΣ(x) ⊆ tJΣ (h(x)), and rIΣ(x, y) ⊆ rJΣ (h(x), h(y)) for all x, y ∈ ∆I .

We say that I is Σ-homomorphically embeddable into J if there exists a Σ-homomor-
phism from I toJ , and I is Σ-homomorphically equivalent toJ if they are Σ-homomor-
phically embeddable into each other. Intuitively, in the former case, I is more general
than J with respect to Σ, and in the latter case, I and J cannot be distinguished on
Σ. If Σ is the set of all DL-LiteR concepts and roles, we call Σ-homomorphism simply
homomorphism.

The theorem below establishes the relationship between the canonical model UK and
arbitrary models of K.

Theorem 2.1.5 ([77]). If K is consistent, UK is a model of K. For every model I of K,
there exists a homomorphism from UK to I .

For an extended KB K = 〈T ,A〉, denote by Null(A) the set of labeled nulls occur-
ring in A. Then the canonical model UK is defined by analogy with the construction
above, where each labeled null l in A is interpreted as itself, and the generating rela-
tionship K is defined between the set Ind(A) ∪Null(A) ∪ {w[R] | R is a basic role}
and the set {w[R] | R is a basic role}. Observe the connection between the labeled nulls
in A and the anonymous individuals in ∆UK : labeled nulls denote exactly such kind of
objects, for which it is known they exist, but their exact value (or name, in our case) is
not known.

2.2 Q U E R I E S A N D C E RTA I N A N S W E R S 19

T H E G E N E R AT I N G M O D E L . In general, the canonical model of a DL-LiteR KBK
can be infinite, which makes it impossible to deal with it practically. So here we define
the generating model of K that is always finite and can be used for deciding various
reasoning tasks efficiently, instead of UK.

Let K = 〈T ,A〉 be an extended KB. Then, the generating model of K, denoted GK,
is defined as:

∆GK = Ind(A) ∪Null(A) ∪Wit(K),
aGK = a, for a ∈ Ind(A),
lGK = l, for l ∈ Null(A),

AUK = {a ∈ Ind(A) | K |= A(a)} ∪ {wR ∈ Wit(K) | T |= ∃R− v A},
PUK = {(a, b) ∈ Ind(A)× Ind(A) | K |= P(a, b)} ∪

{(x, w[R]) | x K w[R], [R] ≤T [P]} ∪
{(w[R], x) | x K w[R], [R−] ≤T [P]}.

It should be clear that GK is polynomially large in the size ofK. Note that, the canonical
model UK can be obtained by “unravelling” the generating model GK.

2.2 Q U E R I E S A N D C E RTA I N A N S W E R S

A k-ary query q over a signature Σ, with k ≥ 0, denoted q(x1, . . . , xk), is a function that
maps every interpretation 〈∆I , ·I 〉 of Σ into a k-ary relation qI ⊆ (∆I)k. In particular,
if k = 0, then q is said to be a Boolean query, denoted q(), and qI is either a relation
containing the empty tuple () (representing the value true), then we write I |= q, or the
empty relation (representing the value false), in that case we write I 6|= q.

Given a KB K with Σ ⊆ Σ(K), the set of certain answers to q over K, denoted by
cert(q,K), is defined as:

cert(q,K) =
⋂

I∈MOD(K)
{(a1, . . . , ak) | {a1, . . . , ak} ⊆ Na and (aI1 , . . . , aIk) ∈ qI}.

Each tuple~a = (a1, . . . , ak) in cert(q,K) is called a certain answer for q overK, and we
write K |= q[~a]. Besides, notice that if q is a Boolean query, then cert(q,K) evaluates
to true if qI evaluates to true for every I ∈ MOD(K), then we write K |= q, otherwise,
it evaluates to false and we write K 6|= q. Notice that the certain answer to a query does
not contain labeled nulls. Moreover, observe that, if K is unsatisfiable, then cert(q,K)
is trivially the set of all possible tuples {(a1, . . . , ak) | ai ∈ Na}, which we denote by
AllTup(q).

The query formalism for which we develop results in this thesis is union of conjunc-
tive queries, a class of well behaving queries widely employed in the database theory
and query answering under ontological constraints. First, we define what a conjunctive
query and its semantics are. A conjunctive query (CQ) over a signature Σ is a formula
of the form

q(~x) = ∃~y. ϕ(~x,~y),

where ~x, ~y are tuples of variables, ~x is the tuple of free variables of q(~x), and ϕ(~x,~y)
is a conjunction of atoms of the form A(t) and P(t, t′), where A is a concept name in

20 P R E L I M I N A R I E S

Σ, P is a role name in Σ, and each of t, t′ is a variable from ~x or ~y. Moreover, given an
interpretation I = 〈∆I , ·I 〉 of Σ, the answer of q over I , denoted by qI , is the set of
tuples~a of elements from ∆I for which there exist a tuple~b of elements from ∆I such
that I satisfies every conjunct in ϕ(~a,~b). Finally, a union of conjunctive queries (UCQ)
over a signature Σ is a first-order formula of the form

q(~x) =
n∨

i=1

qi(~x),

where each qi(~x) (1 ≤ i ≤ n) is a CQ over Σ. The semantics of q is defined then as

qI =
n⋃

i=1

qIi .

2.3 C O M P L E X I T Y M E A S U R E S A N D C O M P L E X I T Y C L A S S E S

One of the objectives of this thesis is studying the computational complexity of the
reasoning problems that will be formally defined in Section 3.2 and that are decision
problems, that is, for each instance of a problem the answer should be “Yes” or “No”.
To assess the complexity we need to specify which complexity measures and complexity
classes we are going to use.

Given a decision problem, the complexity of this problem can be analyzed with re-
spect to different complexity measures depending on which parameters are considered to
be the input and which parameters are considered to be fixed. In this thesis we consider
only the combined complexity: combined complexity is the complexity with respect to
the size |K| of the whole KB K = 〈T ,A〉, which is equal to |T | + |A|, that is, the
number of symbols used to encode T and A respectively.

The complexity of a decision problem is given by the complexity class it belongs to.
Every complexity class represents a set of problems of related resource-based complex-
ity, where by resource is traditionally understood time or space, and resources are being
used by computation devices, like Turing machines [95]. Then, a problem P is said to
be complete for a complexity class C if P belongs to C and every problem in C can
be reduced to P. We list the complexity classes relevant for this thesis in the order of
increasing complexity:

TRIVIAL ⊆ NLOGSPACE ⊆ PTIME ⊆ NP ⊆ PSPACE ⊆ EXPTIME.

For formal definitions of these classes please refer to [58, 81, 22, 104]. Below we give
examples of typical complete problems for these classes that will be used to show lower
bounds in this these.

NLOGSPACE (non-deterministic logarithmic space) A typical NLOGSPACE-complete
problem is reachability in directed graphs.

PTIME (polynomial time) A typical PTIME-complete problem is Circuit Value Prob-
lem.

NP (non-deterministic polynomial time) A typical problem complete for this class is
3-colorability of undirected graphs.

PSPACE (polynomial space) Validity of quantified Boolean formula is a well-known
PSPACE-complete problem.

3
K N OW L E D G E BA S E E X C H A N G E
F R A M E W O R K

In this chapter we formally define the framework within which this PhD work is done.
In Section 3.1, we present an adaptation of the general knowledge exchange framework
proposed in [6] to the case of DLs, and in Section 3.2, we define the space of the reason-
ing problems we interested in solving in this thesis.

3.1 K N O W L E D G E E X C H A N G E F R A M E W O R K

In this section, we introduce the knowledge exchange framework used in the paper. The
starting point to define this framework is the notion of mapping. Assume that Σ1, Σ2

are signatures with no concepts or roles in common. An inclusion E1 v E2 is said to be
from Σ1 to Σ2, if E1 is a concept or a role over Σ1 and E2 is a concept or a role over Σ2.

Definition 3.1.1. A mapping is a tupleM = (Σ1, Σ2, T12), where T12 is a TBox con-
sisting of inclusions from Σ1 to Σ2.

Intuitively,M specifies how a KB over the vocabulary Σ1 should be translated into
a KB over the vocabulary Σ2. Recall that in this thesis, we deal with DL-LiteR TBoxes,
so T12 is assumed to be a set of DL-LiteR concept and role inclusions.

We continue our digital camera example to illustrate the notion of a mapping.

Example 3.1.2. Assume a different ontology DigitalPhoto talking about digital photo
camera which uses the following vocabulary Σ2:

DigitalPhotoCamera(·)
FixedLensCamera(·)
InterchangeableLensCamera(·)

Battery(·)
FixedLens(·)
InterchangeableLens(·)
MountType(·)

requiresBattery(·, ·)
hasFixedLens(·, ·)
hasMountType(·, ·)
mountsOn(·, ·)

Then we can specify the relation between the terms in the different ontologies by means
of a mapping. More formally, letM = (Σ1, Σ2, T12), where Σ1 is the vocabulary from
Example 2.1.1, and T12 =

DigitalCamera v DigitalPhotoCamera

cameraBattery v requiresBattery

∃cameraBattery− v Battery

CompactCamera v FixedLensCamera

compactCameraLens v hasFixedLens

BuiltInLens v FixedLens

CameraWithExchange

v InterchangeableLensCamera

ExchangeLens v InterchangeableLens

LensMount vMountType

cameraMounts v hasMountType

lensMounts v mountsOn

21

22 K N O W L E D G E B A S E E X C H A N G E F R A M E W O R K

T1

source KB K1

T2

target KB K2

Σ1Σ1

source signature

A1

A1

B1 C1

D1

Σ2Σ2

target signature

A2

A2

B2 C2

mappingM

solution

Figure 3: Knowledge Base Exchange Framework.

Thus,M relates the concepts and roles of PhotoCamera ontology with the concepts and
roles of DigitalPhoto ontology.

The semantics of a mapping is defined in terms of a notion of satisfaction for inter-
pretations, which has to deal with interpretations not satisfying the UNA (and, more
generally, the standard name assumption). More specifically, given interpretations I , J
of Σ1 and Σ2, respectively, pair (I ,J) satisfies TBox T12, denoted by (I ,J) |= T12,
if

• for every a ∈ Na interpreted in I or J , it holds that aI = aJ ,

• for every concept inclusion B v C ∈ T12, it holds that BI ⊆ CJ , and

• for every role inclusion R v Q ∈ T12, it holds that RI ⊆ QJ .

Then, SATM(I), the “translation” of I with respect to M, is defined as the set of
interpretations J of Σ2 such that (I ,J) |= T12, and given a set X of interpretations of
Σ1, SATM(X) is defined as

⋃
I∈X SATM(I).

Notice that the connection between the information in I and J is established through
the constants that move from source to target according to the mapping. For this reason,
we require constants to be interpreted in the same way in I and J , i.e., to preserve their
meaning when they are transferred. This does not hold for labeled nulls, which represent
anonymous objects that can be interpreted differently (through different substitutions)
in source and target. This distinction between named individuals (i.e., constants) and
labeled nulls is important in the context of knowledge exchange.

The main problem studied in the knowledge exchange framework is the problem of
translating a KB according to a mapping as it is represented in Figure 3. We formal-
ize this problem through three different notions of translations introduced below (for a
thorough comparison of different notions of solutions see Chapter 4).

3.1.1 Universal Solutions

The first such notion is the concept of solution and universal solution, which are formal-
ized in the definition below.

3.1 K N O W L E D G E E X C H A N G E F R A M E W O R K 23

Definition 3.1.3. Given a mappingM = (Σ1, Σ2, T12) and KBs K1, K2 over Σ1 and
Σ2, respectively, K2 is a solution for K1 underM if

MOD(K2) ⊆ SATM(MOD(K1)).

Thus,K2 is a solution forK1 underM if every interpretation ofK2 is a valid translation
of an interpretation of K1 according to M. Observe that we require K2 to be a KB,
which implies that the TBox of K2 is a finite set of axioms and the ABox of K2 is a finite
set of membership assertions.

Moreover, K2 is a universal solution for K1 underM if

MOD(K2) = SATM(MOD(K1)).

Thus, K2 is designed to exactly represent the space of interpretations obtained by trans-
lating the interpretations of K1 underM [7].

We give an example of a universal solution in the scenario of digital cameras.

Example 3.1.4. Let K1 = 〈T ,A1〉 where T is the TBox of the PhotoCamera KB from
Example 2.1.1, A1 = {CompactCamera(lumixFX100)}, and M the mapping from
Example 3.1.2. If we want to talk about Lumix FX 100 in terms of the DigitalPhoto vo-
cabulary and preserve all models, then the following universal solution K2 = 〈T2,A2〉
for K1 underM, where T2 = ∅ and A2 =

FixedLensCamera(lumixFX100)

DigitalPhotoCamera(lumixFX100)

requiresBattery(lumixFX100, b)

hasFixedLens(lumixFX100, l)

Battery(b)

FixedLens(l)

with fresh labeled nulls b and l, is a candidate KB.

For more examples of universal solutions see Section 4.1.

3.1.2 Universal UCQ-Solutions

A second class of translations is obtained by observing that universal solutions are too re-
strictive for some applications (see, for instance, Examples 4.1.6 and 4.1.7 for the cases
when universal solutions do not exist), in particular when one only needs a translation
storing enough information to properly answer some queries. For the particular case of
UCQ, this gives rise to the notions of UCQ-solution and universal UCQ-solution.

Definition 3.1.5. Given a mappingM = (Σ1, Σ2, T12), a KB K1 = 〈T1,A1〉 over Σ1

and a KBK2 over Σ2,K2 is a UCQ-solution forK1 underM if for each UCQ q over Σ2:

cert(q, 〈T1 ∪ T12,A1〉) ⊆ cert(q,K2),

while K2 is a universal UCQ-solution for K1 underM if for each UCQ q over Σ2:

cert(q, 〈T1 ∪ T12,A1〉) = cert(q,K2).

The following is an example of a universal UCQ-solution in the scenario of digital
cameras.

24 K N O W L E D G E B A S E E X C H A N G E F R A M E W O R K

Example 3.1.6. Consider K1 = 〈T ,A1〉 from Example 3.1.4. If we want to talk about
Lumix FX 100 in terms of the DigitalPhoto vocabulary and preserve only the answers
to UCQ, then the following universal UCQ-solution K′2 = 〈T ′2 ,A′2〉 for K1 underM,
where A′2 = {FixedLensCamera(lumixFX100)} and T ′2 =

DigitalPhotoCamera v ∃requiresBattery

∃requiresBattery− v Battery

FixedLensCamera v DigitalPhotoCamera

FixedLensCamera v ∃hasFixedLens

∃hasFixedLens− v FixedLens

is a candidate KB.

Note that the ABoxes and the TBoxes of K2 and K′2 from Examples 3.1.4 and 3.1.6
play different roles: K2 has a big ABox and no TBox, while K′2 has a small ABox and
a big TBox. In Chapter 4 we will go into this difference in more detail.

3.1.3 UCQ-Representations

Finally, a last class of translations is obtained by considering that users want to translate
as much of the knowledge in a TBox as possible, as a lot of effort is put in practice when
constructing a TBox. This observation gives rise to the notion of UCQ-representation [7],
which formalizes the idea of translating a source TBox according to a mapping.

Definition 3.1.7. Assume thatM = (Σ1, Σ2, T12) and T1, T2 are TBoxes over Σ1 and
Σ2, respectively. Then T2 is a UCQ-representation of T1 underM if for every UCQ q
over Σ2 and every ABox A1 over Σ1 that is consistent with T1:

cert(q, 〈T1 ∪ T12,A1〉) = cert(q, 〈T2 ∪ T12,A1〉). (†)

Notice that A1 is required to be consistent with T1 in this definition, to avoid the triv-
ialization of the notion of certain answers because of the use of an inconsistent knowl-
edge base (if 〈T1,A1〉 is inconsistent, cert(q, 〈T1 ∪ T12,A1〉) = AllTup(q), i.e., every
possible tuple of constants is in the certain answer).

Below we provide a simple example of a UCQ-representation in the digital camera
scenario.

Example 3.1.8. ConsiderM = (Σ1, Σ2, T12) from Example 3.1.2 and a source TBox
T1 = {CompactCamera v DigitalCamera, CompactCamera v ∃compactCameraLens}.
Then TBox T2 = {FixedLensCamera v DigitalPhotoCamera, FixedLensCamera v
∃hasFixedLens} is a UCQ-representation of T1 underM.

To give a better intuition behind the definition of UCQ-representations, assume a
graphical presentation of the certain answers to a query q over a KB as the result of
applying the TBox arrow to the ABox. Then we can obtain the diagram in Figure 4
illustrating the notion of UCQ-representations. Here the arrows corresponding to T1 and
T2 are the “standard” isa arrows, and the arrows corresponding to T12 are the wavy
arrows. One can see that this diagram is, in fact, a commutative diagram, i.e., if T2 is
a UCQ-representation, from the point of view of certain answers, it does not matter if
first to follow a T1-edge and then a T12-edge, or first to follow a T12-edge and then a
T2-edge.

3.2 T H E S PAC E O F R E A S O N I N G P RO B L E M S 25

A1

cert(q, 〈T1 ∪ T12,A1〉)

cert(q, 〈T2 ∪ T12,A1〉)T1

T12

T12

T2

Figure 4: Graphical presentation of a UCQ-representation T2 of T1 underM = (Σ1, Σ2, T12).

To conclude this section, we would like to emphasize on why we are interested in
UCQ-representations. First of all, UCQ-representations allow to preserve in the target
the implicit information from the source, which is conform with the idea of knowledge
base exchange as opposed to plain data exchange. Second, UCQ-representations allow
to minimize the amount of the extensional information that has to be transferred from the
source (which can be large in size), moreover they do not depend on the actual data, so
that if the source ABox has been updated it is sufficient to update only the target ABox.
Finally, if there exists a UCQ-representation T2 of a source TBox T1 under a mapping
M, we obtain a straightforward algorithm to construct a universal UCQ-solution for
a given source KB 〈T1,A1〉: take a target ABox obtained by “translating” the source
ABoxA1 with respect toM and denote it byM(A1), then 〈T2,M(A1)〉 is a universal
UCQ-solution for 〈T1,A1〉 underM (see Figure 5). This is how UCQ-representations
can “fit” into the knowledge base exchange framework. Observe thatM(A1) could be
defined as a universal UCQ-solution for 〈∅,A1〉 underM.

T1 T2

Σ1Σ1

source signature

A1

A1

B1 C1

D1

Σ2Σ2

target signature

M(A1)

A2

B2 C2

mappingM

UCQ-representation

universal
UCQ-solution

Figure 5: UCQ-representations in the context of Knowledge Base exchange.

3.2 T H E S PAC E O F R E A S O N I N G P RO B L E M S

In this section we introduce the space of the reasoning problems, whose computational
complexity we study in this thesis. Our problem space has three dimensions and can be
depicted as in Figure 6.

26 K N O W L E D G E B A S E E X C H A N G E F R A M E W O R K

Translation

ABox

Decision problem

universal solution

universal UCQ-solution

UCQ-representation

sim
ple ABoxes

extended ABoxes

membership

non-emptiness

Figure 6: The Space of Reasoning Problems.

First of all, we are interested in the task of computing a translation of a KB or a TBox
according to a mapping: it is arguably, the most important problem in knowledge ex-
change [6, 7], as well as in data exchange [51, 75]. Thus, the first dimension defines the
type of translation, and as we presented in the previous section, there are three classes of
them: 1) universal solutions, 2) universal UCQ-solutions, and 3) UCQ-representations.

Secondly, as it will become clear in Chapter 4, in order to be able to compute a
translation, in some cases it is necessary to use extended ABoxes. Therefore, the second
dimension is along the type of ABoxes allowed to be used in translations: 1) simple
ABoxes, and 2) extended ABoxes.

Finally, to study the computational complexity of this task for the different notions of
translations and target ABoxes, we consider two classical decision problems: the mem-
bership problem and the non-emptiness problem, which constitute the third dimension,
the decision problem.

1) As usual, the membership problem is concerned with deciding whether a particular
instance (a target KB or target TBox, in our case) belongs to the class of the positive
instances (all solutions for a given source KB or TBox under a given mapping, in our
case). Since we consider three classes of translations: universal solutions, universal
UCQ-solutions and UCQ-representations, we are going to deal with three member-
ship problems.

The membership problem for universal solutions (resp. universal UCQ-solutions)
has as input a mapping M = (Σ1, Σ2, T12) and KBs K1, K2 over Σ1 and Σ2, re-
spectively. Then the question to answer is whether K2 is a universal solution (resp.
universal UCQ-solution) for K1 underM. Moreover, the membership problem for
UCQ-representations has as input a mapping M = (Σ1, Σ2, T12) and TBoxes T1,
T2 over Σ1 and Σ2, respectively, and the question to answer is whether T2 is a UCQ-
representation of T1 underM.

2) The non-emptiness problem corresponds to the existential version of the membership
problem, and it is concerned with deciding whether there exists any positive instance

3.2 T H E S PAC E O F R E A S O N I N G P RO B L E M S 27

(any solution for a given source KB or TBox under a given mapping, in our case).
Again, we consider three non-emptiness problems, one for each class of translations.

Formally, the non-emptiness problem for universal solutions (resp. universal UCQ-
solutions) has as input a mappingM = (Σ1, Σ2, T12) and a KB K1 over Σ1. Then
the question to answer is whether there exists a universal solution (resp. universal
UCQ-solution) for K1 under M. Moreover, the non-emptiness problem for UCQ-
representations has as input a mappingM = (Σ1, Σ2, T12) and a TBox T1 over Σ1,
and the question to answer is whether there exists a UCQ-representation of T1 under
M. In the case it exists, we say that T1 is UCQ-representable underM, otherwise,
T1 is not UCQ-representable.

In addition to the latter problem, we study the problem of weak UCQ-representability,
which is of interest in the case T1 is not UCQ-representable. So we want to know
whether it is possible to “fix” the mapping so that T1 becomes UCQ-representable.
Formally, we say T1 is weekly UCQ-representable under M if there exists a map-
ping M? = (Σ1, Σ2, T ?

12) such that T12 ⊆ T ?
12, T1 ∪ T12 |= T ?

12, and T1 is UCQ-
representable underM?.

Note that the non-emptiness problem is directly related with the problem of comput-
ing translations of a KB or a TBox according to a mapping.

Observe that UCQ-representations do not depend on target ABoxes, therefore, in to-
tal we study 11 different reasoning problems: 4 for universal solutions, 4 for universal
UCQ-solutions and 3 (membership, non-emptiness and weak-representability) for UCQ-
representations. In Chapter 5, we investigate the computational complexity of the rea-
soning problems for universal solutions and present the obtained results. Chapter 6 is
dedicated to universal UCQ-solutions and their complexity, and in Chapter 7, we study
the notion of UCQ-representability and the reasoning problems associated to it. Note
that all results are carried out for DL-LiteR.

4
T H E S H A P E O F S O L U T I O N S

In this chapter we discuss the notions of translations defined in Section 3.1: each sepa-
rately in Sections 4.1, 4.2, and 4.3, and then against each other in Section 9.2.

4.1 U N I V E R S A L S O L U T I O N S

In what follows, we show some known results and examples of universal solutions.
We start with simple examples of universal solutions.

Example 4.1.1. LetM = (Σ1, Σ2, T12), where Σ1 = {A(·), B(·)}, Σ2 = {A′(·), B′(·)},
and T12 = {A v A′, B v B′}. Furthermore, assume that K1 = 〈T1,A1〉, where
T1 = {} and A1 = {A(a), B(b)}. Then the KB K2 = 〈T2,A2〉, where T2 = ∅ and
A2 = {A′(a), B′(b)}, is a straightforward universal solution for K1 underM.

Example 4.1.2. LetM = (Σ1, Σ2, T12), where Σ1 = {A(·), B(·)}, Σ2 = {A′(·), B′(·)},
and T12 = {A v A′, B v B′}. Furthermore, assume that K1 = 〈T1,A1〉, where
T1 = {A v B} and A1 = {A(a)}. Then the KB K2 = 〈T2,A2〉, where T2 = ∅ and
A2 = {A′(a), B′(a)}, is a universal solution for K1 underM.

Universal solutions are the preferred solutions to materialize when exchanging rela-
tional databases [51, 52, 20], also in the case of relational databases with incomplete
information [6]. However, universal solutions were not thought to take into considera-
tion source data including implicit knowledge (in the form of TBoxes), which is demon-
strated in the following example.

Example 4.1.3. Let M = (Σ1, Σ2, T12) and K1 = 〈T1,A1〉 be as in Example 4.1.2.
Furthermore, assume thatK′2 = 〈T ′2 ,A′2〉, where T ′2 = {A′ v B′} andA′2 = {A′(a)}.
Then we have that K′2 is a solution for K1 under M. However, we also have that K′2
is not a universal solution for K1 underM. In fact, if I is an interpretation of Σ1 such
that ∆I = {a}, AI = {a} and BI = {a}, and J is an interpretation of Σ2 such that
∆J = {a, b}, B′J = {a} and A′J = {a, b}, then we have that I1 is a model of K1

and (I ,J) |= T12 and, therefore, J ∈ SATM(MOD(K1)). Thus, we conclude that
SATM(MOD(K1)) 6= MOD(K′2) as J is not a model of K′2 since it does not satisfy
inclusion A′ v B′.

In Examples 4.1.1, 4.1.2 and 4.1.3, a case is shown where universal solutions are
not able to represent the implicit source knowledge, as we are only able to construct
a universal solution with an empty TBox. In the following proposition, we prove that
this is not an isolated phenomenon. In this proposition, we say that a TBox T over a
signature Σ is trivial if for every interpretation I of Σ, it holds that I |= T (or, in other
words, if T is equivalent to the empty set of formulas).

29

30 T H E S H A P E O F S O L U T I O N S

Proposition 4.1.4. LetM = (Σ1, Σ2, T12) be a DL-LiteR-mapping, K1 = 〈T1,A1〉 a
DL-LiteR KB over Σ1, and K2 = 〈T2,A2〉 a DL-LiteR KB over Σ2. If 〈T1 ∪ T12,A1〉
is consistent and K2 is a universal solution for K1 underM, then T2 is a trivial TBox.

Proof. For the sake of contradiction, assume that T2 is not trivial, that is, there exists an
interpretation J ? = 〈∆J ?

, ·J ?〉 of Σ2 such that J ? 6|= T2.
Given that 〈T1 ∪ T12,A1〉 is consistent, there exists an interpretation I? = 〈∆I? , ·I?〉

of (Σ1 ∪ Σ2) such that I? |= 〈T1 ∪ T12,A1〉. Then define interpretations I = 〈∆I , ·I 〉
of Σ1 and J = 〈∆J , ·J 〉 of Σ2 as follows: (1) ∆I = ∆J = ∆I

?
; (2) aI = aJ = aI

?
,

for every constant a ∈ Na; (3) AI1 = AI
?

1 and AJ2 = AI
?

2 , for every pair of concept
names A1 ∈ Σ1 and A2 ∈ Σ2; and (4) PI1 = PI

?

1 and PJ2 = PI
?

2 , for every pair of role
names P1 ∈ Σ1 and P2 ∈ Σ2. By definition of I , J and given that I? |= 〈T1 ∪T12,A1〉,
we conclude that I ∈ MOD(K1) and (I ,J) |= T12.

Without loss generality, we assume that ∆I
? ∩ ∆J

?
= ∅. Then define an interpre-

tation J ′ of Σ2 as follows: (1) ∆J
′
= ∆I

? ∪ ∆J
?
; (2) aJ

′
= aI

?
, for every con-

stant a ∈ Na; (3) AJ
′
= AI

? ∪ AJ
?
, for every concept name A ∈ Σ2; and (4)

PJ
′
= PI

? ∪ PJ
?
, for every role name P ∈ Σ2. Given that (I ,J) |= T12, we con-

clude that (I ,J ′) |= T12. In fact, for every concept inclusion B1 v B2 ∈ T12, where
B1, B2 are basic concepts, we have that BI1 ⊆ BJ

′

2 given that BI1 ⊆ BJ2 , BJ2 = BI
?

2
and BJ

′

2 = BI
?

2 ∪ BJ
?

2 . Moreover, for every concept inclusion B1 v ¬B2 ∈ T12, where
B1, B2 are basic concepts, we have that BI1 ⊆ (¬B2)J

′
given that BI1 ⊆ (¬B2)J ,

(¬B2)J = (¬B2)I
?

and (¬B2)J
′
= (¬B2)I

? ∪ (¬B2)J
?

(since BJ
′

2 = BI
?

2 ∪ BJ
?

2
and ∆I

? ∩ ∆J
?
= ∅). Finally, for role inclusions R1 v R2 and R1 v ¬R2 in T12,

where R1, R2 are basic roles, we conclude that RI1 v RJ
′

2 and RI1 v (¬R2)J
′
as in the

previous two cases.
From the results in the previous paragraph, we conclude thatJ ′ ∈ SATM(MOD(K1))

(since J ′ ∈ SATM(I) and I ∈ MOD(K1)). On the other hand, we have that J ′ 6|= T2,
by definition of J ′ and given that J ? 6|= T2. Thus, we have that J ′ 6|= K2 and, thus,
J ′ 6∈ MOD(K2). Therefore, we conclude that SATM(MOD(K1)) 6= MOD(K2), which
contradicts the fact that K2 is a universal solution for K1 underM. This concludes the
proof of the proposition.

This proposition shows that universal solutions can be viewed as target ABoxes, as
the TBox in the generated universal solutions is trivial. Therefore, from now on, in the
context of universal solutions, we only consider target KBs of the form 〈∅,A2〉, and we
treat ABoxes A2 as such KBs.

The following example shows that extended ABoxes are necessary to guarantee the
existence of universal solutions in certain cases.

Example 4.1.5. Assume that M =
(
{A(·), R(·, ·)}, {B(·)}, {∃R− v B}

)
, and let

K1 = 〈T1,A1〉, where T1 = {A v ∃R} and A1 = {A(a)}. Then a natural way
to construct a universal solution for K1 under M is to ‘populate’ the target with all
facts implied by U〈T1∪T12,A1〉 (as it is usually done in data exchange). Thus, the ABox
A2 = {B(n)}, where n is a labeled null, is a universal solution for K1 under M if
nulls are allowed, which can be readily checked using the definition. Notice that here,
a universal solution with non-extended ABoxes does not exist: substituting n by any
constant is too restrictive, ruining universality.

Our next observation is that there are cases when universal solutions do not exist in
OWL 2 QL. This is shown by the following two examples. In the first case, a universal

4.1 U N I V E R S A L S O L U T I O N S 31

solution does not exist as it is not possible to represent an infinite number of facts in
a finite ABox, and the second case illustrates some issues regarding the absence of the
UNA, which has to be given up to comply with the OWL 2 QL standard, and regarding
the use of disjointness assertions.

Example 4.1.6. LetM = (Σ1, Σ2, T12), where Σ1 = {A(·), R(·, ·)}, Σ2 = {Q(·, ·)},
and T12 = {R v Q}. Furthermore, assume that K1 = 〈T1,A1〉, where A1 = {A(a)}
and T1 = {A v ∃R, ∃R− v ∃R}. In this case, we have that U〈T1∪T12,A1〉 is infinite:

a awR awRwR awRwRwR
· · ·

R, Q R, Q R, Q

so in principle one would need an infinite number of labeled nulls to construct a uni-
versal solution. Therefore, if A2 is an (extended) ABox over Σ2, then A2 cannot be a
universal solution for K1 underM.

Example 4.1.7. Consider Example 4.1.1 with T1 = {A v ¬B}. With this seemingly
harmless disjointness assertion in T1, A2 is no longer a universal solution (not even
a solution) for K1 under M. The reason for that is the lack of the UNA on the one
hand, and the presence of the disjointness assertion in T1 that forces a and b to be
interpreted differently in the source, on the other hand. Thus, for a model J of A2 such
that aJ = bJ , A′J = B′J = {aJ }, there is no model I ofK1 such that (I ,J) |= T12

(hence, aI = aJ and bI = bJ). In general, there is no universal solution for K1 under
M, even though K1 and T12 are consistent with each other.

We formalize the intuition in the previous examples.

Proposition 4.1.8. There exists a mappingM = (Σ1, Σ2, T12) and a KBK1 = 〈T1,A1〉
over Σ1 such that there is no universal solution for K1 underM.

As for the cases when universal solutions do exist, we use the following fact: it can be
shown (c.f. Lemma 5.1.2) that in the language without disjointness assertions, an ABox
A2 is a universal solution for 〈T1,A1〉 underM = (Σ1, Σ2, T12) if and only if UA2 is
Σ2-homomorphically equivalent to U〈T1∪T12,A1〉. Below we illustrate two principal cases
when universal solutions exist. In the first case a universal solution exists due to a loop
on the ABox constants, and in the second case, due to inverse roles in U〈T1∪T12,A1〉.

Example 4.1.9. Consider Example 4.1.6 with Σ1 = {A(·), R(·, ·), S(·, ·)}, T12 =

{R v Q, S v Q} and A1 = {A(a), S(a, a)}. In this case, U〈T1∪T12,A1〉 is also infinite,
but now there is a loop on a, which allows to deal with all facts implied by U〈T1∪T12,A1〉.
Consider ABox A2 = {Q(a, a)}. In the following picture, it is easy to see h is a Σ2-
homomorphism from U〈T1∪T12,A1〉 to UA2 . The existence of a Σ2-homomorphism in the
other direction is trivial and, hence, A2 is a universal solution for K1 underM.

UA2 :
a

Q

Σ2-reduct of
U〈T1∪T12,A1〉

:
a awR awRwR awRwRwR

· · ·
Q Q Q

Q

h

Example 4.1.10. Consider Example 4.1.6 with Σ1 = {A(·), R(·, ·), S(·, ·)}, T12 =

{R v Q, S v Q−}, and T1 = {A v ∃R, ∃R− v ∃S, ∃S− v ∃R}. Again, in this

32 T H E S H A P E O F S O L U T I O N S

example U〈T1∪T12,A1〉 is infinite, however, now it is possible to reuse a finite number of
nulls to represent all of them, as depicted below. Thus, we have that for a labeled null
n, A2 = {Q(a, n)} is a universal solution for K1 = 〈T1,A1〉 under M, if nulls are
allowed:

UA2 :
a nQ

Σ2-reduct of
U〈T1∪T12,A1〉

:
a awR awRwS awRwSwR

· · ·
Q Q− Q

h

Finally, we address the question of how expensive it is to compute universal solutions.
We show that universal solutions can be of exponential size for the case of DL-LiteR,
thus indicating that it can be difficult to deal with them in practice. In this proposition,
|M| and |K| are used to denote the sizes of a mappingM and a KB K, respectively.

Proposition 4.1.11. There exists a family of mappings {Mn = (Σn
1 , Σn

2 , T n
12)}n≥1 and

a family of KBs {Kn}n≥1 such that every Kn is defined over Σn
1 (n ≥ 1), and the

smallest universal solution for Kn underMn is of size 2Ω(|Mn|+|Kn|).

Proof. Let n be a natural number greater or equal 1. Then Mn = (Σn
1 , Σn

2 , T n
12) is

defined as follows:

Σn
1 = {A(·)} ∪ {Rk

i (·, ·) | i ∈ {1, . . . , n}, k ∈ {0, 1}},
Σn

2 = {Qk(·, ·) | k ∈ {0, 1}},
T n

12 = {Rk
i v Qk | i ∈ {1, . . . , n}, k ∈ {0, 1}},

and Kn
1 = 〈T n

1 ,An
1〉, where T n

1 is the union of the axioms

A v ∃Rk
1, ∃Rk

i
− v ∃Rj

i+1

for i ∈ {1, . . . , n − 1}, k, j ∈ {0, 1} and An
1 consists of one membership assertion

A(a).
For every n ≥ 1, a universal solution An

2 for Kn
1 under Mn exists. This universal

solutionsAn
2 is an edge-labeled full binary tree of depth n (that contains 2n leaves). The

root of this tree is a, the label of each edge is one of the role names Qk, and each node
is a labeled null except for the root. Below we depict A3

2, where x1, . . . , x14 are labeled
nulls:

a

x1 x2

x3 x4 x5 x6

x7 x8 x9 x10 x11 x12 x13 x14

Q0 Q1

Q0 Q1 Q0 Q1

Q0 Q1 Q0 Q1 Q0 Q1 Q0 Q1

Obviously, |An
2 | is of size 2Ω(|Mn|+|Kn

1 |). We show that An
2 is the smallest universal

solution for Kn
1 underMn. For this, we use the fact that universal solutions are homo-

morphically equivalent to each other (see Lemma 5.1.2) and the following property of
graphs:

4.2 U N I V E R S A L U C Q - S O L U T I O N S 33

(C O R E) C is a core of a graph A if and only if C is a core, C is a subgraph of A, and
there is a homomorphism from A to C,

By contradiction, assume that An
2 is not the smallest universal solution, that is, An

2 is
not a core. Hence there exists a tree C such that C is a proper subtree of An

2 , C is a core,
and there is a homomorphism h from An

2 to C. Moreover, h is identity on the elements
of C (Proposition 3.3 in [52]). Let elements s, t, q ∈ Ind(An

2) ∪ Null(An
2) be such that

s is a parent of t, t is a parent of q (the parent relation is defined in the standard way for
trees), and Qi(s, t) ∈ An

2 , Qj(t, q) ∈ An
2 for i, j ∈ {0, 1}.

First, assume Qi(s, t) ∈ C and Qj(t, q) /∈ C. Therefore, h(s) = s, h(t) = t and
h(q) must be equal to either to q or to s. In any case we get contradiction with h being
a homomorphism from An

2 to C: Qj /∈ rUCΣ2
(t, q) = {}, nor Qj− /∈ rUCΣ2

(s, t) = {Qi}.
Secondly, assume Qi(s, t) /∈ C and Qj(t, q) ∈ C. Similarly to the first case, h(t) = t

and h(q) = q, hence h(s) must be equal to either to s or to q, so h is not a homomor-
phism.

Finally, assume Q0(a, x1) ∈ C and Q1(a, x2) /∈ C. Then, h(a) = a, h(x1) = x1 and
h(x2) must be equal either to x2 or tox1, which implies that h is not a homomorphism.

Contradiction rises from the assumption thatAn
2 is not the smallest universal solution.

Hence the claim follows.

4.2 U N I V E R S A L U C Q - S O L U T I O N S

Our first observation is that the notion of UCQ-solutions is a relaxation of the notion of
solutions, hence every universal solution from the previous section is also a universal
UCQ-solution. It is formalized in the following proposition.

Proposition 4.2.1. LetM = (Σ1, Σ2, T12) be a mapping, K1 a KB over Σ1, and K2 a
KB over Σ2. If K2 is a (universal) solution for K1 underM, then K2 is a (universal)
UCQ-solution for K1 underM.

Proof. Let K2 be a solution for K1 = 〈T1,A1〉 under M and q a UCQ over Σ2. We
show cert(q, 〈T1 ∪ T12,A1〉) ⊆ cert(q,K2).

Assume J is a model of K2. Since K2 is a solution for K1 underM, there exists a
model I of K1 such that (I ,J) |= T12. LetH be the interpretation of Σ1 ∪ Σ2 defined
as the union of I and J , that is, H = 〈∆H, ·H〉, ∆H = ∆I ∪ ∆J , aH = aI for each
a ∈ Na, AH = AI for each concept name A ∈ Σ1, AH = AJ for each concept name
A ∈ Σ2, PH = PI for each role name P ∈ Σ1, and PH = PJ for each role name
P ∈ Σ2. ThenH is a model of 〈T1 ∪ T12,A1〉.

Suppose ~a ∈ cert(q, 〈T1 ∪ T12,A1〉), it implies H |= q(~a). Next, as q is a target
query, we have that J |= q(~a). It holds for arbitrary J , therefore we conclude that
~a ∈ cert(q,K2).

Now, letK2 be a universal solution forK1 underM. In addition, we show cert(q,K2) ⊆
cert(q, 〈T1 ∪ T12,A1〉).

Assume I is a model of K1 and J is an interpretation of Σ2 such that (I ,J) |= T12.
SinceK2 is a solution forK1 underM, it follows J is a model ofK2. The interpretation
H defined as above is again a model of 〈T1 ∪ T12,A1〉.

34 T H E S H A P E O F S O L U T I O N S

Suppose~a ∈ cert(q,K2), it implies J |= q(~a), and since q is a target query and J
andH coincide on constants and target symbols, it followsH |= q(~a).H is an arbitrary
model of 〈T1 ∪ T12,A1〉, therefore~a ∈ cert(q, 〈T1 ∪ T12,A1〉).

As it is expected, the converse direction does not hold. In our next example we demon-
strate a universal UCQ-solution that has a non-trivial TBox, therefore is not a universal
solution.

Example 4.2.2. Consider K1,M and K′2 from Example 4.1.3. We have that K′2 is also
a universal UCQ-solution for K1 underM.

Notably, the ABox of K′2 is smaller than the ABox of the universal solution K2

(see Example 4.1.2). In many cases, universal UCQ-solutions allow for having smaller
ABoxes: there is no need to materialize all facts because they can be derived using ax-
ioms in the target TBox.

In Section 4.1 we discussed the cases when universal solutions do not exist. Here we
observe that there are cases when universal solutions do not exist but universal UCQ-
solutions do. First, an infinite chain can be implied by the target TBox, which is ex-
plained in Example 4.2.3. Second, disjointness assertions in the source or the mapping
does not have impact on universal UCQ-solutions, which is explained in Example 4.2.4.

Example 4.2.3. Consider M and K1 from Example 4.1.6. Recall that there exists no
universal solution for K1 underM. Instead, KB K2 = 〈T2,A2〉, where T2 = {∃Q− v
∃Q} and A2 = {∃Q(a)} is a universal UCQ-solution for K1 underM. In fact, all and
only (up to query equivalence) queries q of the form

q = ∃x1, · · · , xn+1.Q(x0, x1), · · · , Q(xn, xn+1)

where x0 = a, n ≥ 0 evaluate to true over 〈T1 ∪ T12,A1〉. It is easy to see that the same
queries evaluate to true over K2.

Example 4.2.4. ConsiderM, K1, and A2 from Example 4.1.7. Recall that A2 is not a
universal solution for K1 underM. However, notably, A2 is a universal UCQ-solution
for K1 under M. Moreover, A2 remains a universal UCQ-solution for K1 under M
independently of whether the unique name assumption is employed or not.

We formalize the intuition in the previous examples.

Proposition 4.2.5. There exists a mappingM = (Σ1, Σ2, T12) and a KBK1 = 〈T1,A1〉
over Σ1 such that there is no universal solution for K1 underM, while there exists a
universal UCQ-solution for K1 underM.

Unfortunately, there are also cases when universal UCQ-solutions do not exist.

Example 4.2.6. Consider Example 4.1.9 with A1 = {A(a), S(a, b)}. Then the canoni-
cal model of 〈T1 ∪ T12,A1〉 can be depicted as follows

Σ2-reduct of
U〈T1∪T12,A1〉

:
ab awR awRwR awRwRwR

· · ·
Q Q Q Q

4.3 U C Q - R E P R E S E N TAT I O N S 35

and all and only (up to query equivalence) queries q of the form

q = ∃x1, · · · , xn+1.Q(x0, x1), · · · , Q(xn, xn+1)

and q = Q(a, b), where x0 = a, n ≥ 0, evaluate to true over 〈T1 ∪ T12,A1〉.
In this case, the basic requirement for a KB K2 = 〈T2,A2〉 to be a universal UCQ-

solution for K1 under M is that A2 contain {∃Q(a), Q(a, b)}. Hence, a similar ap-
proach to Example 4.2.3 with having the axiom ∃Q− v ∃Q in T2 does not work, as
it would also make the query of the form ∃x.Q(b, x) evaluate to true over K2, while it
evaluates to false over 〈T1 ∪ T12,A1〉. In general, for every TBox T2 over Σ2 and every
ABox A2 s.t. A2 ⊇ {∃Q(a), Q(a, b)}, 〈T2,A2〉 is not a universal UCQ-solution for
K1 underM.

To continue with the negative results, in some cases we cannot avoid having universal
UCQ-solutions of exponential size.

Proposition 4.2.7. There exists a family of mappings {Mn = (Σn
1 , Σn

2 , T n
12)}n≥1 and a

family of KBs {Kn}n≥1 such that every Kn is defined over Σn
1 (n ≥ 1), and the smallest

universal UCQ-solution for Kn underMn is of size 2Ω(|Mn|+|Kn|).

Proof. Let n ≥ 1 be a natural number. Then mappingMn = (Σn
1 , Σn

2 , T n
12) is defined

as follows:

Σn
1 = {A(·)} ∪ {Rk

i (·, ·), Sk(·, ·) | i ∈ {1, . . . , n}, k ∈ {0, 1}},
Σn

2 = {Qk(·, ·) | k ∈ {0, 1}},
T n

12 = {Rk
i v Qk, Sk v Qk | i ∈ {1, . . . , n}, k ∈ {0, 1}}.

Moreover, knowledge baseKn
1 is defined as 〈T n

1 ,An
1〉, where T n

1 is defined as the union
of the axioms

A v ∃Rk
1, ∃Rk

i
− v ∃Rj

i+1

for i ∈ {1, . . . , n− 1}, k, j ∈ {0, 1}, and An
1 is defined as {A(a), S0(b, c), S1(d, e)},

where a, b, c, d, e are pairwise distinct constants.
For every n ≥ 1, a universal solution An

2 for Kn
1 under Mn exists. This univer-

sal solution An
2 consists of membership assertions Q0(b, c), Q1(d, e) together with an

edge-labeled full binary tree of depth n (that contains 2n leaves). As in the proof of
Proposition 4.1.11, the root of this tree is a, the label of each edge is one of the role
names Qk (k ∈ {0, 1}), and the tree contains labeled nulls in every node except for the
root.

In this case, there exist no universal UCQ-solution distinct from the universal solu-
tions for Kn

1 underMn, as none of the non-trivial axioms over Σn
2 = {Q0, Q1} can be

present in the target. Hence, as in the proof of Proposition 4.1.11, we can conclude that
An

2 is the smallest universal UCQ-solution for Kn
1 underMn, from which the proposi-

tion follows.

4.3 U C Q - R E P R E S E N TAT I O N S

We start by discussing several examples where it becomes clear how UCQ-representations
depend on the mapping. First, we consider signatures with concepts only.

36 T H E S H A P E O F S O L U T I O N S

Example 4.3.1. Assume thatM = (Σ1, Σ2, T12), where Σ1 = {A(·), B(·), C(·)} and
Σ2 = {A′(·), B′(·), C′(·)}. Moreover, let T1 = {A v B}. Consider the following
cases of T12:

(1) T12 = {B v B′}.
Then there exists no UCQ-representation: take ABox A1 = {A(a)}, then query
q = B′(a) evaluates to true over 〈T1 ∪ T12,A1〉. However, for every target TBox
T2, q evaluates to false over 〈T2 ∪ T12,A1〉.

(2) T12 = {A v A′, B v B′}.
Then as expected, T2 = {A′ v B′} is a UCQ-representation of T1 underM.

(3) T12 = {A v A′, B v B′, A v C′}.
Then, there exist several UCQ-representations: T2 = {A′ v B′}, T ′2 = {C′ v B′}
and their combination.

(4) T12 = {A v A′, B v B′, C v A′}.
Then, there exists no UCQ-representation: on the one hand, if a target TBox contains
A′ v B′, then for A1 = {C(c)}, q = B′(c) evaluates to true over 〈T2 ∪ T12,A1〉
and to false over 〈T1∪T12,A1〉. On the other hand, if a target TBox does not contain
A′ v B′, then for A1 = {A(a)}, q = B′(a) evaluates to true over 〈T1 ∪ T12,A1〉
and to false over 〈T2 ∪ T12,A1〉.

(5) T12 = {A v A′, B v B′, A v C′, C v A′}.
Then, T ′2 = {C′ v B′} is a UCQ-representation of T1 underM. Note that T2 =

{A′ v B′} is not a UCQ-representation of T1 under M for the same reason as
explained in item (4).

These cases can be depicted in the following ER diagrams, where source concepts are
shown in green, target concepts in blue, and the mapping connections are drawn with
“wavy” arrows:

A

C

B

A′

C′

B′

(1)

A

C

B

A′

C′

B′

(2)

A

C

B

A′

C′

B′

(3)

A

C

B

A′

C′

B′

(4)

A

C

B

A′

C′

B′

(5)

In the next example we also consider roles.

Example 4.3.2. Assume that M = (Σ1, Σ2, T12), where Σ1 = {A(·), R(·, ·)} and
Σ2 = {A′(·), R′(·, ·), B′(·)}. Moreover, let T1 = {A v ∃R}. Consider the following
cases of T12:

(1) T12 = {A v A′, ∃R− v B′}.
Then there exists no UCQ-representation of T1 underM: takeA1 = {A(a)} and a
Boolean target query q = ∃x.

(
A′(a) ∧ B′(x)

)
. Then q and only q evaluates to true

over 〈T1 ∪T12,A1〉. Let us consider two target TBoxes T2 such that q also evaluates
to true over 〈T2 ∪ T12,A1〉:

4.3 U C Q - R E P R E S E N TAT I O N S 37

a) T2 = {A′ v B′}. Then for the query q′ = B′(a), 〈T2 ∪ T12,A1〉 |= q′, while
〈T1 ∪ T12,A1〉 6|= q′. Hence T2 is not a UCQ-representation.

b) T2 = {A′ v ∃R′, ∃R′− v B′}. Then for the query q′ = ∃x.R′(a, x),
〈T2 ∪ T12,A1〉 |= q′, while 〈T1 ∪ T12,A1〉 6|= q′. Hence T2 is not a UCQ-
representation.

(2) T12 = {A v A′, ∃R− v B′, R v R′}.
Then T2 = {A′ v ∃R′, ∃R′− v B′} is a UCQ-representation of T1 underM.

These cases can be depicted in the following ER diagrams:

T1

A

∃R

∃R−
R

T2

A′
∃R′

∃R′−
B′

R′

T12

(1)

T1

A

∃R

∃R−

R

T2

A′

∃R′
∃R′−

B′

R′

T12

(2)

In the following examples we consider also disjointness assertions. Now we will, how-
ever, fix the mapping, and see how UCQ-representations depend on the source ABox.

Example 4.3.3. Assume that M = ({A(·), B(·), C(·)}, {A′(·), B′(·)}, T12), where
T12 = {A v A′, B v B′, C v ¬A′}, and let

(1) T1 = {A v B}.
Then TBox T2 = {A′ v B′} is a UCQ-representation of T1 underM. First, notice
that every source ABox A1 is consistent with T1. It should be clear that for every
A1 = {X(a)} for X ∈ {A, B, C} or A1 = {B(a), C(a)}, A1 is consistent with
T1 ∪ T12, and cert(q, 〈T1 ∪ T12,A1〉) = cert(q, 〈T2 ∪ T12,A1〉) for each UCQ q.

Consider nowA1 = {A(a), C(a)}, thenA1 is not consistent with T1 ∪ T12 (in fact,
A1 is not consistent already with T12, so cert(q, 〈T1 ∪ T12,A1〉) = AllTup(q) for
each UCQ q. On the other hand,A1 is not consistent with T2 ∪T12 either, so as well,
cert(q, 〈T2 ∪ T12,A1〉) = AllTup(q) for each UCQ q.

(2) T1 = {B v A}.
Similarly to the previous case, TBox T2 = {B′ v A′} is a UCQ-representation of
T1 underM, but now it is a bit more involved. Namely, in this case ABox A1 =

{B(a), C(a)} is not consistent with T1 ∪ T12, but consistent with T12 alone. But
anyway, A1 is not consistent with T2 ∪ T12 due to the axiom B′ v A′ in T2. So
cert(q, 〈T1 ∪ T12,A1〉) = cert(q, 〈T2 ∪ T12,A1〉) for each ABox A1 and UCQ q.

(3) T1 = {B v C}.
Then, TBox T2 = {B′ v ¬A′} is a UCQ-representation of T1 underM. This case
is in a way the opposite of (2). Consider ABox A1 = {A(a), B(a)}, then A1 is
inconsistent with T1 ∪ T12. Now, A1 is inconsistent with T2 ∪ T12 is achieved with
the disjointness assertion B′ v A′ in T2.

38 T H E S H A P E O F S O L U T I O N S

(4) T1 = {A v C}.
Then, TBox T2 = {A′ v ¬A′} is a UCQ-representation of T1 underM. Observe,
that every ABox A1 such that A(a) ∈ A1 for some constant a is inconsistent
with T1 ∪ T12. So the axiom A′ v ¬A′ in T2 assures that every such A1 is also
inconsistent with T2 ∪ T12. One the other hand, it is easy to see that for every source
ABox that does not contain assertions with A, the required is satisfied.

A

C

B

A′

B′

(1)

A

C

B

A′

B′

(2)

A

C

B

A′

B′

(3)

A

C

B

A′

B′

(4)

Example 4.3.4. Assume that M = ({A(·), B(·), C(·), D(·)}, {A′(·), B′(·)}, T12),
where T12 = {A v A′, B v B′, C v ¬A′, D v B′}, and let T1 = {D v C}.
Then there exists no target TBox T2 that is a UCQ-representation of T1 under M. In
fact, it is easy to see that none of the TBoxes {A′ v B′} or {B′ v A′} is a UCQ-
representation by taking ABoxes A1 = {A(a)} or A1 = {B(a)}, respectively, to
derive counterexamples. The next possibility is T2 = {A′ v ¬B′}, however if we
consider source ABox A1 = {A(a), B(a)}, then A1 is consistent with T1 ∪ T12, but
inconsistent with T2 ∪ T12, so for q = A′(b) where b is a constant distinct from a,
〈T1 ∪ T12,A1〉 6|= q, and 〈T2 ∪ T12,A1〉 |= q. Finally, one can see that neither T2 =

{A′ v ¬A′} nor T2 = {B′ v ¬B′} is a UCQ-representation by taking ABoxes A1 =

{A(a)} or A1 = {B(a)}, respectively. Below we depict the ER diagrams of T1, T12,
and T2 for all possible target TBoxes T2:

A

C

D

B

A′

B′

A

C

D

B

A′

B′

A

C

D

B

A′

B′

A

C

D

B

A′

B′

A

C

D

B

A′

B′

5
R E A S O N I N G A B O U T U N I V E R S A L
S O L U T I O N S

In this chapter, we study the membership and non-emptiness problems for universal
solutions, in the cases where nulls are not allowed (Section 5.2) and are allowed (Sec-
tion 5.3) in such solutions, and conclude with the case of DL-LiteRDFS (Section 5.4). But
before, in Section 5.1 we present a characterization of universal solutions in DL-LiteR.

5.1 C H A R AC T E R I Z AT I O N O F U N I V E R S A L S O L U T I O N S

We start by defining the notion of Σ2-safeness required to deal with disjointness asser-
tions in the source KBs and mappings. Assume thatM = (Σ1, Σ2, T12) is a mapping
and K1 is a KB over Σ1. Let K = 〈T1 ∪ T12,A1〉 and UK the canonical model of K.
Then a basic concept B over Σ1 is said to be Σ2-safe in UK if for every d ∈ BUK

d 6∈ Na and tUKΣ2
(d) = ∅.

Intuitively, safeness for B means no constant “associated” with B and no target concept
“associated” with B via T1 and T12 can be mentioned in the target; in Example 4.1.7
neither A nor B is safe in U〈T1∪T12,A1〉. Furthermore, a pair of basic concepts (B, C) is
is said to be Σ2-safe in UK if B or C is safe. Intuitively, if a pair (B, C) is not safe and
(B v ¬C) ∈ T1, then universal solutions cannot exist, as explained in Example 4.1.7.
Similarly, we say a basic role R over Σ1 is Σ2-safe in UK if for every (d, d′) ∈ RUK

either d 6∈ Na and tUKΣ2
(d) = ∅,

or d′ 6∈ Na and tUKΣ2
(d′) = ∅.

A pair of roles (R, Q) is Σ2-safe in UK if 1) R or Q is safe, and 2) tUKΣ2
(d′) = ∅ or

tUKΣ2
(d′′) = ∅ for every d, d′, d′′ ∈ ∆UK such that (d, d′) ∈ RUK and (d, d′′) ∈ QUK .

Definition 5.1.1. K1 is Σ2-safe with respect toM if

(C S A F E) each pair of concepts (B, C) is Σ2-safe in U〈T1∪T12,A1〉 whenever B v ¬C ∈ T1,

(R S A F E) each pair of roles (R, Q) is Σ2-safe in U〈T1∪T12,A1〉 whenever R v ¬Q ∈ T1,

(C E M P T Y) BU〈T1∪T12,A1〉 = ∅ for each basic concept B such that B v ¬B′ ∈ T12,

(R E M P T Y) RU〈T1∪T12,A1〉 = ∅ for each basic role R such that R v ¬R′ ∈ T12.

Note that, if K1 andM do not contain disjointness assertions, then K1 is trivially Σ2-
safe with respect toM.

39

40 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

5.1.1 Characterization of the membership problem

Now, we are ready to provide a characterization of universal solutions, where we al-
ready take into account Proposition 4.1.4, and therefore consider only target ABoxes as
universal solutions. Observe that one of the conditions here is that a universal solution
has to be homomorphically equivalent to the canonical model of the source KB and the
mapping, which is similar to the characterization of universal solutions in the classical
data exchange setting [51, 52].

Lemma 5.1.2. An ABox A2 over Σ2 is a universal solution for a KB K1 = 〈T1,A1〉
under a mappingM = (Σ1, Σ2, T12) iff the following conditions hold:

(S A F E) K1 is Σ2-safe with respect toM.

(H O M) UA2 is Σ2- homomorphically equivalent to U〈T1∪T12,A1〉,

Proof. (⇒) LetA2 be a universal solution for K1 underM. Then UA2 is Σ2-homomor-
phically equivalent to U〈T1∪T12,A1〉: sinceA2 is a solution, there exists I , a model of K1,
such that (I ,UA2) |= T12. Then I ∪UA2 is a model of 〈T1 ∪T12,A1〉, therefore there is
a homomorphism h from U〈T1∪T12,A1〉 to I ∪ UA2 . As Σ1 and Σ2 are disjoint signatures
it follows that h is a Σ2-homomorphism from U〈T1∪T12,A1〉 to UA2 . On the other hand,
as A2 is a universal solution, J , the interpretation of Σ2 obtained from U〈T1∪T12,A1〉 is
a model of A2 with a substitution h′. This h′ is exactly a homomorphism from UA2 to
U〈T1∪T12,A1〉. Thus, we showed (hom).

For the sake of contradiction, assume that (safe) does not hold, i.e., K1 is not Σ2-safe
with respect toM, and e.g., (csafe) does not hold, i.e., there is a disjointness constraint
in T1 of the form B v ¬C, such that (B, C) is not Σ2-safe. Then both B and C are not
Σ2-safe in U〈T1∪T12,A1〉: for some b ∈ BUK and c ∈ CUK ,

t
U〈T1∪T12,A1〉
Σ2

(b) 6= ∅ or b ∈ Na, and t
U〈T1∪T12,A1〉
Σ2

(c) 6= ∅ or c ∈ Na.

Let h be a Σ2-homomorphism from U〈T1∪T12,A1〉 to UA2 (it exists by (hom)), and h(b) =
t and h(c) = s. Then it follows that

t
UA2
Σ2

(t) 6= ∅ or b ∈ Na, and t
UA2
Σ2

(s) 6= ∅ or c ∈ Na.

Take a model J of A2 with a substitution hJ such that ∆J = {d} (hence, tJ = sJ).
Such a model exists because A2 does not assert any negative information and there is
no UNA. First, assume that both b and c are constants (i.e., bJ = cJ). Then, obviously
there exists no model I of Σ1 such that I |= K1 and (I ,J) |= T12: in every such
I , bI must be equal to cI which contradicts B v ¬C, and bI ∈ BI and cI ∈ CI .
Now, assume that at least b is not a constant and tail(b) = w[R] for some role R over

Σ1 (hence, b ∈ (∃R−)U〈T1∪T12,A1〉 and T1 |= ∃R− v B). Let B′ ∈ t
U〈T1∪T12,A1〉
Σ2

(b), then
by construction of the canonical model, T1 ∪ T12 |= ∃R− v B′, by homomorphism,
B′(t) ∈ A2, and by construction of J , B′J = {d}. As A2 is a universal solution,
let I be a model of K1 such that (I ,J) |= T12. Then (∃R−)I is non-empty and
(∃R−)I ⊆ B′J . It immediately follows that d ∈ (∃R−)I , hence d ∈ BI . By a similar
argument, it can be shown that d must be in CI , which contradicts that I is a model of
B v ¬C. Contradiction with A2 being a universal solution.

Similar to (csafe) we can derive a contradiction if assume that (rsafe) does not hold.

5.1 C H A R AC T E R I Z AT I O N O F U N I V E R S A L S O L U T I O N S 41

Now, assume (rempty) does not hold, i.e., B v ¬B′ ∈ T12 and BU〈T1∪T12,A1〉 6= ∅.
Note that A2 is an extended ABox, i.e., it contains only assertions of the form A(u),
P(u, v) for u, v ∈ Na ∪ Nl . Take a model J of A2 such that B′J = ∆J . Such J
exists as A2 contains only positive facts. Since A2 is a universal solution, there exist
a model I of K1 such that (I ,J) |= T12. Then, BI 6= ∅, and it is easy to see that
(I ,J) 6|= B v ¬B′ because ∆J \ B′J = ∅ and BI 6⊆ ∆J \ B′J .

Similar to (cempty) we can derive a contradiction if assume that (rempty) does not
hold. In every case we derive a contradiction, hence K1 is Σ2-safe with respect toM.

(⇐) Assume (hom) and (safe) hold. We show that A2 is a universal solution for K1

underM.
First, A2 is a solution for K1 underM. Let J be a model of A2, and h1 a homomor-

phism from UA2 to J . Furthermore, let h be a Σ2-homomorphism from U〈T1∪T12,A1〉 to
UA2 . Then h2(x) = h1(h(x)) is a Σ2-homomorphism from U〈T1∪T12,A1〉 to J . Let I be
the interpretation of Σ1 defined as the image of h2 applied to UK1 , i.e., I = h2(UK1).
Next, define a new function h′ : ∆UK1 → ∆ ∪ ∆I , where ∆ is an infinite set of domain
elements disjoint from ∆I , as follows:

• h′(x) = h2(x) if t
U〈T1∪T12,A1〉
Σ2

(x) 6= ∅ or x ∈ Na.

• h′(x) = dx, a fresh domain element from ∆, otherwise.

We show that interpretation I ′ defined as the image of h′ applied to UK, is a model of
K1 and (I ′,J) |=M. It is straightforward to verify that I ′ is a model of the positive
inclusions in T1 and (I ′,J) satisfy the positive inclusions from T12. In what follows
we prove that I ′ is a model of the disjointness assertions in T1.

Let T1 |= B v ¬C for basic concepts B, C. By contradiction, assume I ′ 6|= B v ¬C,
i.e., for some d ∈ ∆I

′
, d ∈ BI

′ ∩ CI
′
. We defined I ′ as the image of h′ on UK1 , hence

there must exist b, c ∈ ∆UK1 such that b ∈ BUK1 , c ∈ CUK1 , and h′(b) = h′(c) = d.
Then, since K1 is Σ2-safe with respect to M, it follows that (B, C) is Σ2-safe and it
cannot be the case that

t
U〈T1∪T12,A1〉
Σ2

(b) 6= ∅ or b ∈ Na, and t
U〈T1∪T12,A1〉
Σ2

(c) 6= ∅ or c ∈ Na.

Assume b is a null and t
U〈T1∪T12,A1〉
Σ2

(b) = ∅. Then by definition of h′, h′(b) = db ∈ ∆

(hence d = db). In either case c is a constant, or t
U〈T1∪T12,A1〉
Σ2

(c) 6= ∅, or t
U〈T1∪T12,A1〉
Σ2

(c) =
∅, we obtain contradiction with h′(b) = db = h′(c) (recall, ∆ and ∆I are disjoint).
Contradiction rises from the assumption I 6|= B v ¬C.

Next, assume T1 |= R v ¬Q for roles R, Q, and I ′ 6|= R v ¬Q, i.e., for some
d1, d2 ∈ ∆I

′
, (d1, d2) ∈ RI

′ ∩ QI
′
. We defined I ′ as the image of h′ on UK1 , hence

there must exist b1, b2, c1, c2 ∈ ∆UK1 such that (b1, b2) ∈ RUK1 , (c1, c2) ∈ QUK1 , and
h′(bi) = h′(ci) = di for i = 1, 2. Then, since K1 is Σ2-safe with respect to M, it
follows that (R, Q) is Σ2-safe and it cannot be the case that 1) R and Q are not Σ2-safe,
i.e.,

t
U〈T1∪T12,A1〉
Σ2

(bi) 6= ∅ or bi ∈ Na, and t
U〈T1∪T12,A1〉
Σ2

(ci) 6= ∅ or ci ∈ Na,

or 2) t
U〈T1∪T12,A1〉
Σ2

(b2) 6= ∅ and t
U〈T1∪T12,A1〉
Σ2

(c2) 6= ∅ if b1 = c1. Consider the following
possible cases:

42 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

• b1 is a null and t
U〈T1∪T12,A1〉
Σ2

(b1) = ∅. Then by definition of h′, h′(b1) = db1 ∈ ∆
(and d1 = db1).

– c1 is a null and t
U〈T1∪T12,A1〉
Σ2

(c1) = ∅, then h′(c1) = dc1 = d1, hence
c1 = b1 and (b1, b2) ∈ RUK1 , (b1, c2) ∈ QUK1 . Assume b2 is a null and

t
U〈T1∪T12,A1〉
Σ2

(b2) = ∅. Then h′(b2) = db2 ∈ ∆ and in either case c2 is a

constant, or t
U〈T1∪T12,A1〉
Σ2

(c2) 6= ∅, or t
U〈T1∪T12,A1〉
Σ2

(c2) = ∅, we obtain contra-
diction with h′(b2) = db2 = h′(c2).

– otherwise we obtain contradiction with h′(b1) = db1 = h′(c1).

The cases b2 or ci are nulls with the empty Σ2-type are covered by swapping R and Q
or by taking their inverses.

Finally, assume B v ¬B′ ∈ T12 and (I ′,J) 6|= B v ¬B′, i.e., for some d ∈ BI
′
,

d /∈ ∆J \ CJ . Then there must exist b ∈ BUK1 such that h′(b) = d. Contradiction with
(cempty). Similarly, we derive a contradiction with (rempty) if assume that R v ¬R′ ∈
T12 and (I ′,J) 6|= R v ¬R′.

Therefore, indeed, I is a model of K1 and (I ,J) |= T12. This concludes the proof
A2 is a solution for K1 underM.

Second, A2 is a universal solution. Let I be a model of K1 and J an interpreta-
tion of Σ2 such that (I ,J) |= M. Then, since U〈T1∪T12,A1〉 is the canonical model of
〈T1 ∪ T12,A1〉, there exists a homomorphism h from U〈T1∪T12,A1〉 to I ∪ J (I ∪ J is a
model of 〈T1 ∪T12,A1〉). In turn, there is a homomorphism h1 from UA2 to U〈T1∪T12,A1〉,
therefore h′ = h ◦ h1 is a homomorphism from UA2 to I ∪J , and a Σ2-homomorphism
from UA2 to J . Hence, J is a model of A2: take h′ as the substitution for the la-
beled nulls. By definition of universal solution, A2 is a universal solution for K1 under
M.

The following examples illustrate why condition (safe) is needed in the characteriza-
tion of universal solutions.

Example 5.1.3. Consider Example 4.1.7, i.e.,M = (Σ1, Σ2, T12), where Σ1 = {A(·), B(·)},
Σ2 = {A′(·), B′(·)}, and T12 = {A v A′, B v B′}, and K1 = 〈T1,A1〉, where
T1 = {A v ¬B} and A1 = {A(a), B(b)}. We already argued that the target ABox
A2 = {A′(a), B′(b)} is not a universal solution for K1 under M. In fact, condi-
tion (safe) is not satisfied because there is a disjointness assertion A v ¬B in T1

such that the pair (A, B) is not Σ2-safe in U〈T1∪T12,A1〉: neither A, nor B is Σ2-safe
as a ∈ AU〈T1∪T12,A1〉 ∩ Na and b ∈ BU〈T1∪T12,A1〉 ∩ Na.

We stress the attention of the reader that in the example above the disjointness asser-
tion A v ¬B forces that a and b be interpreted as different elements in 〈T1 ∪ T12,A1〉.
Without the UNA there are no means to express that in the target (the language of target
ABoxes is that one of extended ABoxes, which can express only positive information),
that is why A2 is not a universal solution for K1 underM. However, ABoxes that al-
low for inequality between constants would do the job: thus, the ABox with inequalities
{A′(a), B′(b), a 6= b} is a universal solution for K1 underM.

Example 5.1.4. Assume M = (Σ1, Σ2, T12), where Σ1 = {R(·, ·), S(·, ·)}, Σ2 =

{A′(·), B′(·)}, and T12 = {∃R− v A′, ∃S v B′}, and K1 = 〈T1,A1〉, where T1 =

{∃R− v ¬∃S−} and A1 = {∃R(a), ∃S(a)}. Then ABox A2 = {A′(n), B′(m)}

5.1 C H A R AC T E R I Z AT I O N O F U N I V E R S A L S O L U T I O N S 43

is not a universal solution for K1 under M. Again, there is a disjointness assertion
∃R− v ¬∃S− in T1 such that the pair (∃R−, ∃S−) is not Σ2-safe in U〈T1∪T12,A1〉: ∃R−

is not Σ2-safe because aw[R] ∈ (∃R−)U〈T1∪T12,A1〉 and t
U〈T1∪T12,A1〉
Σ2

(aw[R]) = {A′}, and
analogously for ∃S−.

Observe that in this example for an ABox A2 to be a universal solution for K1 un-
der M, one has to enforce that the labeled nulls corresponding to aw[R] and aw[S] be
interpreted as distinct elements, which requires inequality between labeled nulls in the
language.

Example 5.1.5. LetM = (Σ1, Σ2, T12), where Σ1 = {A(·), B(·)}, Σ2 = {A′(·), B′(·)},
and T12 = {A v A′, B v ¬B′}, and K1 = 〈T1,A1〉, where T1 = {} and A1 =

{A(a), B(b)}. Then ABox A2 = {A′(a)} is not a universal solution for K1 underM.
Namely, condition (cempty) is violated: there is a disjointness assertion B v ¬B′ in
T12 such that BU〈T1∪T12,A1〉 is non-empty (to be precise BU〈T1∪T12,A1〉 = {b}). The latter
implies that an interpretation J of Σ2 such that bJ ∈ B′J cannot be a model ofA2, but
obviously it is not the case here.

In this example, one needs to consider ABoxes with negative atoms to obtain a univer-
sal solution: the ABox {A′(a),¬B′(b)} is a universal solution for K1 underM. Since
we require target ABoxes to be extended ABoxes, no extended ABox can be a universal
solution for K1 underM.

Hence, we have seen in the three examples above that the main reason for condition (safe)
in the characterization of universal solutions is the inability of extended ABoxes to ex-
press any form of negative information, be it inequality between terms or negation be-
tween atoms.

Condition (safe) in Lemma 5.1.2 is easy: it can be checked in NLOGSPACE using
an algorithm, based on directed graph reachability solving procedure. Given a KB K =

〈T ,A〉 the graph GK is defined as essentially the ER diagram of T plus the edges from a
constant a to a concept B ifA |= B(a). Then for each concept B and each role R we can
check in NLOGSPACE whether, respectively, BUK and RUK is non-empty by verifying
that B and R, respectively, is reachable in GK from some constants; for each concept B
we can check in NLOGSPACE whether BUK contains any constants or any element of
the form σw[S] such that it is possible to reach in GK from the concept ∃S− some target

concept (that is, tUKΣ2
(σw[S]) 6= ∅).

As for condition (hom), we show how to check it in Section 5.2 for simple universal
solutions, i.e., when we consider only simple target ABoxes, and in Section 5.3 for
extended universal solutions, i.e., when we consider extended target ABoxes.

5.1.2 Characterization of the non-emptiness problem

Next, we provide a characterization of the cases when a universal solution exists. Again,
this result is related to the problem of existence of a finite “core” in the classical data
exchange setting [52, 62].

Lemma 5.1.6. LetM = (Σ1, Σ2, T12) be a mapping, and K1 = 〈T1,A1〉 a KB over
Σ1. Then, a universal solution with extended ABoxes for K1 underM exists iff

(S A F E) K1 is Σ2-safe with respect toM.

44 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

(C O R E) U〈T1∪T12,A1〉 is Σ2-homomorphically embeddable into a finite subset of itself.

Proof. (⇐) Let ABox A2 be an ABox over Σ2 such that UA2 is a finite subset of
U〈T1∪T12,A1〉 and there exists a Σ2-homomorphism h from U〈T1∪T12,A1〉 to UA2 . Then,
UA2 is trivially homomorphically embeddable into U〈T1∪T12,A1〉. Since, K1 is Σ2-safe
with respect toM, by Lemma 5.1.2, we obtain that A2 is a universal solution for K1

underM.
(⇒) Let A2 be a universal solution for K1 under M. First, it immediately follows

that K1 is Σ2-safe with respect to M. Then, UA2 is Σ2-homomorphically equivalent
to U〈T1∪T12,A1〉 by Lemma 5.1.2. Let h be a homomorphism from UA2 to U〈T1∪T12,A1〉,
and h(UA2) the image of h. Then, h(UA2) is a finite subset of U〈T1∪T12,A1〉, moreover
it is homomorphically equivalent to UA2 and to U〈T1∪T12,A1〉. Therefore, it follows that
U〈T1∪T12,A1〉 is Σ2-homomorphically embeddable to a finite subset of itself.

It follows from the proof of Lemma 5.1.6 that the ABox A2 corresponding to the fi-
nite subset UA2 of U〈T1∪T12,A1〉 in condition (core) is a universal solution. Hence, if
we additionally require in condition (core) that the finite subset UA2 does not contain
anonymous individuals, we obtain a characterization for universal solutions with simple
ABoxes.

We introduce some additional notation required for this chapter. LetK be an OWL 2 QL
KB. Given a subset D of ∆UK , the sub-interpretation of UK induced by D, denoted by
UD
K , is defined as ∆U

D
K = D, AU

D
K = AUK ∩ D for each concept name A, and PU

D
K =

PUK ∩ (D × D)} for each role name P. Furthermore, let a ∈ Ind(K), and Da the set
of elements in path(K) beginning with a, i.e., Da = {aσ | aσ ∈ ∆UK}. Then the sub-
interpretation of UK generated by a, denoted by U a

K, is defined as ∆U
a
K = Da, AU

a
K =

AUK ∩ Da for each concept name A, and PU
a
K1 = (PUK1 ∩ (Da × Da)) \ {(a, a)} for

each role name P. Notice that U a
K describes a tree structure. GD

K and Ga
K are defined

accordingly.

5.2 S I M P L E U N I V E R S A L S O L U T I O N S

In this section, we show that both the mem-
bership and the non-emptiness problems
for universal solutions without null values
are PTIME-complete. The upper bound is
obtained by a novel reduction to reachabil-
ity games on graphs.

Translation

ABox

Decision problem

universal solution

universal UCQ-solution

UCQ-representation

sim
ple ABoxes

extended ABoxes

membership

non-emptiness

5.2.1 The non-emptiness problem

We start with tackling the non-emptiness problem, and first provide a PTIME lower
bound for this problem.

Lemma 5.2.1. The non-emptiness problem for simple universal solutions is PTIME-
hard in data complexity.

5.2 S I M P L E U N I V E R S A L S O L U T I O N S 45

Proof. The proof is by reduction from the Circuit Value Problem known to be PTIME-
hard: given a monotone Boolean circuit C consisting of assignments of the form Pi = 0,
Pi = 1, Pi = Pj ∧ Pk, j, k < i, or Pi = Pj ∨ Pk, j, k < i, where each Pi appears on the
left-hand side of exactly one assignment, compute the value of Pn.

We fix signatures Σ1 = {P(·), L(·, ·), R(·, ·)} and Σ2 = {L′(·, ·), R′(·, ·)}. Let
a1, . . . , an ∈ Na, and consider

A1 = {P(an) ∪ {L(ai, ai), R(ai, ai) | Pi = 1 in C}
∪ {L(ai, aj), R(ai, ak) | Pi = Pj ∧ Pk in C}
∪ {L(ai, aj), R(ai, aj), L(ai, ak), R(ai, ak) | Pi = Pj ∨ Pk in C}

T1 = {P v ∃L, P v ∃R, ∃L− v P, ∃R− v P},
T12 = {L v L′, R v R′}

Note that T1 andM do not depend on C, hence the reduction provide the lower bound
for data complexity. We show that the value of Pn in C is true if and only if there exists
a (simple) universal solution for K1 = 〈T1,A1〉 underM = (Σ1, Σ2, T12).

(⇒) Suppose Pn evaluates to true in C. We verify that U〈T1∪T12,A1〉 is Σ2-homomorphically

embeddable into U Ind(A1)
〈T1∪T12,A1〉, or equivalently into UA2 , where

A2 = {L′(ai, aj) | L(ai, aj) ∈ A1} ∪ {R′(ai, aj) | R(ai, aj) ∈ A1}.

Observe that U〈T1∪T12,A1〉 contains an infinite binary tree with the root in an, one edge
labeled with L′ and the other edge labeled with R′. By induction, we define a Σ2-
homomorphism h from this tree to UA2 .

First, it should be clear that t
U〈T1∪T12,A1〉
Σ2

(an) ⊆ t
UA2
Σ2

(an), so we set h(an) = an.

Assume the value of Pi is true and we already defined h(σ) = ai for σ ∈ ∆U
an
〈T1∪T12,A1〉 .

Consider the following three cases. First, Pi = Pj ∧ Pk in C, then A2 contains as-
sertions L′(ai, aj) and R′(ai, ak), moreover, Pj and Pk both evaluate to true: we set
h(σw[L]) = aj and h(σw[R]) = ak. Second, Pi = Pj ∨ Pk in C, then A2 contains
assertions L′(ai, aj), R′(ai, aj) and L′(ai, ak), R′(ai, ak), and at least one of Pj and Pk
evaluates to true, assume Pj: we set h(σw[L]) = aj and h(σw[R]) = aj. Finally, if
Pi = 1 in C, then A2 contains assertions L′(ai, ai) and R′(ai, aj): we set h(σw[L]) = ai
and h(σw[R]) = ai.

(⇐) SupposeA2 is a simple target ABox that is a universal solution forK1 underM.
Then A2 is Σ2-homomorphically equivalent to U〈T1∪T12,A1〉, and it follows

A2 = {L′(ai, aj) | L(ai, aj) ∈ A1} ∪ {R′(ai, aj) | R(ai, aj) ∈ A1}.

We prove that the value of Pn is true in C.
Let h be a Σ-homomorphism from U〈T1∪T12,A1〉 to UA2 . Since U an

〈T1∪T12,A1〉 is an infi-
nite tree, and the only role cycles that A2 contains are loops of the form L′(ai, ai) and

R′(ai, ai), there exists a bound m such that for each σ = anw[S1] · · ·w[Sm] ∈ ∆U
an
〈T1∪T12,A1〉

with Sj ∈ {L, R}, it holds h(σ) = ai for some i such that Pi = 1 in C. Assume
l > 1 and the value of Pi is true in C whenever h(anw[S1] · · ·w[Sl]) = ai, for each
anw[S1] · · ·w[Sl] with Sj ∈ {L, R} and each 1 ≤ i < n. We verify that the value of Pi
is true in C whenever h(anw[S1] · · ·w[Sl−1]) = ai, for each anw[S1] · · ·w[Sl−1] and each
1 ≤ i ≤ n.

46 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

Assume that h(anw[S1] · · ·w[Sl−1]w[L]) = aj, h(anw[S1] · · ·w[Sl−1]w[R]) = ak and the
values of Pj and Pk are true in C, moreover h(anw[S1] · · ·w[Sl−1]) = ai. If i = j = k,
then obviously the value of Pi is true in C. Otherwise i 6= j and i 6= k. If j = k, then
given that h is a homomorphism,A2 contains assertions L′(ai, aj) and R′(ai, aj) (hence,
A1 contains assertions L(ai, aj) and R(ai, aj)). By construction of A1, it follows there
is an assignment Pi = Pj ∨ Pj′ in C for some j′, as Pj is true, we obtain that Pi evaluates
to true. If j 6= k, thenA2 contains assertions L′(ai, aj) and R′(ai, ak), so by construction
of A1 there is an assignment Pi = Pj ∧ Pk or Pi = Pj ∨ Pk in C. Again it follows Pi
evaluates to true in C.

By induction, it follows that Pn evaluates to true in C.

Example 5.2.2. For a circuit C containing five assignments

P1 = 1, P2 = 1, P3 = 0, P4 = P1 ∧ P2, and P5 = P3 ∨ P4,

the projections over Σ2 of U a5
〈T1∪T12,A1〉 and UA2 can be depicted as follows:

a5

w[L] w[R]

w[L] w[R] w[L] w[R]...
...

...
...

L′ R′

L′ R′ L′ R′

U a5
〈T1∪T12,A1〉

a5

a4

a3 a1 a2

L′, R′
L′, R′

L′ R′

L′, R′ L′, R′

UA2

Next, instead of providing an upper bound, we reduce the non-emptiness problem for
simple universal solutions to the corresponding membership problem that we show how
to solve in the next section.

Lemma 5.2.3. The non-emptiness problem for simple universal solutions is reducible
to the membership problem for simple universal solutions in polynomial time.

Proof. Assume given a mappingM = (Σ1, Σ2, T12) and a source KB K1 = 〈T1,A1〉,
and the question to answer is whether there exists a simple ABox over Σ2 that is a
universal solution forK1 underM. LetA2 be the following target ABox: (i) Ind(A2) ⊆
Ind(A1), (ii) A2 |= B(a) iff 〈T1 ∪ T12,A1〉 |= B(a), and (iii) A2 |= R(a, b) iff
〈T1 ∪ T12,A1〉 |= R(a, b), for all a, b ∈ Ind(A1), concept B and role R over Σ2. We
show that there exists a simple universal solution for K1 underM if and only if A2 is a
universal solution for K1 underM. Direction (⇐) is trivial, below we prove (⇒).

Let A be a simple universal solution for K1 under M. Then K1 is Σ2-safe with
respect toM, and UA is Σ2-homomorphically equivalent to U〈T1∪T12,A1〉. The latter im-

plies Ind(A) ⊆ Ind(A1), and t
U〈T1∪T12,A1〉
Σ2

(a) = tUAΣ2
(a), r

U〈T1∪T12,A1〉
Σ2

(a, b) = rUAΣ2
(a, b),

for all a, b ∈ Ind(A1). Then it must be the case A coincides with A2, so A2 is a univer-
sal solution for K1 underM.

From the proof above it follows that if a universal solution exists, then it can be
computed as the ABox A2 defined in the proof.

5.2 S I M P L E U N I V E R S A L S O L U T I O N S 47

5.2.2 The membership problem

In this section we provide an upper bound for the membership problem for simple uni-
versal solutions.

Assume given a mapping M = (Σ1, Σ2, T12), a source KB K1 = 〈T1,A1〉, and
a simple target ABox A2, and want to decide whether A2 is a universal solution for
K1 underM. According to Lemma 5.1.2, it is sufficient to check conditions (safe) and
(hom). The former condition does not depend on A2 and as discussed above, can be
checked in polynomial time. As for the latter condition, denote the KB 〈T1 ∪ T12,A1〉
by K. First, the existence of a Σ2-homomorphism from UA2 to U〈T1∪T12,A1〉 for a simple
ABox A2 amounts to checking,

t
UA2
Σ2

(a) ⊆ tUKΣ2
(a) and r

UA2
Σ2

(a, b) ⊆ rUKΣ2
(a, b) for all a, b ∈ Ind(A2).

Second, as for the existence of a Σ2-homomorphism in the opposite direction, it should
be the case that

tUKΣ2
(a) ⊆ t

UA2
Σ2

(a) and rUKΣ2
(a, b) ⊆ r

UA2
Σ2

(a, b) for all a, b ∈ Ind(A1).

Clearly, these two conditions can be checked in PTIME. Now, for c ∈ Ind(A1), to
check how the tree U c

K can be Σ2-homomorphically mapped to UA2 , we are going to
employ the technique of infinite games on graphs. Specifically, we show how this prob-
lem can be reduced to the problem of existence of a winning strategy for Duplicator in
a reachability game, known to be solvable in polynomial time. For a short introduction
to (reachability) games, we refer to Section A.1.2. Below we show how to construct the
game Gc

Σ(GK,UA) for a KB K, an ABox A, a signature Σ, and c ∈ Ind(K).

R E AC H A B I L I T Y G A M E Gc
Σ(GK,UA) is a pair (Gc, Fc), where Gc is the game graph,

and Fc is the winning condition, that is, the set of states that Spoiler wants to reach.
The game graph Gc = (S, D, T) has the set of states of the kind (u 7→ a) and (a, u u′),

where u, u′ ∈ ∆G
c
K and a ∈ Ind(A):

• S consists of the states (u 7→ a) with tGKΣ (u) ⊆ tUAΣ (a); intuitively, such states
represent a mapping of δ ∈ ∆UK with tail(δ) = u to a. Given this partial homo-
morphism, Spoiler can decide to challenge Duplicator with one of the successors
u′ of u in Ga

K.

• D consists of the states (a, u u′) with u K u′; the states represent “chal-
lenges” that Duplicator must address by finding a constant a′ ∈ Ind(A) so that
the “challenged” edge (δ, δ · u′) of the tree U a

K can be “mapped” to the edge
(a, a′) of UA.

Therefore, the transitions between S and D, forming T, are defined as the union of:

•
(
(u 7→ a), (a, u u′)

)
, and

•
(
(a, u u′), (u′ 7→ a′)

)
whenever rGKΣ (u, u′) ⊆ rUAΣ (a, a′).

Notice that the size of Gc is O(|Gc
K| × |A|).

The set Fc, which is the set of states that Spoiler wants to reach, is given by the
duplicating states that are “dead ends”, i.e.,

Fc =
{
(c, u u′) | (u′ 7→ a′) /∈ S or rGKΣ (u, u′) 6⊆ rUAΣ (c, c′), for all a′ ∈ ∆UA

}
.

48 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

a 7→ a

a, a wSa, a wR

wS 7→ bwR 7→ a

b, wS wQa, wR wQ

wQ 7→ b

b, wQ wS
Fa

a)

a

wR

wR

wS

wQ

wS...

...

R′

R′

S′

Q′

S′

b)

a

b

R′

Q′
S′

c)

Figure 7: Example of a game: a) the game graph Ga, b) the projection of UK over Σ, c) UA.

Intuitively, the game proceeds as follows. Duplicator tries to construct a Σ-homomorphism
from the tree U c

K to UA, and Spoiler attempts to fail him by finding a path in U c
K that does

not have a homomorphic image in UA, given the partial homomorphism constructed so
far. Thus, Spoiler starts in (u0 7→ a0) for u0 = a0 = c if (c 7→ c) ∈ S, which corre-
sponds to mapping c to c, and in each his turn chooses a successor ui+1 of ui in GK:
the “challenge” represented by the state (ai, ui ui+1). Then Duplicator tries to find a
constant ci+1 in Ind(A) that could be the image of the “challenged” element u0 · · · ui+1

of U c
K, i.e., he chooses a state (ui+1 7→ ai+1) such that rGKΣ (ui, ui+1) ⊆ rUAΣ (ai, ai+1).

Note that, if rGKΣ (ui, ui+1) is empty, then Duplicator can respond with any ai+1 such that
(ui+1 7→ ai+1) is a Spoiler state, even if ai+1 is not connected to ai in UA. Duplicator
loses if at some point he cannot find where to map the challenged element, thus the
game reaches a dead-end of Duplicator: (ai, ui ui+1) ∈ Fc. Otherwise, the game can
reach a dead-end of Spoiler, or continue forever avoiding the dead-ends of Duplicator,
hence Duplicator wins. Note that, if (c 7→ c) /∈ S, then we assume that Spoiler “wins”
the game immediately.

We illustrate such games in the following example.

Example 5.2.4. Assume Σ = {R′(·, ·), S′(·, ·), Q′(·, ·)}, K = 〈T , {∃R(a), ∃S(a)}〉,
where T = {∃R− v ∃R, ∃S− v ∃Q, ∃Q− v ∃S, R v R′, S v S′, Q v Q′},
and A = {R′(a, a), S′(a, b), Q′(b, b)}. Then Ga

Σ(GK,UA) = (Ga, Fa), where Fa =

{(b, wQ wS)}, and the game graph Ga can be depicted as in a) in Figure 7 (we ignore
the states that are not reachable from (a 7→ a); the duplicating states forming D are
shown as ovals and the spoiling states forming S are shown as boxes). In b) we show the
projection of UK over Σ, and in c) we show UA.

The game starts in the state (a 7→ a). It corresponds to setting the homomorphic image
of a ∈ ∆UK to a ∈ ∆UA . Then Spoiler can choose one of the two successors of a in UK:
either awR or awS. If he chooses awR, it means he moves to the state (a, a wR).
Now, Duplicator has to respond by finding where in UA to map awR: he can map it
only to a (note the role labels), so he moves to (wR 7→ a). In this manner, they continue
forever moving between the states (a, wR wR) and (wR 7→ a), which corresponds to
mapping paths of the form awR · · ·wR ∈ ∆UK to a ∈ ∆UA . Thus, this play is an infinite
play:

(a 7→ a), (a, a wR), (wR 7→ a), (a, wR wR), (wR 7→ a), . . .

5.2 S I M P L E U N I V E R S A L S O L U T I O N S 49

and it is a win for Duplicator.
However, if Spoiler at his first move chooses the successor awS of a, hence moves to

the state (a, a wS), the game would finish soon in a dead-end of Duplicator: Dupli-
cator finds a homomorphic image of awS ∈ ∆UK as b ∈ ∆UA , then Spoiler picks the
successor awSwQ of awS, and Duplicator sets the homomorphic image of awSwQ to
b. Finally, when Spoiler chooses the next successor, awSwQwS in this case, Duplicator
fails to find where to map it, so the game ends in the dead-end of Duplicator. Therefore,
the second play is a finite play:

(a 7→ a), (a, a wS), (wS 7→ b), (b, wS wQ), (wQ 7→ b), (b, wQ wS)

and it is a win for Spoiler as the game reached a state from Fa.

Having constructed the game Gc
Σ(GK,UA) = (Gc, Fc), we prove that verifying whether

UK can be Σ-homomorphically mapped to UA reduces to checking whether both (c 7→ c)
is a state in the game graph Gc (i.e., tGKΣ (c) ⊆ tUAΣ (c)) and Duplicator has a winning
strategy in Gc

Σ(GK,UA) from (c 7→ c).

Lemma 5.2.5. LetK be a KB,A an ABox and Σ a signature. There exists a Σ-homomor-
phism from UK to UA iff

(A B OX) rUKΣ (a, b) ⊆ rUAΣ (a, b) for all a, b ∈ Ind(K);

(W I N) (c 7→ c) is a state in Gc and Duplicator has a winning strategy in Gc
Σ(GK,UA) =

(Gc, Fc) from (c 7→ c), for each c ∈ Ind(K).

Proof. (⇒) Suppose h is a Σ2-homomorphism from UK to UA. Then clearly, (abox) and
tGKΣ (a) ⊆ tUAΣ (a) for each a ∈ Ind(K) hold. Let c ∈ Ind(K), and consider the game
Gc

Σ(GK,UA). We describe a winning strategy f1 for Duplicator in Ga
Σ(GK,UA) from

(c 7→ c). Let

π = (u0 7→ a0), (a0, u0 u1), . . . , (uk 7→ ak), (ak, uk uk+1)

be a play in Ga conform with f1, where k ≥ 0, u0 = a0 = a, and ai ∈ Ind(A), ui ∈ ∆G
a
K

for i > 1. Then we set f1(π) = (uk+1 7→ h(au1 · · · uk+1)). Note that by construction
of T, au1 · · · uk+1 is a valid path in UK. Since h is defined for ∆UK , it follows that f1

is defined for each possible move of Spoiler, moreover, f1 never assigns a dead-end of
Duplicator to the current play π. Hence either the game ends in a dead-end of Spoiler
(i.e., Spoiler is in a leaf of the tree in UK), or it continues infinitely long avoiding visits
to the dead-ends of Duplicator, in any case Duplicator wins.

(⇐) Assume that both (abox) and (win) hold (in particular, tGKΣ (a) ⊆ tUAΣ (a), for
each a ∈ Ind(K)). Given c ∈ Ind(K), we construct a Σ-homomorphism hc from the
tree U c

K to UA. Let f be a winning strategy of Duplicator from (c 7→ c), and π =

(u0 7→ a0), (a0, u0 u1), . . . , (uk 7→ ak), (ak, uk uk+1), . . . a play conforming with
f , where u0 = a0 = c. Then Duplicator wins π, and either

• π = (u0 7→ a0), (a0, u0 u1), . . . , (uk 7→ ak) is a finite play, k ≥ 0, and (uk 7→ ak)

is a dead-end of Spoiler. So we set hc(cu1 · · · ui) = ai, for 0 ≤ i ≤ k.

• π is an infinite play s.t. no states from Fc occur in it. We set hc(cu1 · · · ui) = ai,
for i ≥ 0.

50 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

WDa 7→ a

a, a wS a, a wR

wS 7→ b wS 7→ a wR 7→ b wR 7→ a

b, wS wR a, wS wR b, wR wQ a, wR wQ

wQ 7→ b

b, wQ wQ

Fa

a)

a

wS wR

wQ

wQ

wR

wQ

wQ

...

...

R′ R′

Q′

Q′

R′

Q′

Q′

b)

a

b

R′

Q′
R′

h

Figure 8: Reduction: a) the game graph Ga, b) Σ-homomorphism h from UK to UA.

The function hc is well defined for all possible paths in ∆U
c
K . We prove it is a Σ-

homomorphism from U c
K to UA by induction on the length of a path σ ∈ ∆U

c
K . Base

of induction: tUKΣ (c) ⊆ tUAΣ (c) follows from (c 7→ c) is a state in Gc = (S, D, T). Step
of induction. Let σ ∈ ∆U

c
K be a path of length i and tail(σ) K w[R] for some role R.

Moreover, assume hc(σ) = a and hc(σw[R]) = b for some constants a, b ∈ Ind(A).
Then, it follows that there exist states

s = (tail(σ) 7→ a), s′ = (a, tail(σ) w[R]), and s′′ = (w[R] 7→ b),

such that (s, s′), (s′, s′′) ∈ T. By construction of T, from (s′, s′′) ∈ T it follows that
rUAΣ (a, b) ⊇ rUKΣ (σ, σw[R]) and tUAΣ (b) ⊇ tUKΣ (σw[R]). By the inductive assumption,

tUAΣ (a) ⊇ tUKΣ (σ), hence, hc is in fact, a Σ-homomorphism. Now, given (abox), a Σ-
homomorphism from UK to UA can defined as the union of hc for each c ∈ Ind(K).

The examples below illustrate the presented reduction.

Example 5.2.6. Consider K, A, Σ and the game Ga
Σ(GK,UA) from Example 5.2.4.

In this case, there exists no homomorphism from UK to UA, and as we have seen in
Example 5.2.4, Spoiler has a winning strategy from (a 7→ a): in his first turn he should
move to the state (a, a wS).

Example 5.2.7. Assume Σ = {R′(·, ·), Q′(·, ·)}, K = 〈T , {∃R(a), ∃S(a)}〉, where
T = {∃S− v ∃R, ∃R− v ∃Q, ∃Q− v ∃Q, R v R′, S v R′, Q v Q′} and A =

{R′(a, a), R′(a, b), Q′(b, b)}. Then Fa = {(b, wS wR), (a, wR wQ)}. In Figure 8
we depict the game graph Ga and a Σ-homomorphism h from UK to UA.

Observe that in the game Ga
Σ(GK,UA) there is a way for Duplicator to play (infinitely)

so that the game never goes out of his winning region WD shown dotted in a). It is not
difficult to see that such strategy of Duplicator can be used to define the homomorphism
h, and vice versa.

Example 5.2.8. Assume Σ = {R′(·, ·), S′(·, ·), Q′(·, ·)}, K = 〈T , {∃R(a)}〉, where
T = {∃R− v ∃S, ∃R− v ∃Q, R v R′, S v S′, Q v Q′}, andA = {R′(a, b), S′(b, c),
R′(a, d), Q′(d, e)}. Then, the game graph Ga, the projection of UK over Σ and UA can
be depicted as in Figure 9:

5.2 S I M P L E U N I V E R S A L S O L U T I O N S 51

WSa 7→ a

a, a wR

wR 7→ b wR 7→ d

b, wR wS b, wR wQ d, wR wS d, wR wQ

wS 7→ c wQ 7→ e

a)

a

wR

wS wQ

R′

S′ Q′

b)

a

b d

c e

R′

S′

R′

Q′

c)

Figure 9: No homomorphism: a) the game graph Ga, b) the projection of UK over Σ, c) UA

In this example, Spoiler has a winning strategy from (a 7→ a) (i.e., (a 7→ a) belongs
to the winning region of Spoiler), and there is no homomorphism from UK to UA. Note
that here every possible play is finite.

Example 5.2.9. Assume Σ = {R′(·, ·), S′(·, ·)}, K = 〈T , {∃Q(a)}〉, where T =

{∃Q− v ∃R, ∃R− v ∃S, R v R′, S v S′}, andA = {R′(a, c), S′(c, b), R′(b, c), R′(d, d)}.
Then, the game graph Ga, the projection of UK over Σ and UA can be depicted as In Fig-
ure 10 we depict the game graph Ga and a Σ-homomorphism h from UK to UA.

Observe that the projection of UK over Σ has a “break”: rUKΣ (a, awQ) = ∅, so in
principle awQ can be mapped to constants that are not connected to a in UA. Hence,
the state (a, a wQ) in Ga has transitions to every state of the form (wQ 7→ e) for
e ∈ Ind(A). Note that we can do so because there is only a polynomial number of
constants in A.

In this example, Duplicator has two winning strategy from (a 7→ a) and there are
two possible Σ-homomorphisms from UK to UA. The depicted homomorphism h corre-
sponds to the strategy that assigns to the state (a, a wQ) the next state (wQ 7→ a).

WD a 7→ a

a, a wQ

wQ 7→ a wQ 7→ b wQ 7→ c wQ 7→ d

a, wQ wR b, wQ wR c, wQ wR d, wQ wR

wR 7→ c wR 7→ d

c, wR wS d, wR wS

wS 7→ b

a)

a

wQ

wR

wS

R′

S′

b)

a b

c
d

R′
R′

S′

R′

h

Figure 10: Example with “breaks” in UK: a) Ga, b) Σ-homomorphism h from UK to UA

52 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

It can be decided in polynomial time whether Duplicator has a winning strategy from
a given state (in fact, in linear time [33]), therefore condition (win) can be checked in
polynomial time. Finally, combining Lemma 5.2.5, Lemma 5.1.2, and Proposition A.1.1
one obtains:

Lemma 5.2.10. The membership problem for simple universal solutions is in PTIME.

We conclude this section with the exact complexity for the membership and non-
emptiness problems for simple universal solutions. The following is a consequence of
Lemmas 5.2.1, 5.2.3, and 5.2.10.

Theorem 5.2.11. The non-emptiness problem for simple universal solutions is PTIME-
complete. Moreover, there is an effective algorithm to compute a universal solution in
polynomial time (if such a solution exists).

One case see that the reduction in Lemma 5.2.1 can be easily adapted to the case of
the membership problem, so we obtain PTIME-completeness also for this problem.

Theorem 5.2.12. The membership problem for simple universal solutions is PTIME-
complete.

5.3 E X T E N D E D U N I V E R S A L S O L U T I O N S

In this section we study the membership
and the non-emptiness problems for uni-
versal solutions when extended ABoxes
are allowed in the target. In Section 5.3.1,
we show that the former problem is NP-
complete, while in Section 5.3.2, we pro-
vide the non-matching bounds for the latter
problem, namely a PSPACE lower bound
and an EXPTIME upper bound.

Translation

ABox

Decision problem

universal solution

universal UCQ-solution

UCQ-representation

sim
ple ABoxes

extended ABoxes

membership

non-emptiness

5.3.1 The membership problem

Assume given a mapping M = (Σ1, Σ2, T12), a KB K1 = 〈T1,A1〉 over Σ1, and
an extended ABox A2 over Σ2. In this setting, Σ2-homomorphism from U〈T1∪T12,A1〉 to
UA2 can be still checked in PTIME using the technique of reachability games presented
in Section 5.2, however, the opposite direction cannot be checked efficiently due to nulls
in A2. In fact, it can be shown by reduction from the graph 3-colorability problem that
the membership problem for universal solutions with null values is NP-hard.

Lemma 5.3.1. The membership problem for extended universal solutions is NP-hard in
data complexity.

5.3 E X T E N D E D U N I V E R S A L S O L U T I O N S 53

Proof. The proof is by reduction from 3-colorability of undirected graphs known to be
NP-hard. Consider an undirected graph G = (V, E), and fix signatures Σ1 = {E(·, ·)}
and Σ2 = {E′(·, ·)}. Further, let r, g, b ∈ Na, V ⊆ Nl and

A1 = {E(r, g), E(g, r), E(r, b), E(b, r), E(g, b), E(b, g)},
T1 = {},
T12 = {E v E′},
A2 = {E′(r, g), E′(g, r), E′(r, b), E′(b, r), E′(g, b), E′(b, g)}
∪ {E′(x, y), E′(y, x) | (x, y) ∈ E}.

Note that the nodes in G become labeled nulls in A2. We show that G is 3-colorable if
and only if A2 is a universal solution for K1 = 〈T1,A1〉 underM = (Σ1, Σ2, T12).

(⇒) Suppose G is 3-colorable. Then it follows that there exists a function h that
assigns to each vertex from V one of the colors {r, g, b} such that if (x, y) ∈ E, then
h(x) 6= h(y), hence h is a homomorphism from G to the undirected graph ({r, g, b},
{(r, g), (g, b), (b, r)}).

We prove that A2 is a universal solution for K1 under M. Obviously, K1 is Σ2-
safe with respect to M. Thus, it remains to verify that UA2 is Σ2-homomorphically
equivalent to U〈T1∪T12,A1〉. First, it is easy to see that U〈T1∪T12,A1〉 is Σ2-homomorphically
embeddable into UA2 . Second, h is also a homomorphism from UA2 to U〈T1∪T12,A1〉, thus
UA2 is homomorphically embeddable into U〈T1∪T12,A1〉.

(⇐) Suppose nowA2 is a universal solution for K1 underM. Then by Lemma 5.1.2
it follows that UA2 is Σ2-homomorphically equivalent to U〈T1∪T12,A1〉. Let h be a ho-
momorphism from UA2 to U〈T1∪T12,A1〉. Notice that ∆U〈T1∪T12,A1〉 = Ind(A1), hence h
assigns to each labeled null x ∈ ∆UA2 some constant a ∈ Ind(A1), and it is easy to see
that h is an assignment for the vertices in V that is a 3-coloring of G.

To decide in NP whether there exists a homomorphism h from UA2 to U〈T1∪T12,A1〉,
we can use the fact that the image W ⊆ ∆U〈T1∪T12,A1〉 of such a function h on ∆UA2 is
of polynomial size. Therefore, for each constant and null in A2, one needs to guess its
homomorphic image, and then check whether the resulting function is a homomorphism.
Thus, we obtain an NP-upper bound for the membership problem for universal solutions
with extended ABoxes.

Lemma 5.3.2. The membership problem for extended universal solutions is in NP.

Proof. Assume given a mappingM = (Σ1, Σ2, T12), a source KB K1 = 〈T1,A1〉, and
an extended target ABoxA2, and the question to answer is whetherA2 is a universal so-
lution forK1 underM. It is sufficient to show that condition (hom) of Lemma 5.1.2 can
be checked in NP. The existence of a Σ2-homomorphism from U〈T1∪T12,A1〉 to UA2 can
be decided in PTIME using the technique of reachability games presented in Section 5.2
(note that for homomorphisms in this direction, there is no distinction made between the
constants and the labeled nulls in A2). In the rest of this proof, we show how to check
the existence of a homomorphism from UA2 to U〈T1∪T12,A1〉 in NP in the size of K1,M
and A2.

First, if there exists a homomorphism h from UA2 to U〈T1∪T12,A1〉, then there exists
a witness W with a number of elements bounded by the size of A2 such that W ⊆
∆U〈T1∪T12,A1〉 and h is a function from ∆UA2 to W: take W = h(∆UA2).

54 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

Second, we show that there exists a witness W such that W ⊆ ∆U〈T1∪T12,A1〉 and every
x ∈ W is a path of length smaller or equal 2m, where for x = aw[S1] · · ·w[Sk] the
length of x is k + 1, and m is the size of T1 ∪ T12 ∪ A2. To this purpose, let h be a
homomorphism from UA2 to U〈T1∪T12,A1〉 and W = h(∆UA2). For x, y ∈ W, we say
that x is connected to y in UW

K , if there exists n ≥ 0 and a path (x1, x2, . . . , xn, xn+1)

such that xi ∈ W, x1 = x, xn+1 = y, and (xi, xi+1) ∈ RU
W
K

i for some role Ri, for
i ∈ {1, . . . , n}. Assume that x ∈ W and the length of x is more than 2m. Then, since
W = h(∆UA2), we have that x is not connected to any element of Ind(A1) in UW

K . Let
C be the maximal connected subset of W with x ∈ C, i.e., for each y ∈ C, (i) y is
connected to y′ in UW

K , for each y′ ∈ C, and (ii) y is not connected to any z ∈ W \ C.
Note that C ∩ Ind(A1) = ∅. Let y be the path (in the sense of path(〈T1 ∪ T12,A1〉))
of minimal length in C, it exists and is unique since C ⊆ ∆U

W
〈T1∪T12,A1〉 and there are no

constants in C. Then for each y′ ∈ C, y′ = y ·w[R1] . . . w[Rn] for some roles R1, . . . , Rn.

Further assume tail(y) = w[R], and let z be a path of the minimal length in ∆U〈T1∪T12,A1〉

with tail(z) = w[R]. Then the length of z is bounded by the size of T1 ∪ T12 and the
length of each z · w[R1] . . . w[Rn] for some y · w[R1] . . . w[Rn] ∈ C, is bounded by the

size of T1 ∪ T12 ∪ A2. Now, define a new function h′ : ∆UA2 → ∆U〈T1∪T12,A1〉 such that
h′(x) = h(x) if h(x) /∈ C, and h′(x) = z · w[R1] . . . w[Rn] if h(x) = y · w[R1] . . . w[Rn].
It is easy to see that h′ is a homomorphism from UA2 to U〈T1∪T12,A1〉. Now, we can take
W = h′(∆UA2), and repeat the above construction until the claim is satisfied.

Finally, to verify in NP whether a homomorphism h from UA2 to U〈T1∪T12,A1〉 exists,
it is sufficient to guess W as above and then to check whether UA2 can be homomorphi-
cally mapped to UW

〈T1∪T12,A1〉.

Thus, we obtain the exact complexity bound for the membership problem with ex-
tended ABoxes.

Theorem 5.3.3. The membership problem for extended universal solutions is NP-complete.

5.3.2 The non-emptiness problem

Consider now the non-emptiness problem for universal solutions with null values, that
is, when extended ABoxes are allowed in universal solutions. This problem turns out
to be harder than the membership problem as now candidate solutions that can be of
exponential size are not part of the input. In fact, we show by reduction from the valid-
ity problem for quantified Boolean formulas that checking the existence of a universal
solution is PSPACE-hard. Then we provide an EXPTIME algorithm based on two-way
alternating tree automata (2ATA), known to be EXPTIME-complete and defined in Sec-
tion A.1.1. 2ATA have been previously successfully applied not only in the domain of
µ-calculus and temporal logics [46, 21, 45], but also in the DLs domain to reason and
perform query answering in expressive DLs [29, 31, 32].

T H E L O W E R B O U N D

Lemma 5.3.4. The non-emptiness problem for extended universal solutions is PSPACE-
hard.

5.3 E X T E N D E D U N I V E R S A L S O L U T I O N S 55

Proof. The proof is by reduction from the validity problem for quantified Boolean for-
mulas, known to be PSPACE-complete. Suppose we are given a QBF

φ = Q1X1 . . . QnXn

m∧
j=1

Cj

where Qi ∈ {∀, ∃} and Cj, 1 ≤ j ≤ m, are clauses over the variables Xi, 1 ≤ i ≤ n.
Let Σ1 = {A, Yk

i , Xk
i , Sl , Tl , Qk

i , Pk
i , Rj, Rl

j | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 0 ≤ l ≤ n, k ∈
{0, 1}} where A, Yk

i , Xk
i are concept names and the rest are role names. Let T1 be the

following TBox over Σ1 for 1 ≤ j ≤ m, 1 ≤ i ≤ n and k ∈ {0, 1}:

A v ∃S−0 ∃S−i−1 v ∃Qk
i if Qi = ∀ Qk

i v Si ∃(Qk
i)
− v Yk

i

∃S−i−1 v ∃Si if Qi = ∃ ∃S−n v ∃Rj ∃R−j v ∃Rj

A v ∃T−0 ∃T−i−1 v ∃Pk
i X0

i v ∃Ri
j if ¬Xi ∈ Cj ∃(Ri

j)
− v ∃Ri−1

j

Pk
i v Ti ∃(Pk

i)
− v Xk

i X1
i v ∃Ri

j if Xi ∈ Cj

and A1 = {A(a)}.
Further, let Σ2 = {Z0

i , Z1
i , S′, R′j} where Z0

i , Z1
i are concept names and S′, R′j are

role names,M = (Σ1, Σ2, T12), and T12 the following set of inclusions:

Si v S′ Yk
i v Zk

i Rj v R′j Ri
j v R′j

Ti v S′ Xk
i v Zk

i Ti v R′j
− R0

j v R′j
−

Then, |= φ if and only if U〈T1∪T12,A1〉 is Σ2-homomorphically embeddable into a finite
subset of itself, i.e., if and only if a universal solution for K1 = 〈T1,A1〉 under M
exists. The rest of the proof follows the line of the proof of Theorem 11 in [77].

(⇒) Suppose |= φ. We show that the canonical model U〈T1∪T12,A1〉 is Σ2-homomorphically

embeddable into a finite subset of itself. More precisely, let us denote with T inf
1 the sub-

set of T1 consisting of the first 9 axioms, and T fin
1 the subset of T1 consisting of the last

9 axioms. Then U〈T1∪T12,A1〉 = U〈T inf
1 ∪T12,A1〉

∪ U〈T fin
1 ∪T12,A1〉

, and we construct a Σ2-

homomorphism h : ∆
U
〈T inf

1 ∪T12,A1〉 → ∆
U
〈T fin

1 ∪T12,A1〉 . In the following we use I to denote
U〈T inf

1 ∪T12,A1〉
, and F to denote U〈T fin

1 ∪T12,A1〉
.

We begin by setting h(aI) = aF . Then we define h in such a way that, for each path
π in I of length i + 1 ≤ n, h(π) is a path aFw1 . . . wi of length i + 1 in F and it
defines an assignment ah(π) to the variables X1, . . . , Xi by taking, for all 1 ≤ i′ ≤ i,

ah(π)(Xi′) = > ⇔ aF · w1 · . . . · wi′ ∈ (X1
i′)
F

ah(π)(Xi′) = ⊥ ⇔ aF · w1 · . . . · wi′ ∈ (X0
i′)
F .

Such assignments ah(π) will satisfy the following:

(a) the QBF obtained from φ by removing Q1X1 . . . QiXi from its prefix is true under
ah(π).

For the paths of length 0 the Σ2-homomorphism h has been defined and (a) trivially
holds. Suppose that we have defined h for all paths in I of length i + 1 ≤ n. We extend

56 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

h to all paths of length i + 2 in I such that (a) holds. Let π be a path of length i + 1. In
F we have

tail(h(π)) 〈T fin
1 ∪T12,A2〉

wF
[Pk

i]
, and h(π) · wF

[Pk
i]
∈ (Xk

i)
F , for k = 0, 1.

If Qi = ∀ then in I we have

tail(π) 〈T inf
1 ∪T12,A2〉

wI
[Qk

i]
, and π · wI

[Qk
i]
∈ (Xk

i)
I , for k = 0, 1.

Thus, we set h(π · wI
[Qk

i]
) = h(π) · wF

[Pk
i]

, for k = 0, 1. Clearly, (a) holds. Otherwise,

Qi = ∃ and in I we have

tail(π) 〈T inf
1 ∪T12,A2〉

wI[Si]
.

We know that |= φ and so, by, (a), the QBF obtained from π by removing Q1X1 . . . QiXi
is true under either ah(π) ∪ {Xi = >} or ah(π) ∪ {Xi = ⊥}. We set h(π · wI[Si]

) =

h(π) · wF
[Pk

i]
with k = 1 in the former case, and k = 0 in the latter case. Either way, (a)

holds.
Consider now in I a path π of length n + 1 from aI to wIn . By construction, we have

h(π) = aF · wF
[Pk1

1]
· . . . · wF

[Pkn
n]

.

Next, on the one hand, the path π in I has m infinite extensions of the form π · wI[Rj]
·

wI[Rj]
. . . , for 1 ≤ j ≤ m. On the other hand, as |= φ, by (a), for each clause Cj, there is

some 1 ≤ i′ ≤ n such that h(π) contains wF
[P1

i′]
if Xi′ ∈ Cj, or wF

[P0
i′]

if ¬Xi′ ∈ Cj. We

set for each 1 ≤ l ≤ n− i′,

h(π · wI[Rj]
· . . . · wI[Rj]︸ ︷︷ ︸
l times

) = aF · wF
[Pk1

1]
· . . . · wF

[P
kn−l
n−l]

,

for each n + 1 ≥ l > n− i′,

h(π · wI[Rj]
· . . . · wI[Rj]︸ ︷︷ ︸
l times

) = aF · wF
[Pk1

1]
· . . . · wF

[P
ki′
i′]
· wF

[Ri′
j]
· . . . · wF

[Rn−l+1
j]

,

and for each l > n + 1

h(π · wI[Rj]
· . . . · wI[Rj]︸ ︷︷ ︸
l times

) = aF · wF
[Pk1

1]
· . . . · wF

[P
ki′
i′]
· wF

[Ri′
j]
· wF

[Ri′−1
j]
· . . . · wF

[Ri?
j]

,

where i? = (n− l + 1) mod 2. It is immediate to verify that h is a Σ2-homomorphism
from I to F . Since K1 is Σ2-safe with respect toM, by Lemma 5.1.6 we obtain that a
universal solution for K1 underM exists.

(⇐) Let h be a Σ2-homomorphism from I to F . We show that |= φ.
Let π be a path of length n+ 1, π = aI ·w1 · . . . ·wn, in I . Then (aI , π1), (πi, πi+1) ∈

S′I , where πi = aI ·w1 · . . . ·wi, for 1 ≤ i ≤ n− 1. Furthermore, let Zk1
1 , Zk2

2 , . . . , Zkn
n

be the concepts containing subpaths of h(πi). We show that for every 1 ≤ j ≤ m, the
clause Cj contains at least one of the literals

{Xi | ki = 1, 1 ≤ i ≤ n} ∪ {¬Xi | ki = 0, 1 ≤ i ≤ n}.

5.3 E X T E N D E D U N I V E R S A L S O L U T I O N S 57

Validity of φ will follow.
Consider a path of the form π ·wI[Rj]

· . . . · wI[Rj]︸ ︷︷ ︸
n+1 times

in I . Then its h-image in F must be

of the form

aF · wF
[Pk1

1]
· . . . · wF

[P
ki
i]
· wF

[Ri
j]
· wF

[Ri−1
j]
· . . . · wF

[Ri′
j]

for some 1 ≤ i ≤ n, i′ = 0 or i′ = 1, and ki = 0 or ki = 1. If ki = 0, then Cj must
contain ¬Xi, otherwise Xi.

The following example illustrates the reduction.

Example 5.3.5. For φ = ∃X1∀X2∃X3(X1∧ (X2∨¬X3)), the projection of U〈T1∪T12,A1〉
over Σ2 can be depicted as follows:

aA′

Z0
2

Z0
2

. . . R′1

. . . R′2

. . . R′1

. . . R′2

Cin f

Z0
1

Z1
1

Z0
2

Z1
2

Z0
2

Z1
2

Z0
3

Z1
3

Z0
3

Z1
3

Z0
3

Z1
3

Z0
3

Z1
3

Z0
1

R′2

R′2

R′2

R′2

R′2

R′2

R′1

C f in

where each edge is labeled with S′, each edge is labeled with S′, R′j
− for

1 ≤ j ≤ m, and the labels of edges are shown to the left of each infinite and finite
path. The labels of the nodes (if any) are shown next to each node.

One can see that φ is valid. Let Cinf and Cfin be the parts of U〈T1∪T12,A1〉 generated
using the first 7 axiom templates and the last 7 axiom templates of T1 respectively. Note
that Cinf is infinite, while Cfin is finite. Then Cinf is Σ2-homomorphically embeddable
into Cfin (hence, U〈T1∪T12,A1〉 is Σ2-homomorphically embeddable into Cfin), and the
ABox obtained from Cfin is a universal solution for K1 underM.

T H E U P P E R B O U N D Assume given a mapping M = (Σ1, Σ2, T12) and a source
KB K = 〈T ,A〉, and the question to decide is whether there exists a(n extended) uni-
versal solution forK underM. We show how to check condition (core) of Lemma 5.1.6,
that is, whether there exists a finite subset D of ∆U〈T1∪T12,A1〉 and a Σ2-homomorphism
from U〈T1∪T12,A1〉 to UD

〈T1∪T12,A1〉. To simplify the presentation, in the rest of this section
we tackle a more general problem: given two (non-extended) KBs K1 and K2 with uni-
versal models U1 and U2, and a signature Σ, decide whether there exists a finite subset
D of ∆U2 and a Σ-homomorphism from U1 to UD

2 .

58 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

As in the case of the membership problem for simple universal solutions in Sec-
tion 5.2, for such a homomorphism to exist, first, it should be the case that an analog of
condition (abox) holds. Second, for c ∈ Ind(K1), to check whether the tree U c

1 can be
Σ-homomorphically embedded into UD

2 for some finite D ⊆ ∆U2 , we adopt two-way al-
ternating automata on infinite trees (2ATA), which are a generalization of nondetermin-
istic automata on infinite trees [102] well suited for handling inverse roles in DL-LiteR.
It is known that the non-emptiness problem for such automata is in EXPTIME, thus, we
obtain the required upper bound for our problem. More precisely, we show for each
constant c ∈ Ind(K1) how to construct automata Ac (with Büchi acceptance condition)
such that its language is non-empty if and only if there exists a Σ-homomorphism from
U c

1 to UD
2 for some finite D ⊆ ∆U2 , and it accepts a tree if it corresponds to such a

UD
2 . Then to verify that there exists a Σ-homomorphism from U1 to UD

2 for some finite
D ⊆ ∆U2 , we solve the non-emptiness problem of Ac for each c ∈ Ind(K1). If the lan-
guage accepted by some Ac is empty, then there is no such homomorphism, otherwise
we can compute UD

2 as the union of the trees accepted by Ac. Below we show how to
construct the automaton Ac.

AU T O M AT O N Ac Let Ind(K2) = {a1 , . . . , an a }, Wit(K2) = {w1 , . . . , wnw },
and n = max(n a , nw). Moreover, denote by G1 and G2 the generating models of K1

and K2, respectively.
We define automaton Ac as the tuple 〈Γ , Q , δ , q0 , F〉, where the alphabet Γ is the

set

Γ = {R , S} ∪ {a i | 1 ≤ i ≤ n a} ∪ {w i | 1 ≤ i ≤ nw} .

Hence, Ac accepts n-ary trees where each node either corresponds to a constant of K2,
then it should be labeled with the symbol a i , or corresponds to a witness of K2, labeled
with the symbol w i , or is the root of the tree, labeled with R, or is a node outside the
finite part, labeled with S (S stands for “stop”). The set Q of states is partitioned into
three sets:

Q = {q0} ∪ Q f ∪ Qh ,

where Q f is the set of states responsible for labeling the tree as an appropriate finite sub-
structure of U2, and Qh is the set of states responsible for checking the homomorphism
from U1 into a finite substructure of U2. Thus,

Q f = {q f } ∪ {α i | 1 ≤ i ≤ n a} ∪ {ω i | 1 ≤ i ≤ nw} ,

where the states α i are responsible for labeling the tree with the constants of K2 and ω i
are responsible for labeling the tree with the witnesses of K2. We define the transition
function for these states and q0 as follows:

δ(q0 , L) = (0, q f) ∧ (0, qh) , (2)

δ(q f , L) =


n a∧

i=1

(i , α i) , if L = R

⊥ , otherwise,

(3)

5.3 E X T E N D E D U N I V E R S A L S O L U T I O N S 59

for 1 ≤ i ≤ n a , δ(α i , L) =


∧

1≤ j≤nw ,
a i K2 w j

(j , ω j) , if L = a i

⊥ , otherwise

(4)

for 1 ≤ i ≤ nw , δ(ω i , L) =



∧
1≤ j≤nw ,
w i K2 w j

(j , ω j) , if L = w i

> , if L = S

⊥ , if L ∈ Γ \ {w i , S}

(5)

where qh is a state from Qh we are going to define below. For now observe that due to
the transitions above the trees accepted by Ac will have the symbol R in the root and
the symbol ai in the i-th successor of the root. Then each of the i-th successors above
will have its j-th successor marked with wj whenever ai K2 wj. Further each of the
j-th successors above will have its i-th successor marked with wi whenever wj K2 wi,
and so on. Note that at some step the node in the tree marked with wj can have its i-th
successor marked with S (instead of wi), when wj K2 wi. This should mean that this
i-th successor is not inside the finite substructure of U2 to which the homomorphism
will be mapped, and the automata must stop going down the tree. Note that it is not yet
guaranteed that S appears instead of wi at some point, however, if it is not the case, we
may have an infinite path in the tree, in which the automata will pass through the states
ωi1 , ωi2 , . . . and that would be a contradiction to our acceptance condition presented
below.

To define Qh we need some additional notation. Let Wit(K1) = {u1, . . . , um}, and
assume that u0 is used to denote c. Let t, t′ ∈ {u0, . . . , um}. In the definition of transi-
tions of the automata we will use a pair of relations Σ and Σ between t and t′ defined,

respectively, as t Σ t′ if and only if t K1 t′ and rG1
Σ (t, t′) 6= ∅, and t Σ t′ if and only

if t K1 t′ and rG1
Σ (t, t′) = ∅. One needs to distinguish these two relations: suppose

an element cul1 · · · ulk of ∆U1 is homomorphically mapped to the element ai1 wi2 · · ·wir
of ∆U2 and ulk K1 ulk+1 . If ulk Σ ulk+1 then the element cul1 · · · ulk ulk+1 of ∆U1 has
to be mapped to an immediate successor or predecessor of the image of cul1 · · · ulk in
U2. If, however, ulk Σ ulk+1 then cul1 . . . ulk ulk+1 can be mapped to any element of U2.
Thus, the transitions of the automata on Qh should be defined to reflect this.

Further, let s, s′ ∈ {a1, . . . , ana , w1, . . . , wnw}. We define a function ρt,t′
s,s′ between the

pairs t, t′ and s, s′ such that ρt,t′
s,s′ = > if rG1

Σ (t, t′) ⊆ rG2
Σ (s, s′), and ρt,t′

s,s′ = ⊥ otherwise.

Additionally for t and s, define a function τt
s such that τt

s = > if tG1
Σ (t) ⊆ tG2

Σ (s),
and τt

s = ⊥ otherwise. Clearly, ρ
ulk

,ulk+1
wir ,wir+1

= > and τ
ulk+1
wir+1

= > in the example
above guarantees the edge (cul1 · · · ulk , cul1 · · · ulk ulk+1) of U1 can be mapped to the

edge (ai1 wi2 · · ·wir , ai1 wi2 · · ·wir wir+1) of U2. Finally, we need a function ηu,u′
w for

u, u′ ∈ {u1, . . . , um} and w ∈ {w1, . . . , wnw} such that ηu,u′
w = > if {R− | R ∈

rG1
Σ (u, u′)} ⊆ rG2

Σ (s, w) for some s K2 w, and ηu,u′
w = ⊥ otherwise. In the exam-

ple above η
ulk

,ulk+1
wir

= > means that the edge (cul1 · · · ulk , cul1 · · · ulk ulk+1) can be
“inversely” mapped to the edge (ai1 wi2 · · ·wir , ai1 wi2 · · ·wir−1), otherwise it cannot.
Thus,

Qh = {qh} ∪ {γl , χl | 0 ≤ l ≤ m} ∪ {κi
l | 1 ≤ l ≤ m, 1 ≤ i ≤ na}.

60 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

For each witness ul ∈ Wit(K1) there are two states: γl is responsible for finding a
homomorphic image, and χl is the “expecting state”; moreover for each witness ul ∈
Wit(K1) and constant ai ∈ Ind(K2) there is a state κi

l responsible for transition from
some constant to ai via the root and then mapping ul to ai. Intuitively, having a run of
the automata on a tree ({1, . . . , n}∗, V) with a prefix

(ε, q0), (ε, qh), (x0, γl0), . . . , (xk, γlk),

with xi ∈ {1, . . . , n}∗, will mean that the element cul1 · · · ulk of ∆U1 is homomor-
phically mapped to the element ai1 wi2 · · ·wir of ∆U2 for xk = i1i2 · · · ir. (Here we
abuse notation, and by a run with a prefix of the above mentioned form, we assume
a path y0, yh, yl0 , . . . , ylk in a run tree with r(y0) = (ε, q0), r(yh) = (ε, qh), and
r(yli) = (xi, γli).) Consider now ulk+1 such that ulk K1 ulk+1 , then either ulk Σ ulk+1

or ulk Σ ulk+1 . In the first case the run continues as

(ε, q0), (ε, qh), (x0, γl0), . . . , (xk, γlk), (xk+1, γlk+1)

determining the mapping of cul1 · · · ulk ulk+1 to an immediate successor or predecessor
of ai1 wi2 · · ·wir . In the second case we enter into an “expecting state” χlk+1 and by
our definition of the transition function, the automata will start to traverse the tree non-
deterministically until it reaches some σ ∈ ∆U2 :

(ε, q0), (ε, qh), (x0, γl0), . . . , (xk, γlk), (xk+1, χlk+1), . . . , (xk′ , χlk+1),

where xk′ = i1i2 · · · ir for some i1, i2, . . . , ir, and σ = ai1 wi2 · · ·wir . Then, once the
desired σ is reached, the previous run should continue to (xk′ , γlk+1) meaning that the
homomorphism for cul1 · · · ulk ulk+1 is σ. Notice that it is not yet guaranteed that a state
χlk+1 will eventually switch to γlk+1 in the run. However, by our definition of the transi-
tions it is only possible when the run has infinitely many χlk+1 , which would contradict
to our acceptance condition presented below.

It remans to explain the purpose of the states κi
l . Suppose we have a run with a prefix

(ε, q0), (ε, qh), (x0, γl0), . . . , (xk, γlk), where xk = i1, i.e., the homomorphic image of
cul1 · · · ulk is ai1 , then suppose ulk Σ ulk+1 and the mapping of cul1 · · · ulk ulk+1 should
be the constant aj. The run therefore should proceed into the j-th successor of the parent
(which is ε in this case) of xk and the state γlk+1 , we implement this by means of an

intermediate state κ
j
lk+1

so that the following is a possible extension of the previous run

(ε, q0), (ε, qh), (x0, γl0), . . . , (xk, γlk), (ε, κ
j
lk+1

), (j, γlk+1).

The transitions for the states of Qh are now defined as follows, where 1 ≤ k ≤ m,
1 ≤ j ≤ nw, and t ∈ {a1, . . . , ana , w1, . . . , wnw}:

δ(qh, L) =

(i, γ0), if L = R and c = ai for some i,

⊥, otherwise;
(6)

δ(χk, t) = (0, γk) ∨
∨

t K2 wj

(j, χk) ∨ (−1, χk); (7)

δ(χk, R) =
na∨

i=1

(i, χk); (8)

5.3 E X T E N D E D U N I V E R S A L S O L U T I O N S 61

for 1 ≤ i ≤ na, δ(κi
k, L) =

(i, γk), if L = R,

⊥, otherwise;
(9)

for q ∈ Qh, δ(q, S) = ⊥. (10)

Finally, δ(γk, a) =

τuk
a ∧

∧
uk Σ ul

(0, χl)∧
∧

uk Σ ul

(∨
a K2 wj

[
ρuk ,ul

a,wj ∧ (j, γl)
]
∨

na∨
i=1

[
ρuk ,ul

a,ai ∧ (−1, κi
l)
])

, (11)

and δ(γk, w) =

τuk
w ∧

∧
uk Σ ul

(0, χl)∧
∧

uk Σ ul

(∨
w K2 wj

[
ρuk ,ul

w,wj ∧ (j, γl)
]
∨
[
ηuk ,ul

w ∧ (−1, γl)
])

, (12)

for 1 ≤ l ≤ m, a ∈ {a1, . . . , ana}, w ∈ {w1, . . . , wnw}, and 0 ≤ k ≤ m in (11),
1 ≤ k ≤ m in (12).

For the acceptance condition we take F = {γi | 1 ≤ i ≤ m}. Observe that neither
the states ωi of Q f nor χk of Qh are in F. This implies that a tree having an infinite
branch of wi labels, or a tree having a run in which the mapping of the disconnected
successor as ulk+1 (such that ulk Σ ulk+1) in the example above is “infinitely postponed”
will be rejected. On the other hand, each accepted tree represents some finite substruc-
ture of U2 to which U c

1 can be Σ-homomorphically mapped.

We prove that verifying whether U1 can be Σ-homomorphically mapped to UD
2 for

some finite D ⊆ ∆U2 reduces to checking the non-emptiness problem of Ac.

Lemma 5.3.6. Let K1,K2 be KBs and Σ a signature. There exists a finite subset D of
∆U2 and a Σ-homomorphism from U1 to UD

2 if and only if

(A B OX) rU1
Σ (a, b) ⊆ rU2

Σ (a, b), for all a, b ∈ Ind(K1);

(AU T) the language of the automata Ac is non-empty, for each c ∈ Ind(K1).

Proof. (⇒) Let D ⊆ ∆U2 be a finite set, and h a Σ-homomorphism from U1 to UD
2 . We

construct a labeled tree T = ({1, . . . , n}∗, V) where n = max(na, nw) and show that
T ∈ L(Ac), for each c ∈ Ind(K1). The labeling function V is defined as follows:

V(ε) = R,

V(i) = ai, for each ai ∈ D ∩ Ind(K2)

V(i1i2 · · · ir) = wir , for each ai1 wi2 · · ·wir ∈ D

V(x) = S, for each x ∈ {1, . . . , n}∗ s.t. V(x) was not defined above.

To show that T ∈ L(Ac), we construct a run tree (Tr, r) of Ac on T. The idea
behind this constructions is the following. Assume x ∈ Tr with r(x) = (y, q), y ∈
{1, . . . , n}∗, and V(y) = L. To satisfy the transition function δ(q, L), which can be
viewed as a conjunction of formulas Φi, δ(q, L) =

∧
i Φi, where each Φi is a disjunction

of “simple” formulas ψi
j, Φi =

∨
j ψi

j, we construct exactly one child for each Φi, that is,
we pick exactly one ψi

j from Φi. To choose the exact ψi
j we are making use of the given

homomorphism h. Thus, for instance, if r(x) = (1 · 2, γ1), V(1 · 2) = w2, the current

62 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

path in U1 is cu1 (this path can be obtained from the path from the root of Tr to x),
h(cu1) = a1w2, and u1 Σ u3 and h(cu1u3) = a1w2w4, then we satisfy ψi

j = (4, γ3),
so x would have a child x′ with r(x′) = (1 · 2 · 4, γ3).

U1
c

u1

u3

. . .

UD
2a1

w2

w4

a2

. . .

h

ε R

1 a1

1 · 2 w2

1 · 2 · 4 w4

2 a2

part of T and Tr

εr

x

x′

q0

γ1

γ3

And if, instead, u1 Σ u3 and h(cu1u3) = a2, we switch to the “expecting” state χ3

and remain in this state while traversing the tree {1, . . . , n}∗ from the node 1 · 2 via the
root to the node 2. Once node 2 is reached, we switch to the state γ3. The choices for
satisfying the transition function follow from that. Thus, a run from x will be as follows:

(1 · 2, γ1), (1 · 2, χ3), (1, χ3), (ε, χ3), (2, χ3), (2, γ3).

U1
c

u1

u3

. . .

UD
2a1

w2

a2

. . .

h

ε R

1
a1

1 · 2
w2

2
a2

part of T and Tr

εr

x

q0

γ1 χ3

χ3

χ3

χ3 γ3

More formally, the tree structure Tr and the labeling function r are defined inductively
as follows, where for (x, q) ∈ {1, . . . , n}∗ × Q, f ((x, q)) denotes x, and (z)q denotes
z · · · z, where z is repeated q times:

• ε ∈ Tr is the root of Tr and r(ε) = (ε, q0),
• ε has two children 0 f and 0h such that r(0 f) = (ε, q f) and r(0h) = (ε, qh),
• 0 f has children c1, . . . , cna such that r(ci) = (i, αi),
• for i ∈ {1, . . . , na} and each wj such that ai K2 wj, ci has a child ci · wj with

r(ci · wj) = (i · j, ωj),
• for each node in Tr of the form x = ci1 wi2 · · ·wir , such that r ≥ 2 and ai1 wi2 · · ·wir ∈

D, and each wj such that wir K2 wj, x has a child x · wj with r(x · wj) =

(i1i2 · · · ir j, ωj),
• 0h has one child y0 with r(y0) = (i, γ0) where i ∈ {1, . . . , na} is such that

c = ai,
• for each node of the form x = y0 · (zl1)

q1 · yl1 · (zl2)
q2 · yl2 · · · (zlk)

qk · ylk , where
k ≥ 0, qi ≥ 0, zli denotes xli or kj

li
, and f (r(x)) = j1 · · · js with s ≥ 1, and for

each ul such that ulk Σ ul and h(cul1 · · · ulk ul) = ai1 wi2 · · ·wir ,

– x has a child x · xl with r(x · xl) = (j1 · · · js, χl);

5.3 E X T E N D E D U N I V E R S A L S O L U T I O N S 63

– if j1 = i1, let t be the number s.t. j1 = i1, . . . , jt = it, and
if j1 6= i1, let t = 0, then

* every node of the form x′ = x(xl)
q, 1 ≤ q ≤ s − t, has one child

x′ · xl with r(x′ · xl) = (j1 · · · js−q, χl),

* every node of the form x′ = x(xl)
q, s− t + 1 ≤ q ≤ s− t + r− t has

one child x′ · xl with r(x′ · xl) = (j1 · · · jtit+1 · · · it+q−(s−t), γl), and

* node x′ = x(xl)
s−t+r−t+1 has one child x′ · yl with r(x′ · yl) =

(i1 · · · ir, γl).

• for each node of the form x = y0 · (zl1)
q1 · yl1 · (zl2)

q2 · yl2 · · · (zlk)
qk · ylk , where

k ≥ 0, qi ≥ 0, zli denotes xli or kj
li
, and f (r(x)) = i, and for each ul such that

ulk Σ ul , x has a child

– x · yl with r(x · yl) = (i · j, γl), if h(cul1 · · · ulk ul) = aiwj,

– x · kj
l with r(x · kj

l) = (ε, κ
j
l), if h(cul1 · · · ulk ul) = aj.

• for each node of the form x = y0 · (zl1)
q1 · yl1 · (zl2)

q2 · yl2 · · · (zlk)
qk · ylk , where

k ≥ 0, qi ≥ 0, zli denotes xli or kj
li
, and f (r(x)) = i1 · · · ir′ for r′ ≥ 2, and for

each ul such that ulk Σ ul and h(cul1 · · · ulk ul) = ai1 wi2 · · ·wir , x has a child
x · yl with r(x · yl) = (i1 · · · ir, γl).

• for each node of the form x = y0 · z1 · · · zq · kj
l , q ≥ 0 and zi ∈ {yi, xi, ki′

i }, x
has one child x · yl with r(x · yl) = (j, γk).

It is easy to see that (Tr, r) is an accepting run of Ac.

(⇐) Assume that the language of Ac is non-empty and T = ({1, . . . , n}∗, V) ∈
L(Ac). Let (Tr, r) be an accepting run of Ac over T. We construct a finite set Dc ⊆ ∆U2

and a Σ-homomorphism h from U c
1 to UDc

2 using T and (Tr, r).
Firstly, we prove that T encodes a finite subset of ∆U2 . We show

(a) for each i ∈ {1, . . . , na}, V(i) = ai;
(b) for each k ≥ 2, such that ai1 wi2 · · ·wik ∈ ∆U2 , and for each 2 ≤ j < k, V(i1 · · · ij) =

wij , then V(i1 · · · ik) = wik or V(i1 · · · ik) = S;
(c) for each infinite path ai1 · · ·wij · · · ∈ ∆U2 , there exists j ≥ 2, s.t. V(i1 · · · ij) = S.
Proof of (a): by definition of δ(αi, L).
Proof of (b): for the sake of contradiction, assume for some ai1 wi2 · · ·wik ∈ ∆U2 , k ≥ 2,
for each 2 ≤ j < k, V(i1 · · · ij) = wij , but V(i1 · · · ik) = R or V(i1 · · · ik) = ai. Since
(Tr, r) is a run over T there exists a path in Tr of the form

(ε, q0), (ε, q f), (i1, αi1), (i1i2, ωi2), . . . , (i1 · · · ik, ωik).

Then by definition of the transition function, both δ(ωik , R) = ⊥ and δ(ωik , ai) = ⊥,
which contradicts the assumption (Tr, r) is a run.
Proof of (c): By contradiction, assume that there exists an infinite path ai1 · · ·wij · · · in
∆U2 , such that for each j ≥ 2, V(i1 · · · ij) 6= S. Now, since (Tr, r) is a run of Ac over
T, there must exist an infinite path π in Tr of the form

(ε, q0), (ε, q f), (i1, αi1), (i1i2, ωi2), . . . , (i1 · · · ij, ωij),

Since inf (π) ∩ {γ1, . . . , γnw} = ∅ we obtain a contradiction with the assumption
that (Tr, r) is an accepting run. Therefore, let d ≥ 2 be the depth of S, i.e., for each

64 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

ai1 · · ·wij · · · ∈ ∆U2 , for some j ≤ d, V(i1 · · · ij) = S. The finite set Dc is given by
{ai1 wi2 · · ·wid−1 ∈ ∆U2}.

Next, we show there exists a Σ-homomorphism from U c
1 to UD

2 by constructing that
h. By induction of k, we build h(cul1 · · · ulk) for each cul1 · · · ulk ∈ ∆U

c
1 .

Base of induction. First, in Tr there must exist a path (ε, q0), (ε, qh), and as Tr is a
run, for some i, c = ai, hence this path continues with (i, γ0) (and the current path is
(ε, q0), (ε, qh), (i, γ0)). Then, δ(γ0, ai) is satisfied, which means that τc

ai
= > and, in

turn, tU1
Σ (c) ⊆ tU2

Σ (ai), so we can set h(c) = ai.
Inductive step. Assume h is defined for each path of length k + 1 in ∆U1 , k ≥ 0, let

cul1 · · · ulk ∈ ∆U
c
1 (ul0 denotes c), and h(cul1 · · · ulk) = ai0 wi1 · · ·wir , and assume the

current path π in Tr is of the form

(ε, q0), (ε, qh), (i0, γ0), (x, q)∗, . . . , (i0 · · · ir, γk),

where (x, q)∗ denotes a finite (possibly empty) sequence of tuples (x, q) with x ∈
{1, . . . , n}∗ and q ∈ {γl , χl , κi

l | 1 ≤ l ≤ m, 1 ≤ i ≤ na}. Then δ(γk, wir) (recall,
that i0 · · · ir ∈ T is labeled with wir) is satisfied. Now, let ulk K1 ulk+1 . If ulk Σ ulk+1 ,
then at least one of the formulas

ψj = ρ
ulk

,ulk+1
wir ,wj ∧ (j, γlk+1), for wir K2 wj (wi0 denotes ai0),

ψi = ρ
ulk

,ulk+1
ai0 ,ai ∧ (−1, κi

lk+1
), if r = 0,

ψ−1 = η
ulk

,ulk+1
wir

∧ (−1, γlk+1), if r > 0,

is satisfied. Assume ψj is satisfied for some j ∈ {1, . . . , nw}: then ρ
ulk

,ulk+1
wir ,wj = >, hence

rG1
Σ (ulk , ulk+1) ⊆ rG2

Σ (wir , wj), and the run is continued with (i0 · · · ir j, γlk+1). Moreover,

δ(γlk+1 , wj) is satisfied, so τ
ulk+1
wj = >, i.e., tG1

Σ (ulk+1) ⊆ tG2
Σ (wj). Therefore, we can set

h(cul1 · · · ulk+1) to be equal to ai0 wi1 · · ·wir wj.

In the case r = 0 and ψi is satisfied for some i ∈ {1, . . . , na}, we have that ρ
ulk

,ulk+1
ai0 ,ai =

>, hence rG1
Σ (ulk , ulk+1) ⊆ rG2

Σ (ai0 , ai), and the run is continued with (ε, κi
lk+1

), (i, γlk+1).

Moreover, δ(γlk+1 , ai) is satisfied, so τ
ulk+1
ai = >, i.e., tG1

Σ (ulk+1) ⊆ tG2
Σ (ai). Therefore,

we can set h(cul1 · · · ulk+1) to be equal to ai.

Alternatively, if for r > 0, ψ−1 is satisfied, it follows that η
ulk

,ulk+1
wir

= >, hence {R− |
R ∈ rG1

Σ (ulk , ulk+1)} ⊆ rG2
Σ (wir−1 , wir), and the run is continued with (i0 · · · ir−1, γlk+1).

Moreover, δ(γlk+1 , wir−1) is satisfied, so τ
ulk+1
wir−1

= >, i.e., tG1
Σ (ulk+1) ⊆ tG2

Σ (wir−1). There-
fore, we can set h(cul1 · · · ulk+1) to be equal to ai0 wi1 · · ·wir−1 . It concludes the induc-
tive step for the case ulk Σ ulk+1 .

Consider now, ulk Σ ulk+1 . Then the run continues with (i1 · · · ir, χlk+1). Let

(x1, χlk+1), . . . , (xj, χlk+1), (xj, γlk+1)

be a continuation of the current path π · (i1 · · · ir, χlk+1) in Tr, and xj = j0 · · · js. Then

δ(γlk+1 , wjs) is satisfied, so τ
ulk+1
wjs

= >, and tG1
Σ (ulk+1) ⊆ tG2

Σ (wjs). Since rU1
Σ (cul1 · · · ulk ,

cul1 · · · ulk+1) = ∅, we can set h(cul1 · · · ulk+1) to be equal to aj0 wj1 · · ·wjs .
Note that the runs considered in the induction never visit a node labeled with S, other-

wise it contradicts the definition of a run. Therefore, in such a manner, we can define h, a
Σ-homomorphism from U c

1 to UDc
2 . A Σ-homomorphism from U1 to UD

2 for D =
⋃

c Dc

is defined as the union of h for each c ∈ Ind(K1).

5.3 E X T E N D E D U N I V E R S A L S O L U T I O N S 65

The following examples explain how the algorithm for checking the existence of a
universal solution with extended ABoxes, which is based on the automata construction
described above, works.

Example 5.3.7. Consider M and K1 from Example 4.1.9, i.e., M = (Σ1, Σ2, T12),
where Σ1 = {A(·), R(·, ·), S(·, ·)}, Σ2 = {Q(·, ·)}, and T12 = {R v Q, S v Q},
and K1 = 〈T1,A1〉, where A1 = {A(a), S(a, a)} and T1 = {A v ∃R, ∃R− v ∃R}.

So we construct automaton Aa forK,K′ and Σ, whereK = 〈T1 ∪T12,A1〉,K′ = K
and Σ = Σ2. Moreover, Ind(K′) = {a1}, Wit(K′) = {w1} and Wit(K) = {u1},
where a1 = a, w1 = wR, and u1 = wR. Thus n = 1 and Aa accepts trees of the form
({1}∗, V) and V ∈ {R, S, a1, w1} with the set of accepting states F = {γ1}.

Below we depict a tree T ∈ L(Aa) with an accepting run over T which starts in εr

with r(εr) = (ε, q0).

T

ε
R

1a1

1 · 1w1

1 · 1 · 1S ...

εr

...

...

q0
q f

α1

ω1

ω1

qh

γ0

κ1
1

γ1

κ1
1

γ1

From T we can extract an ABox A2 = {Q(a, a), Q(a, n1·1)}, which is also a (non-
minimal) universal solution for K1 underM.

Example 5.3.8. Consider mappingM = (Σ1, Σ2, T12), and source TBox T1 and ABox
A1, where

Σ1 = {P(·, ·), Q(·, ·), T(·, ·), S(·, ·), R(·, ·)}, Σ2 = {S′(·, ·), R′(·, ·)},
T12 = {Q v S′−, P v R′, S v S′, R v R′},
A1 = {∃T(a), ∃Q(a), P(a, a)},
T1 = {∃T− v ∃S, ∃S− v ∃R, ∃R− v ∃R}.

The projection of U〈T1∪T12,A1〉 over Σ2 is shown below:

a

wQ
wT wS wR wR

· · ·

S′−
S′ R′ R′

R′

66 R E A S O N I N G A B O U T U N I V E R S A L S O L U T I O N S

We construct automaton Aa for K1, K2 and Σ, where K1 = 〈T1 ∪ T12,A1〉, K2 =

K1, and Σ = Σ2. Then Ind(K2) = {a1}, Wit(K2) = {w1, w2, w3, w4} and Wit(K1) =

{u1, u2, u3, u4}, where a1 = a, and

w1 = u1 = wQ, w2 = u2 = wT, w3 = u3 = wS, w4 = u4 = wR.

Thus n = 4, so Aa accepts trees of the form ({1, . . . , 4}∗, V), V ∈ {R, S, a1, w1, w2, w3, w4},
and the set of accepting states F = {γ1, γ2, γ3, γ4}.

Then we check for non-emptiness of Aa. It turns out to be non-empty, so below
we depict a tree T ∈ L(Aa) with an accepting run over T which starts in εr with
r(εr) = (ε, q0). Here, the nodes of T that are never visited by Aa are depicted in gray
as they are not relevant.

T

q0

q f

α1

ω1

ω2

ω3

ω4

ω4

qh

γ0

γ1
χ2

χ2γ2

γ3

κ1
4

γ4

κ1
4

γ4
ε
R

1a1

1 · 1w1
1 · 2w2

1 · 2 · 3w3

1 · 2 · 3 · 4w4

1 · 2 · 3 · 4 · 4S...

εr

...

From T we can extract a universal solution

A2 = {R′(a, a), S′−(a, n1·1), S′(n1·2, n1·2·3), R′(n1·2·3, n1·2·3·4)}

for K1 underM. Observe that A2 is not a minimal universal solution for K1 underM.
Instead, a tree T′ and a run that correspond to the minimal universal solution A′2 =

{R′(a, a), S′(a, n1·1)} can be depicted as follows:

T

q0
q f

α1

ω1

ω2

qh

γ0

γ1
χ2

χ2γ2

γ3

κ1
4

γ4

κ1
4

γ4
ε
R

1a1

1 · 1w1
1 · 2S...

εr

...

5.4 U N I V E R S A L S O L U T I O N S I N D L - L I T ERDFS 67

It is well known that the non-emptiness problem for 2ATA is solvable in EXPTIME.
Then, since the automaton Ac we constructed above is of polynomial size, summing up,
we get:

Theorem 5.3.9. The non-emptiness problem for extended universal solutions is PSPACE-
hard and in EXPTIME.For a given mappingM and a given KB K1, if a universal solu-
tion A2 exists, then it is at most exponentially large in the size of K1 ∪M.

5.4 U N I V E R S A L S O L U T I O N S I N D L - L I T ERDFS

The differences of DL-LiteRDFS with DL-LiteR is that DL-LiteRDFS axioms cannot have
either existential quantification, or negated concepts or roles on the right-hand side. It
implies that for a DL-LiteRDFS KB K = 〈T ,A〉, the canonical model UK of K is, first,
finite, and, second, ∆UK consists only of the constants in A, hence |UK| is polynomial
in the size of K. Then, for each DL-LiteRDFS mapping M = (Σ1, Σ2, T12) and each
DL-LiteRDFS KB K1 over Σ1, K1 is trivially Σ2-safe with respect to M, therefore, by
Lemma 5.1.6 it follows that there exists a universal solution for K1 underM, and it is
polynomially large in the size of K1 ∪M. Thus, we obtain a trivial complexity bound
for the non-emptiness problem for universal solutions in DL-LiteRDFS, independently of
whether simple or extended ABoxes are allowed in the target.

Theorem 5.4.1. In DL-LiteRDFS, the non-emptiness problem for universal solutions is in
TRIVIAL.

Let us turn now to the membership problem. By Lemma 5.1.2 and by the way homo-
morphisms are defined on constants, it follows that a simple target ABox A2 is a uni-
versal solution for a source KB K1 = 〈T1,A1〉 under a mappingM = (Σ1, Σ2, T12) if
and only if UA2 agrees with U〈T1∪T12,A1〉 on concepts and roles from Σ2. The latter can
be checked very efficiently, so we obtain the following complexity bound.

Theorem 5.4.2. In DL-LiteRDFS, the membership problem for simple universal solutions
is NLOGSPACE-complete.

Proof. We show the lower bound by reduction from the reachability problem in directed
graphs.

As for the membership problem with extended ABoxes, clearly the upper bound is
inherited from the same problem in DL-LiteR. To see that the lower bound applies as
well, observe that in the reduction from the 3-colorability problem to show that the
membership problem with extended ABoxes is NP-hard we use only role inclusions,
hence the instance of KB exchange problem we construct is in DL-LiteRDFS. The theorem
below is a straightforward corollary of Theorem 5.3.3.

Theorem 5.4.3. In DL-LiteRDFS, the membership problem for extended universal solu-
tions is NP-complete.

6
R E A S O N I N G A B O U T U N I V E R S A L
U C Q - S O L U T I O N S

In this chapter, we study universal UCQ-solutions. First in Section 6.1 we present a
characterization of universal UCQ-solutions involving finite homomorphisms. Then in
Section 6.2 we investigate universal UCQ-solutions with simple ABoxes in the target,
and in Section 6.3 we investigate universal UCQ-solutions with extended ABoxes in the
target. For the latter we essentially provide a PSPACE lower bound for the non-emptiness
problem. We conclude with a complete picture for universal UCQ-solutions in the case
of DL-LiteRDFS in Section 6.4, which coincides with the complexity of universal solutions
in DL-LiteRDFS.

6.1 C H A R AC T E R I Z AT I O N O F U N I V E R S A L U C Q - S O L U T I O N S

We start with a lemma that shows that the canonical model can be used for checking
certain answers to UCQs.

Lemma 6.1.1. Let K be a consistent KB, q(~x) a UCQ and~a ⊆ Na a tuple of constants.
Then it holds K |= q[~a] iff UK |= q[~a].

Proof. (⇒) Assume K |= q[~a]. Then for each model I of K, we have that I |= q[~a].
Since UK is a model of K, it follows UK |= q[~a].

(⇐) Let UK |= q[~a], moreover assume ~a = (a1, . . . , ak) for ai ∈ Na, and q(~x) =

∃y1 . . . ∃ym.φ(x1, . . . , xk, y1, . . . , ym). Then it follows that there exist σ1, . . . , σm ∈
∆UK such that UK |= φ[a1, . . . , ak, σ1, . . . , σm].

Let I be a model of K, we show that I |= q[~a]. By Theorem 2.1.5, there exists a
homomorphism h from UK to I . Then it is easy to see that

I |= φ[a1, . . . , ak, h(σ1), . . . , h(σm)].

As I was an arbitrary model of K, it follows that K |= q[~a].

Then we define the notion of Σ-query entailment studied in [77] that generalizes the
concept of UCQ-solutions.

Definition 6.1.2. Let K1 and K2 be KBs, and Σ a signature. Then, K1 Σ-query entails
K2 if for each UCQ q over Σ,

cert(q,K2) ⊆ cert(q,K1).

Moreover, K1 and K2 are Σ-query equivalent, if they Σ-query entail each other.

It is well known that homomorphisms preserve answers to UCQs [72, 1], in particular,
if UK2 is Σ-homomorphically embeddable into UK1 , then K1 Σ-entails K2. However, it
is not a necessary condition, as demonstrated by the following example.

69

70 R E A S O N I N G A B O U T U N I V E R S A L U C Q - S O L U T I O N S

Example 6.1.3. Consider Σ = {R(·, ·), S(·, ·)}, and K1 = 〈T1, {∃T(a)}〉 and K2 =

〈T2, {∃Q(a)}〉, where T1 = {∃T− v ∃T, ∃T− v ∃S, T v R−} and T2 = {∃Q− v
∃R, ∃R− v ∃R, ∃R− v ∃S}. Then one can notice that K1 Σ-query entails K2 even
though UK2 is not Σ-homomorphically embeddable into UK1 .

a
wQ wR

wS

wR

wS

wR

wS

. . .
R

S

R

S

R

S

UK2

a
wT

wS

wT

wS

wT

wS

. . .
R− R−

S

R−

S S

UK1

The example above suggests that for a characterization of Σ-query entailment one has
to consider finite Σ-homomorphisms. Here, given interpretations I and J , we say I is
finitely Σ-homomorphically embeddable into J , if for every finite sub-interpretation I ′
of I , there exists a Σ-homomorphism from I ′ to J .

Lemma 6.1.4 ([77]). Let K1 = 〈T1,A1〉 and K2 = 〈T2,A2〉 be consistent KBs with
the corresponding canonical models U1 and U2, and Σ a signature. Then K1 Σ-query
entails K2 iff U2 is finitely Σ-homomorphically embeddable into U1.

Proof. (⇒) Assume K1 Σ-query entails K2. Let D be a finite subset of ∆U2 such that
D = {a1, . . . , ak, σ1, . . . , σm} with ai ∈ Ind(A2). Consider a CQ q = ∃y1 . . . ∃ym.φ,
where for i, i′ ∈ {1, . . . , k} and j, j′ ∈ {1, . . . , m}

φ =
∧

A∈tU2
Σ (ai)

A(ai) ∧
∧

R∈rU2
Σ (ai ,ai′)

R(ai, ai′) ∧
∧

R∈rU2
Σ (ai ,σj)

R(ai, yj) ∧

∧
A∈tU2

Σ (σj)

A(yj) ∧
∧

R∈rU2
Σ (σj,σj′)

R(yj, yj′)

Clearly, U2 |= q, as U2 |= φ[σ1, . . . , σm]. Then using Lemma 6.1.1, we obtain that U1 |=
q, therefore for some σ′1, . . . , σ′m ∈ ∆U1 , U1 |= φ[σ′1, . . . , σ′m]. We define a function
h : D → ∆U1 as h(ai) = (ai) and h(σi) = σ′i . This function is a homomorphism:
it maps every constant to itself, and from U1 |= φ[σ′1, . . . , σ′m] it follows that for each
d, d′ ∈ D, tU2

Σ (d) ⊆ tU1
Σ (h(d)) and rU2

Σ (d, d′) ⊆ rU1
Σ (d, d′)

(⇐) Assume U2 is finitely Σ-homomorphically embeddable into U1. Let q be a Σ-
query such that K2 |= q and q = ∃y1, . . . , ∃ym.φ, where φ is a conjunction of atoms
over constants a1, . . . , ak and variables y1, . . . , ym. Then U2 |= φ[σ1, . . . , σm] for some
σj ∈ ∆U2 . Let D = {a1, . . . , ak, σ1, . . . , σk} and h a Σ-homomorphism from UD

2 to ∆U1

with h(ai) = ai for i = 1, . . . , k. By definition of homomorphism, we have that for each
concept A over Σ and d ∈ D, if d ∈ AU2 , then h(d) ∈ AU1 , and for each role R over Σ
and d, d′ ∈ D, if (d, d′) ∈ RU2 , then (h(d), h(d′)) ∈ RU1 . Which in turns implies that
U1 |= φ[h(σ1), . . . , h(σm)], hence, K1 |= q.

As a corollary of the lemma above, we obtain a characterization of universal UCQ-
solutions.

Corollary 6.1.5. A KBK2 over Σ2 is a universal UCQ-solution for a KBK1 = 〈T1,A1〉
under a mappingM = (Σ1, Σ2, T12) iff UK2 is finitely Σ2-homomorphically equivalent
to U〈T1∪T12〉,A1

.

6.2 U N I V E R S A L U C Q - S O L U T I O N S W I T H S I M P L E A B OX E S 71

6.2 U N I V E R S A L U C Q - S O L U T I O N S W I T H S I M P L E A B OX E S

In this section we study the membership
and non-emptiness problems for universal
UCQ-solutions with simple ABoxes. Sec-
tion 6.2.1 is dedicated to the membership
problem, for which we provide a PSPACE

lower bound and develop an EXPTIME al-
gorithm based on an involved reduction to
reachability games. In Section 6.2.2, we
show how to solve the non-emptiness prob-
lem in EXPTIME using the algorithm de-
vised for the membership problem.

Translation

ABox

Decision problem

universal solution

universal UCQ-solution

UCQ-representation

sim
ple ABoxes

extended ABoxes

membership

non-emptiness

6.2.1 The membership problem

We start by showing that reasoning about universal UCQ-solutions is harder than rea-
soning about universal solutions, which can be explained by the fact that TBoxes have
bigger impact on the structure of universal UCQ-solutions rather than of universal so-
lutions. In fact, by using a reduction from the validity problem for quantified Boolean
formulas, similar to a reduction in [77], we are able to prove the following:

Theorem 6.2.1. The membership problem for universal UCQ-solutions is PSPACE-
hard.

Proof. The proof is by reduction of the validity problem for quantified Boolean formu-
las, known to be PSPACE-complete. Suppose we are given a QBF

φ = Q1X1 . . . QnXn

m∧
j=1

Cj

where Qi ∈ {∀, ∃} and Cj, 1 ≤ j ≤ m, are clauses over the variables Xi, 1 ≤ i ≤ n.
Let Σ1 = {A, Yk

i , Xk
i , Sl , Tl , Qk

i , Pk
i , Rj | 1 ≤ j ≤ m, 1 ≤ i ≤ n, 0 ≤ l ≤ n, k ∈

{0, 1}} where A, Yk
i , Xk

i are concept names and the rest are role names. Let T1 be the
following TBox over Σ1 for 1 ≤ j ≤ m, 1 ≤ i ≤ n and k ∈ {0, 1}:

A v ∃S−0 ∃S−i−1 v ∃Qk
i if Qi = ∀ Qk

i v Si ∃(Qk
i)
− v Yk

i

∃S−i−1 v ∃Si if Qi = ∃ ∃S−n v ∃Rj ∃R−j v ∃Rj

A v ∃T−0 ∃T−i−1 v ∃Pk
i X0

i v ∃Rj if ¬Xi ∈ Cj

Pk
i v Ti ∃(Pk

i)
− v Xk

i X1
i v ∃Rj if Xi ∈ Cj

and A1 = {A(a)}.
Further, let Σ2 = {A′, Z0

i , Z1
i , S′, R′j, Pk

i
′, T′l } where A′, Z0

i , Z1
i are concept names

and S′, R′j, Pk
i
′, T′l , Rl

j
′

are role names,M = (Σ1, Σ2, T12), and T12 the following set of
inclusions:

A v A′ Si v S′ Yk
i v Zk

i Rj v R′j Pk
i v Pk

i
′

Ti v S′ Xk
i v Zk

i Ti v R′j
− Tl v T′l

72 R E A S O N I N G A B O U T U N I V E R S A L U C Q - S O L U T I O N S

Finally, let A2 = {A′(a)}, and T2 the following target TBox for 1 ≤ j ≤ m,
1 ≤ i ≤ n and k ∈ {0, 1}:

A′ v ∃T′0
− ∃T′i−1

− v ∃Pk
i
′ Z0

i v ∃R′j if ¬Xi ∈ Cj

Pk
i
′ v T′i ∃(Pk

i
′
)− v Zk

i Z1
i v ∃R′j if Xi ∈ Cj

T′i v S′ T′i v R′j
− ∃R′j

− v ∃R′j

We verify that |= φ if and only if 〈T2,A2〉 is a universal UCQ-solution for K1 =

〈T1,A1〉 underM. Due to Corollary 6.1.5, it suffices to show that |= φ iff U〈T1∪T12,A1〉
is finitely Σ2-homomorphically equivalent to U〈T2,A2〉. The rest of the proof is similar to
Lemma 5.3.4.

We illustrate the reduction by an example.

Example 6.2.2. For φ = ∃X1∀X2∃X3(X1 ∧ (X2 ∨ ¬X3)), the projection over Σ2 of
U〈T1∪T12,A1〉 and U〈T2,A2〉 can be depicted as in Figure 11a and Figure 11b, respectively.
Here each edge is labeled with S′, each edge is labeled with S′, R′j

− for

aA′

Z0
2

Z0
2

· · · R′1

· · · R′2

· · · R′1

· · · R′2

Z0
1

Z1
1

Z0
2

Z1
2

Z0
2

Z1
2

Z0
3

Z1
3

Z0
3

Z1
3

Z0
3

Z1
3

Z0
3

Z1
3

· · · R′2

· · · R′2

· · · R′2

· · · R′2

· · · R′2

· · · R′2

· · · R′1

(a) The projection over Σ2 of U〈T1∪T12,A1〉.

aA′

Z0
1

Z1
1

Z0
2

Z1
2

Z0
2

Z1
2

Z0
3

Z1
3

Z0
3

Z1
3

Z0
3

Z1
3

Z0
3

Z1
3

· · · R′2

· · · R′2

· · · R′2

· · · R′2

· · · R′2

· · · R′2

· · · R′1

(b) U〈T2,A2〉.

Figure 11: U〈T1∪T12,A1〉 and U〈T2,A2〉 for φ = ∃X1∀X2∃X3(X1 ∧ (X2 ∨ ¬X3)).

6.2 U N I V E R S A L U C Q - S O L U T I O N S W I T H S I M P L E A B OX E S 73

1 ≤ j ≤ m, and Pk
i
′, T′i if its end is labeled with Zk

i , and the labels of edges are
shown to the left of each infinite and finite path. The labels of the nodes (if any) are
shown next to each node.

Since φ is valid, it follows that 〈T2,A2〉 is a universal UCQ-solution for K1 under
M. In fact, U〈T2,A2〉 is Σ2-homomorphically equivalent to U〈T1∪T12,A1〉.

Next we provide an upper bound for the membership problem for universal UCQ-
solutions with simple ABoxes. In the following given KBs K1 and K2, and a signa-
ture Σ, we are going to develop an algorithm for checking whether UK1 is finitely Σ-
homomorphically embeddable into UK2 , based on a reduction to infinite games, which
extends the reduction in Section 5.2 from the universal models of ABoxes (i.e., the graph
of constants) to the universal models of KBs (i.e., possibly infinite forests hanging from
the graph of constants). Let Gi with ∆Gi = Ind(Ki) ∪Wit(Ki) be the generating model
and Ui the canonical model of Ki. Moreover, let r̄Gi

Σ (u, v) contain the inverses of the
roles in rGi

Σ (u, v). We begin with a very simple extension of the game Gc
Σ(GK,UA).

I N F I N I T E G A M E GΣ(G1,U2) is a pair (Gi, Fi), where Gi is the game graph, and Fi
is the set of states that Spoiler wants to reach.

The game graph Gi = (S, D, T) has the set of states of the kind (u 7→ σ) and (σ, u u′),
where u, u′ ∈ ∆G1 and σ ∈ ∆U2 .

• S consists of the states (u 7→ σ) with tG1
Σ (u) ⊆ tU2

Σ (σ) and σ = u if u ∈ Ind(K1);
intuitively, such states represent a mapping of δ ∈ ∆U1 with tail(δ) = u to
σ. Given this partial homomorphism, Spoiler can decide to challenge Duplicator
with one of the successors u′ of u in G1.

• D consists of the states (σ, u u′) with u K1 u′ such that u Σ u′; these states
represent “challenges” that Duplicator must address by finding in U2 a neighbor
σ′ of σ so that the “challenged” edge (δ, δ · u′) of U1 can be “mapped” to (σ, σ′).

Therefore, the transitions between S and D, forming T, are defined as the union of:

•
(
(u 7→ σ), (σ, u u′)

)
, and

•
(
(σ, u u′), (u′ 7→ σ′)

)
whenever rG1

Σ (u, u′) ⊆ rU2
Σ (σ, σ′).

Notice that the size of G is O(|G1| × |U2|).
The set Fi, which is the set of states that Spoiler wants to reach, is given by the

duplicating states that are “dead ends”, i.e.,

Fi =
{
(σ, u u′) | (u′ 7→ σ′) /∈ S or rG1

Σ (u, u′) 6⊆ rU2
Σ (σ, σ′), for all σ′ ∈ ∆U2

}
.

The game GΣ(G1,U2) proceeds slightly differently from Gc
Σ(GK,UA). For each n ≥ 1

and u0 ∈ ∆G1 , Duplicator tries to construct a Σ-homomorphism from U u0,n
1 to U2, where

U u0,n
1 is a subinterpretation of U1 such that there exists δ0 ∈ ∆U1 with tail(δ0) = u0,

and δ = δ0 · δ′ and len(δ′) ≤ n, for each δ ∈ ∆U
u0,n
1 . At the same time, Spoiler at-

tempts to fail him by finding a path in U1 that does not have a homomorphic image in
U2, given the partial homomorphism constructed so far. Thus, Spoiler starts in a state
s0 = (u0 7→ σ0) for some σ0 with u0 = σ0 if u0 ∈ Ind(K1), which corresponds to set-
ting the homomorphic image of u0 to σ0, and in each his turn chooses a successor ui+1

74 R E A S O N I N G A B O U T U N I V E R S A L U C Q - S O L U T I O N S

of ui in G1: the “challenge” represented by the state (σi, ui ui+1). Then Duplicator
tries to find σi+1 ∈ ∆U2 that could be the image of the “challenged” node u0 · · · ui+1,
which gives the next Spoiler’s state (ui+1 7→ σi+1). Duplicator loses if at some point
he cannot find where to map the challenged node, i.e., the game reached a dead-end of
Duplicator: (σi, ui ui+1) ∈ Fi. Otherwise, they can reach a dead-end of Spoiler, or
continue until the n-th successor of u0, hence Duplicator wins.

Therefore, for an ordinal λ ≤ ω, we say that Duplicator has a λ-winning strategy
from s0 = (u0 7→ σ0) in the game GΣ(G1,U2) if, for i < λ and every play

(u0 7→ σ0), (σ0, u0 u1), . . . , (ui 7→ σi), (σi, ui ui+1)

conform with this strategy, (σi, ui ui+1) is not a dead-end of Duplicator.
We prove that verifying whether U1 can be finitely Σ-homomorphically mapped to U2

reduces to checking whether Duplicator has a n-winning strategy in GΣ(G1,U2) from
some state sn

0 = (u0 7→ σ0).

Lemma 6.2.3. Let K1 and K2 be KBs with the universal models U1 and U2 respectively,
G1 the generating model ofK1, and Σ a signature. Then U1 is finitely Σ-homomorphically
embeddable into U2 iff

(A B OX) rU1
Σ (a, b) ⊆ rU2

Σ (a, b), for all a, b ∈ Ind(K1);

(W I N) for each u0 ∈ ∆G1 and n < ω there exists σ0 ∈ ∆U2 such that
Duplicator has an n-winning strategy in GΣ(G1,U2) from sn

0 = (u0 7→ σ0).

Proof. (⇒) Suppose U1 is finitely Σ-homomorphically embeddable into U2. Then (abox)
holds by definition of Σ-homomorphism. To show that (win) holds, suppose u0 ∈ ∆G1

and n < ω are given. Take a sub-interpretation U u0,n
1 of U2 that contains δu0, for some

(say, the shortest) word δ, and all elements of ∆U1 whose distance from δu0 does not ex-
ceed n. Let h : U u0,n

1 → U2 be a Σ-homomorphism. Take σ0 = h(δu0): then (u0 7→ σ0)

is a state in the game GΣ(G1,U2). We show that Duplicator has an n-winning strategy
in GΣ(G1,U2) from (u0 7→ σ0). Suppose Spoiler moves to (σ0, u0 u1). Then δu0u1

is an element of U u0,n
1 , and Duplicator can respond with σ1 = h(δu0u1). Note that

(u1 7→ σ1) is a state in GΣ(G1,U2) because h is a Σ-homomorphism. In such a manner,
Duplicator can use h to respond to each challenge (σi, ui ui+1) with 0 ≤ i ≤ n.

(⇐) Let U ′1 be a sub-interpretation of U1 containing n elements or U1 itself if such
a sub-interpretation does not exist. Consider first the case when U ′1 is a tree with the
root δu0 for some u0 ∈ ∆G1 . We define, by induction, a Σ-homomorphism h : U ′1 → U2

as follows. Take an n-winning strategy for Duplicator in the game GΣ(G1,U2) starting
from a suitable state (u0 7→ σ0) and set h(δu0) = σ0. Suppose now that δu0 . . . uk is
an element of U ′1 such that whenever ui Σ . . . Σ uj for some 0 ≤ i ≤ j < k there is
a play (ui 7→ σi), (σi, ui ui+1), . . . , (uj 7→ σj), which conforms with some n-winning
strategy. Assume uk−1 Σ uk, then (σk−1, uk−1 uk) is a valid challenge for Duplica-
tor in some n-winning strategy from the state (uk−1 7→ σk−1) and consider the reply
(uk 7→ σk) of Duplicator: we set h(δu0 . . . uk) = σk. By construction of GΣ(G1,U2),
we have that h is a Σ-homomorphism. If however uk−1 Σ u for each u ∈ ∆G1 such that
uk−1 K1 u, then we can set h(δu0 . . . uk) = σ′, where σ′ ∈ ∆U2 is such that there is
an n-winning strategy in GΣ(G1,U2) from (uk 7→ σ′) (such σ′ exists by (win)).

An arbitrary finite sub-interpretation of U1 can be represented as a union of finitely
many maximal trees in which ABox individuals can only be roots. Let h be the union

6.2 U N I V E R S A L U C Q - S O L U T I O N S W I T H S I M P L E A B OX E S 75

of the corresponding Σ-homomorphisms for all these sub-trees. In view of (abox), h is
a Σ-homomorphism.

The following two examples illustrate the reduction, moreover we discuss the type of
homomorphisms and games in each of the cases.

Example 6.2.4. Suppose Σ = {R, S}, K1 = 〈T1,A1〉 and K2 = 〈T2,A2〉, where
T1 = {∃R− v ∃R, ∃S− v ∃S, ∃S− v ∃R}, A1 = {∃R(a), ∃S(a)}, and T2 =

{∃T− v ∃T, ∃T− v ∃Q, T v S, T v R−, Q v R}, A2 = {R(a, a), ∃T(a)}. The
(projections of the) canonical models U1 and U2 look as follows:

U1

a

wR wS

wR wSwR
...

...
...

R S

R SR

U2

a

wT

wQ

wT

wQ
...

S, R−

R
S, R−

R

R

and it is easy to see that U1 is (finitely) Σ-homomorphically embeddable into U2. Such a
homomorphism “starts” in a, then “goes down” (i.e., forward) the tree U2 to awT · · ·wT,
next “goes up” (i.e., backward) to a, and finally, “stays” in a. The corresponding game
graph of GΣ(G1,U2) is shown in the picture below. Here, the moves of Spoiler are shown
in red color, and the moves of Duplicator are shown in blue color.

a 7→ a

a, a wR

wR 7→ a

a, wR wR

wR 7→ awT

awT, wR wR

wR 7→ awTwT

awTwT, wR wR

a, a wS

wS 7→ awT

awT, wS wR

wR 7→ awTwQ

awTwQ, wR wR

awT, wS wS

wS 7→ awTwT

awTwT, wS wR

wR 7→ awTwTwQ

awTwTwQ, wR wR

awTwT, wS wS

wS 7→ awTwTwT

awTwTwT, wS wR

wR 7→ awTwTwTwQ

awTwTwTwQ, wR wR

awTwTwT, wS wS

...

...

Observe that Duplicator has an n-winning strategy from (a 7→ a) in GΣ(G1,U2) for each
n ≥ 1. He has no n-winning strategy, however, from (wR 7→ awTwQ) for n ≥ 1.

In the example above, the winning Duplicator strategy from (a 7→ a) follows the pat-
tern of the homomorphism. We call such strategies start-bounded: a strategy for Dupli-
cator in the game GΣ(G1,U2) starting from a state (u0 7→ σ0) is start-bounded if it never
leads to (ui 7→ σi) such that σ0 = σiw, for some w and i > 0. In other words, Duplicator

76 R E A S O N I N G A B O U T U N I V E R S A L U C Q - S O L U T I O N S

cannot use those elements of U2 that are located closer to the ABox than σ0; the ABox
individuals in U2 can only be used if σ0 ∈ Ind(K2).

Example 6.2.5. Consider the (projections over Σ of the) canonical models U1 and U2

depicted as follows:

U1

a

u1

u2

u3
u4

u5

u6

u6

u7

u8

u9

u2

u3
u4

u5

u6

u6

u7

u8

u9

u2

u3
u4

u5

u6

u6

u7

u8

u9

...

...

...

...

R−

S− T

W

Q

Q

W−1

T−1

S−1

R−

S− T

W

Q

Q

W−1

T−1

S−1

R−

S− T

W

Q

Q

W−1

T−1

S−1

U2

a b

w1

w2 w3

w4

w5

w5

w1

w2 w3

w4

w5

w5

w1

w2 w3

w4

w5

w5

...

...

...

...

U

S, S1

R

S, S1

T, T1

W, W1

Q

Q

R

S, S1

T, T1

W, W1

Q

Q

R T, T1

W, W1

Q

Q

n = 1, 2

n = 3, 4

n = 5, 6

One can see that U1 is finitely Σ-homomorphically embeddable into U2. In particular,
for n = 1, 2, a Σ-homomorphism from U u1,n

1 to U2 maps au1 to aw1w2; for n = 3, 4,
the element au1 can be mapped to aw1w2w1w2; for n = 5, 6, the element au1 can be
mapped to aw1w2w1w2w1w2, and so on.

Thus, if we view homomorphism as wrapping a wire (U1) around a tree (U2), then a
Σ-homomorphism from U u1,6

1 to U2 can be depicted as follows:

U2

U u1,6
1

a
b

w1

w2 w3

w4

w5

w5

w1

w2 w3

w4

w5

w5

w1

w2

w3

w4

w5

w5

...

...

...

...

U

S, S1

R

S, S1

T, T1

W, W1

Q

Q

R

S, S1

T, T1

W, W1

Q

Q

R

T, T1

W, W1

Q

Q

u1

u2

u3

u4

u5

u6

u6

u7

u8

u9

u2

u3

u4

u5

u6

u7

u2

u3

The homomorphism in this case has a different pattern from the previous example: it
starts in aw1w2 · · ·w1w2, then goes up and eventually “reaches” a; on the way it also

6.2 U N I V E R S A L U C Q - S O L U T I O N S W I T H S I M P L E A B OX E S 77

“forks” to go both down and up. Note that when going up, some elements are mapped
to the image of their predecessor (au1u2u4u5u7u8), and some elements are mapped to
the image of other elements that “started” going up “earlier” (au1u2u4u5u7u8u9).

The corresponding game graph of GΣ(G1,U2) can be partially depicted as follows.

u1 7→ aw1w2

u2 7→ aw1

u3 7→ a

u4 7→ aw1w3

u5 7→ aw1w3w4

u7 7→ aw1w3

u8 7→ aw1

u9 7→ a

u6 7→ aw1w3w4w5

u6 7→ aw1w3w4w5w5

...

u1 7→ aw1w2w1w2

u2 7→ aw1w2w1

u3 7→ aw1w2

u4 7→ aw1w2w1w3

u5 7→ aw1w2w1w3w4

u7 7→ aw1w2w1w3

u8 7→ aw1w2w1

u9 7→ aw1w2

u6 7→ aw1w2w1w3w4w5

u6 7→ aw1w2w1w3w4w5w5

u1 7→ aw1w2w1w2w1w2

...

...

...

u3 u2

u3 u2

u3 u2

u2 u3

u2 u4

u5 u7

u5 u6

u2 u3

u2 u4

u5 u7

u5 u6

u1 u2

u4 u5

u6 u6

u7 u8

u8 u9

u1 u2

u4 u5

u6 u6

u7 u8

u8 u9

s2
0

s4
0

s6
0

Here to save space, since the choices for mapping the elements of ∆U1 are always unique,
we depict the graph slightly differently as usual: the duplicating states are shown as
labels on the transitions, and the σ component is omitted. Observe that in the game
GΣ(G1,U2), Duplicator has an n-winning strategy from s2

0 = (u1 7→ aw1w2) for n =

1, 2; from s4
0 = (u1 7→ aw1w2w1w2) for n = 3, 4; from s6

0 = (u1 7→ aw1w2w1w2w1w2)

for n = 5, 6, and so on.

One can see that the winning Duplicator strategy from (u1 7→ aw1w2w1w2w1w2) in
the example above follows the pattern of the homomorphism as well. This strategy in
GΣ(G1,U2) is the most general one, and it is composed of one backward strategy and a
number of start-bounded strategies. A λ-strategy for Duplicator in the game GΣ(G1,U2)

starting from a state (u0 7→ σ0) is called backward if for every play

(u0 7→ σ0), (σ0, u0 u1), . . . , (ui−1 7→ σi−1)

with i− 1 < λ that conforms with this strategy, and every challenge (σi−1, ui−1 ui)

by Spoiler, the response σi of Duplicator is the immediate predecessor of σi−1 in U2,
i.e., σi−1 = σiw, for some w ∈ ∆G1 (Duplicator loses in case σi−1 ∈ Ind(K2)).
Note that, since U2 is tree-shaped, the response of Duplicator to any other challenge
(σi−1, ui−1 u′i) must be the same σi.

Unfortunately, characterization in Lemma 6.2.3 does not provide an algorithm for
checking finite Σ-homomorphisms, as in general, the game graph of GΣ(G1,U2) is infi-
nite. To deal with that, in the following, we are going to define two games “played” on

78 R E A S O N I N G A B O U T U N I V E R S A L U C Q - S O L U T I O N S

the generating models G1 and G2. The main idea of these games is that every element of
∆U2 is “visited” only once. First, we define so called start-bounded games that capture
homomorphisms as in Example 6.2.4 and cover start-bounded strategies in GΣ(G1,U2).
Then, we define finite games that capture arbitrary homomorphisms as in Example 6.2.5
and cover arbitrary Duplicator strategies in GΣ(G1,U2).

S TA RT- B O U N D E D G A M E G s
Σ (G1 , G2) is a pair (G , F).

The game graph G = (S , D , T) has the set of states of the kind (Γ, Ξ 7→ x) and
(Ξ, x, u u′), where Ξ, Γ ⊆ ∆G1 , Ξ 6= ∅, u, u′ ∈ ∆G1 , and x ∈ ∆G2 .

• S consists of the states (Γ, Ξ 7→ x) with tG1
Σ (u) ⊆ tG2

Σ (x) for each u ∈ Ξ, and
x = u if u ∈ Ξ ∩ Ind(K1). Intuitively, Ξ is the set of u that Duplicator “guessed”
should be mapped to x. Note that Γ stores previously mapped elements of ∆G1 ,
which are used by Spoiler to choose valid challenges.

• D consists of the states (Ξ, x, u u′) with u ∈ Ξ, u K1 u′ such that u Σ u′.
Intuitively, such states represent challenges that Duplicator has to address. Note
that Ξ and x store relevant information used by Duplicator to choose a response.

The transitions in T are defined as:

•
(
(Γ, Ξ 7→ x), (Ξ, x, u u′)

)
whenever the following condition is satisfied:

(N B K) if u′ ∈ Γ and x /∈ Ind(K2), then rG1
Σ (u, u′) 6⊆ r̄G2

Σ (z, x) for some
z ∈ ∆G2 such that z K2 x.

In particular, if u′ ∈ Γ, x /∈ Ind(K2), and rG1
Σ (u, u′) ⊆ r̄G2

Σ (z, x), it means that u′

has been “already” mapped to the predecessor of x, so it is not a valid challenge.

• for u′ ∈ Ξ′ and rG1
Σ (u, u′) ⊆ rG2

Σ (x, x′),(
(Ξ, x, u u′), (Ξ, Ξ′ 7→ x′)

)
whenever x K2 x′, and(

(Ξ, x, u u′), (∅, Ξ′ 7→ x′)
)

whenever x, x′ ∈ Ind(K2).

Observe that because of condition (nbk) Duplicator moves only “forward” in G2,
but has to guess appropriate sets Ξ′ in advance.

Notice that the size of G is 2O(|G1|×|G2|).
As usual, the set Ff consists of the states from D that are “dead ends”.

Example 6.2.6. Consider KBsK1 andK2 from Example 6.2.4. Then a part of the game
graph of Gs

Σ(G1,G2) can be depicted as in the picture below. Again, the duplicating
states are shown as labels on the transitions, with the first two components omitted.

∅, {a, wR} 7→ a

{a, wR}, {wR} 7→ a

{wR}, {wR} 7→ a

{a, wR}, {wS, wR} 7→wT

{wS, wR}, {wS, wR} 7→wT

∅, {a} 7→ a

{a}, {wR} 7→ a

{wR}, {wR} 7→ a

{a}, {wS} 7→wT

{wS}, {wS} 7→wT

{wS}, {wR} 7→wQ

a wR
wR wR

a wS

wR wR wS wS

a wR a wS

wR wR wS wS

wS wR

wS wR

wR wR

6.2 U N I V E R S A L U C Q - S O L U T I O N S W I T H S I M P L E A B OX E S 79

Observe that Duplicator has an ω-winning strategy from (∅, {a, wR} 7→ a) in game
Gs

Σ(G1,G2). He has no ω-winning strategy, however, from (∅, {a} 7→ a). Note the cru-
cial guesses {a, wR} 7→ a and {wS, wR} 7→ wT in the former case. If the game started
in (∅, {a} 7→ a) or Duplicator responded with ({a, wR}, {wS} 7→wT) (and failed to
guess that wR must also be mapped to wT), then after the challenge wS wR and
response ({ws}, {wR} 7→wQ), Spoiler would challenge with wR wR, to which Du-
plicator could not respond.

F I N I T E G A M E GΣ (G1 , G2) is a pair (G f , F f).
The game graph G f = (S , D , T) has the set of states of the kind (Ξ 7→ x, Ψ), and

(x, Ξ Ψ), where Ξ, Ψ ⊆ ∆G1 , x ∈ ∆G2 , and two special states loop and deadend.

• S consists of the states (Ξ 7→ x, Ψ) with tG1
Σ (u) ⊆ tG2

Σ (x) for each u ∈ Ξ, x = u
if u ∈ Ξ ∩ Ind(K1), and Ψ ⊆ Ξ . Note that Ψ contains the challenges that
should be mapped to the predecessor of x (i.e., continue going backwards), and
consequently, Ξ \Ψ contains the initial challenges in start-bounded games.

• D consists of the states (x, Ξ Ψ) with Ψ ⊆ Ξ , and the states loop, deadend,

where Ξ = {u′ ∈ ∆G1 | u K1 u′, for some u ∈ Ξ}.
The transitions in T are defined as the union of:

•
(
(Ξ 7→ x, Ψ), (x, Ξ Ψ)

)
,

•
(
(x, Ξ Ψ), (Ξ′ 7→ x′, Ψ′)

)
if Ψ ⊆ Ξ′, x′ K2 x and rG1

Σ (u, u′) ⊆ r̄G2
Σ (x′, x),

•
(
(Ξ 7→ x, Ψ), loop

)
if Duplicator has an ω-winning strategy from (∅, Ξ 7→ x)

in the game Gs
Σ(G1,G2) with the initial challenges from Ξ \Ψ,

•
(
(Ξ 7→ x, Ψ), deadend

)
if Duplicator has no ω-winning strategy from (∅, Ξ 7→ x)

in the game Gs
Σ(G1,G2) with the initial challenges from Ξ \Ψ, and

• (loop, loop).

Notice that the size of G f is 2O(|G1|×|G2|).
As usual, the set Ff consists of the states from D that are “dead ends”.

The game GΣ(G1,G2) proceeds as follows. For each u0 ∈ ∆G1 , Spoiler starts in a
state s0 = (Ξ0 7→ x0, Ψ0) with u0 ∈ Ξ0. In each his turn, if xi ∈ Ind(K2), Spoiler
“launches” a start-bounded game Gs

Σ(G1,G2) with the initial state (∅, Ξi 7→ xi) and
the initial challenges from Ξ i . Otherwise, if xi /∈ Ind(K2), Spoiler chooses whether
to challenge the Duplicator with Ψi, that is, to continue the game backwards, or to
“launch” a start-bounded game Gs

Σ(G1,G2) with the initial state (∅, Ξi 7→ xi) and the
initial challenges from Ξ i \ Ψi. In the former case, Duplicator responds by choosing
a predecessor xi+1 of xi and guessing a set Ξi+1, Ψi ⊆ Ξi+1, that should be mapped
to xi+1, moreover he guesses Ψi+1: which successors of of Ξi+1 should continue to be
mapped backwards. It gives the next Spoiler’s state (Ξi+1 7→ xi+1, Ψi+1). Finite games
make “calls” to start-bounded games when it is needed.

Example 6.2.7. Consider U1 and U2 from Example 6.2.5. The parts of the game graphs
of GΣ(G1,G2) and Gs

Σ(G1,G2) that belong to the winning region of Duplicator are
shown below.

80 R E A S O N I N G A B O U T U N I V E R S A L U C Q - S O L U T I O N S

GΣ(G1,G2)

{u1} 7→w2, {u2}

{u2, u8} 7→w1, {u3, u9}

{u3, u9} 7→w2, {u2}

loop

deadend

Gs
Σ(G1,G2)

∅, {u2, u8} 7→w1

{u2, u8}, {u4, u7} 7→w3

{u4, u7}, {u5} 7→w4

{u5}, {u6} 7→w5

{u6}, {u6} 7→w5

{u3, u9} {u2}

u6 u6

{u1} {u2}

{u2, u8} {u3, u9}

u2 u4

u4 u5

u5 u6

u6 u6

For u1 ∈ ∆G1 the finite game starts in the state ({u1} 7→w2, {u2}), then Duplicator
responds to the challenge {u1} {u2} with the state ({u2, u8} 7→w1, {u3, u9}), thus
guesses that not only u2, but also u8 should be mapped to w1 and that the successor u4

of u2 should be mapped according to the start-bounded strategy. At this point, Spoiler
can challenge Duplicator either with {u2, u8} {u3, u9} or with {u2, u8} {u4}. In
the first case the game continues according to the backward strategy, in the second case,
since Duplicator has an ω-winning strategy from (∅ 7→ {u2, u8}, w1) in Gs

Σ(G1,G2)

(which can de determined in an external “call”), Spoiler moves to the state loop (hence
loses). In the game Gs

Σ(G1,G2) from (∅ 7→ {u2, u8}, w1) Duplicator does one important
guess, namely {u4, u7} 7→ w3.

Lemma 6.2.8. For each u0 ∈ ∆G2 and n < ω there exists σ0 ∈ ∆U2 such that Du-
plicator has an (arbitrary) n-winning strategy in GΣ(G1,U2) from sn

0 = (u0 7→ σ0) iff
Duplicator has an ω-winning strategy in GΣ(G1,G2) from some state (Ξ0 7→ x0, Ψ0)

with u0 ∈ Ξ0.

Proof. (⇒) Let S = {Sn | n < ω} be the set of the given n-winning strategies for
Duplicator in GΣ(G1,U2) and suppose that Sn begins with (u0 7→ σn

0), n < ω.
We define a (possibly infinite) tree T whose nodes are of the form (u 7→ z, k), where

u ∈ ∆G1 , z is a suffix of some element in ∆U2 , k < ω, whose edges are labelled with
u u′, and the following conditions hold:

(1) the root of T is of the form (u0 7→ w, 0), w ∈ ∆G2 ;

(2) tG1
Σ (u) ⊆ tG2

Σ (tail(z));

(3) for each node (u 7→ z, k) in T and each u Σ
1 u′, there is exactly one (u u′)-

successor of (u 7→ z, k) in T, which can be of the following forms:

– (u′ 7→ w′, k + 1), if z = w, w′ Σ
2 w, and rG1

Σ (u, u′) ⊆ r̄G2
Σ (w′, w);

– (u′ 7→ z′w′, k), if z = z′w′w, w′ Σ
2 w, and rG1

Σ (u, u′) ⊆ r̄G2
Σ (w′, w);

– (u′ 7→ zw′, k), if z = z′w, w Σ
2 w′, and rG1

Σ (u, u′) ⊆ rG2
Σ (w, w′);

– (u′ 7→ b,−1), if z = a ∈ Ind(K2), b ∈ Ind(K2), and rG1
Σ (u, u′) ⊆ rG2

Σ (a, b);

(4) for each k ≥ 0, if (u 7→ w, k) and (u′ 7→ w′, k) are nodes in T with w, w′ ∈ ∆G2 ,
then w = w′.

6.2 U N I V E R S A L U C Q - S O L U T I O N S W I T H S I M P L E A B OX E S 81

(u1 7→w2, 0)

(u2 7→w1, 1)

(u3 7→w2, 2)

(u2 7→w1, 3)

(u3 7→w2, 4)

(u4 7→w1w3, 1)

(u5 7→w1w3w4, 1)

(u7 7→w1w3, 1)

(u8 7→w1, 1)

(u9 7→w2, 2)

(u6 7→w1w3w4w5, 1)

(u6 7→w1w3w4w5w5, 1)

(u4 7→w1w3, 3) (u7 7→w1w3, 3)

(u8 7→w1, 3)

(u9 7→w2, 4)

(u5 7→w1w3w4, 3)

(u6 7→w1w3w4w5, 3)

(u6 7→w1w3w4w5w5, 3)

...

...

u1 u2

u2 u3

u3 u2

u2 u3

u2 u4

u4 u5 u5 u7

u7 u8

u8 u9

u5 u6

u6 u6

u2 u4

u4 u5 u5 u7

u7 u8

u8 u9

u5 u6

u6 u6

Figure 12: The tree T for the game in Example 6.2.5

We call a tree T complete if whenever a node (u 7→ z, k) is in T and u Σ
1 u′ then

some node (u′ 7→ z′, k′) is its (u u′)-successor in T. Next, for S ∈ S, we say that S
respects T if there exists a map fS : {(z, k) | (u 7→ z, k) ∈ T} → ∆U2 such that:

1. fS (z, k) = δz, for some δ;

2. (u 7→ fS (z, k)) is in S , for each (u 7→ z, k) in T;

3. if (u′ 7→ z′, k′) is a (u u′)-successor of (u 7→ z, k) in T, then according to S ,
Duplicator responds to the challenge (fS (z, k), u u′) with (u′ 7→ fS (z′, k′)).

It will be shown later that given a complete tree T we can construct an ω-winning
strategy starting from some (Ξ0 7→ x0, Ψ0) in the game GΣ(G1,G2). But first we show
how to construct such a tree T using S.

The set S contains an n-winning strategy starting from (u0 7→ σn
0), for each n < ω.

As G2 is finite, we can find some x0 such that x0 = tail(σn
0) for infinitely many n. De-

note by S0 the set of the corresponding strategies from S. As an m-winning strategy is
also an l-winning strategy for each l ≤ m, S0 contains an n-winning strategy starting
from some (u0 7→ δnx0), for each n < ω. Define T0 to be a tree with a single node
(u0 7→ x0, 0). For every S ∈ S0, we set fS (x0, 0) = δSx0, where δS is the correspond-
ing δn. Thus, all the strategies in S0 respect T0.

Suppose we have already constructed Ti and Si such that Si contains an n-winning
strategy for each n < ω, and all of them respect Ti. If Ti is incomplete then it contains
a state (u 7→ z, k) without a (u u′)-successor, for some u Σ

1 u′. (We always
take such a state that is nearest to the root.) Suppose fS (z, k) = δSw. Consider the
responses (u′ 7→ σn) to the challenge u u′ according to the n-winning strategies in
Si, for n < ω. Take some w′ ∈ ∆G2 such that w′ = tail(σn) for infinitely many n.
Denote by Si+1 the set of the corresponding strategies from Si.

Suppose w′ Σ
2 w. If z = w then we add the node (u′ 7→ w′, k + 1) as a (u u′)-

successor of (u 7→ z, k) to Ti, thus obtaining Ti+1. By definition of the canonical
model, we also have δS = δ′Sw′, for all S ∈ Si+1. We then set fS (w′, k + 1) = δS .

82 R E A S O N I N G A B O U T U N I V E R S A L U C Q - S O L U T I O N S

If |z| > 1 then z = z′w′w and z′w′ is a suffix of δS . In this case, we add the node
(u′ 7→ z′w′, k) as a (u u′)-successor of (u 7→ z, k) to Ti, thus obtaining Ti+1, and
set fS (z′w′, k) = δS .

Suppose w Σ
2 w′. In this case, we add (u′ 7→ zw′, k) as a (u u′)-successor of

(u 7→ z, k) to Ti, thus obtaining Ti+1, and set fS (zw′, k) = δSww′.
Suppose w, w′ ∈ Ind(K1) (hence, δS is empty). In this case, we add (u′ 7→ w′,−1)

as a (u u′)-successor of (u 7→ z, k) to Ti, obtaining Ti+1, and set fS (w′,−1) = w′.
All S ∈ Si+1 respect Ti+1, and it is easy to see that Ti+1 satisfies (4).

We proceed in the same way and construct a sequence of trees T0 ⊆ T1 ⊆ . . . until
we reach a complete finite tree Tk; otherwise we take T =

⋃
n<ω Tn, which is obviously

complete. Thus, e.g., for the game in Example 6.2.5, the tree T looks as in Figure 12.

Now we show that Duplicator has an ω-winning strategy starting from some state
(Ξ0 7→ x0, Ψ0) in the game GΣ(G1,G2). Suppose that we have a complete tree T with
the root (u0 7→ x0, 0). We set:

Ξ0 = {u | (u 7→ x0, 0) ∈ T},

Φ0 = {u′ | u 1
Σ u′, u ∈ Ξ0, (u′ 7→ x0w, 0) ∈ T},

∪ {u′ | (u′ 7→ b,−1) ∈ T is a (u u′)-successor of (u 7→ x0, 0) ∈ T},

Ψ0 = {u′ | u 1
Σ u′, u ∈ Ξ0, (u′ 7→ w, 1) ∈ T}.

Note that, by (4), if (u 7→ x, 0) ∈ T (and |x| = 1, that is, x ∈ ∆G2) then x = x0.
Moreover, if x0 ∈ Ind(K2), then Ψ0 = ∅.

Then, for each i > 0 such that T contains some (u 7→ x, i), |x| = 1, and xi−1 /∈
Ind(K2), we set

Ξi = {u | (u 7→ x, i) ∈ T},

Φi = {u′ | u 1
Σ u′, u ∈ Ξi, (u′ 7→ xw, i) ∈ T}

∪ {u′ | (u′ 7→ b,−1) ∈ T is a (u u′)-successor of (u 7→ x, i) ∈ T},

Ψi = {u′ | u 1
Σ u′, u ∈ Ξi, (u′ 7→ w, i + 1) ∈ T}.

Note that, by (4), all (u 7→ x, i) ∈ T with x ∈ ∆G2 share the same x, which we denote
by xi. And again, if xi ∈ Ind(K2), then Ψi = ∅.

By (3), the states si = (Ξi 7→ xi, Ψi) define the backward part of an ω-winning strat-
egy for Duplicator in the game GΣ(G1,G2) starting from s0. Thus, it remains to define
ω-winning strategies for the start-bounded game Gs

Σ(G1,G2) starting from states of the
form (∅, Ξk 7→ xk) and first-round challenges u v such that u ∈ Ξk and v ∈ Φk.

Let k ≥ 0 be such that Φk 6= ∅. We now transform T into a tree Wk representing an
ω-winning strategy for Duplicator in the game Gs

Σ(G1,G2) starting from (∅ 7→Ξk, xk)

and first-round challenges u v such that u ∈ Ξk and v ∈ Φk. Thus, (∅, Ξk 7→ xk) is
the root of Wk associated with xk.

Suppose that we have already defined a node (Γ, Ξ 7→w) associated with a word δw.
Let u ∈ Ξ and u Σ

1 v be such that the node (u 7→ δw, k′) in T, where k′ equals to k or
-1, has a (u v)-successor of the form (v 7→ δww′, k′) (if (Γ 7→Ξ, w) is the root, we

6.2 U N I V E R S A L U C Q - S O L U T I O N S W I T H S I M P L E A B OX E S 83

also require that v ∈ Φk). Then we add to Wk the node (Γ′ 7→Ξ′, w′), associated with
δww′, as a (u v)-successor of (Γ 7→Ξ, w), where

Ξ′ = {v′ | (v′ 7→ δww′, k′) ∈ T},
Γ′ = Ξ.

If (Γ, Ξ 7→ a) is associated with a ∈ Ind(K2), and the node (u 7→ a, k′) in T, with
u ∈ Ξ, and k′ equal to k or −1, has a (u v)-successor of the form (v 7→ b,−1) with
b ∈ Ind(K2) (note that if (Γ, Ξ 7→ a) is the root, then Φk = Ξ k), then we add to Wk
the node (∅, Ξ′ 7→ b), associated with b, as a (u v)-successor of (Γ, Ξ 7→ a), where

Ξ′ = {v′ | (v′ 7→ b,−1) ∈ T}.

We claim that Wk thus constructed represents an ω-winning strategy for Duplicator in
the game Gs

Σ(G1,G2) starting from (∅ 7→Ξk, xk) and first-round challenges u v
such that u ∈ Ξk and v ∈ Φk.

(⇐) Given u0 ∈ ∆G1 suppose Duplicator has an ω-winning strategy in GΣ(G1,G2)

from some state (Ξ0 7→ x0, Ψ0) such that u0 ∈ Ξ0. Let n < ω, we are going to
show there is σ0 ∈ ∆U2 such that Duplicator has an n-winning strategy starting from
(u0 7→ σ0) in the game GΣ(G1,U2).

To define σ0, consider an N-winning strategy S of Duplicator from (Ξ0 7→ x0, Ψ0)

for N = 2× |2Wit(K1)| × |Wit(K2)|+ 1, and a play

(Ξm 7→ xm, Ψm), (xm, Ξm Ψm), . . . , (Ξ2 7→ x2, Ψ2), (x2, Ξ2 Ψ2), (Ξ1 7→ x1, Ψ1)

conforming with S such that Ξm = Ξ0, xm = x0, and Ψm = Ψ0. Denote by si the state
(Ξi 7→ xi, Ψi) for 1 ≤ i ≤ m.

Ξm 7→ xm, Ψmsm =

Ξ2 7→ x2, Ψ2s2 =

Ξ1 7→ x1, Ψ1s1 =

...

Ξm Ψm

Ξ2 Ψ2

Then, either m < N and Ψ1 = ∅, or m = N and since the number of all possible states
in GΣ(G1,G2) is less than N, there are integers c, r such that m ≥ c > c− r ≥ 1 and
sc = sc−r.

Now, we set σ0 = δ′δ, where δ′ and δ are obtained as follows. In the fist case above, δ

is equal to x1 · · · xm and δ′ is any (possibly empty) sequence such that δ′δ ∈ ∆U2 (such
δ′ obviously exists). In the second case, δ is equal to the sequence of length n + 1:

δ = xc−oxc−o+1 · · · xc · δc,r · · · δc,r · xc+1xc+2 · · · xm

where o = (n− (m− c)) mod r, δc,r = xc−r+1xc−r+2 · · · xc, and δ′ is obtained as
before.

Let k be the length of δ, and yi denote the i-th element of the sequence δ, 1 ≤ i ≤ k:
σ0 = δ′y1 · · · yk. We define µ(i) ∈ {1, . . . , m} to be the number such that yi = xµ(i).
In the first case above µ(i) = i, whereas in the second case

84 R E A S O N I N G A B O U T U N I V E R S A L U C Q - S O L U T I O N S

δ = xc−o

1

xc−o−1

2

· · · xc

o + 1

xc−r+1

o + 2

· · · xc

o + r + 1

xc−r+1

o + r + 2

· · · xc

o + 2r + 1

· · · xc+1

n−m + c + 2

· · · xm

n + 1

µ(i) =

c−
(
(o− i + 1) mod r

)
, for 1 ≤ i ≤ n− (m− c) + 1,

c + i− 1− (n− (m− c)), for n− (m− c) + 2 ≤ i ≤ n + 1.

Finally, it remains to produce an n-winning strategy S ′ of Duplicator from (u0 7→ σ0)

in GΣ(G1,U2). For each challenge of the form (σi, ui ui+1), we are going to define
σi+1 ∈ ∆U2 so that to set S ′

(
(σi, ui ui+1)

)
= (ui+1 7→ σi+1). We will also define

auxiliary f -values for the Spoiler states (ui 7→ σi) that relate them with the “original”
Spoiler states in GΣ(G1,G2) and Gs

Σ(G1,G2).

We first set f (u0 7→ σ0) = (Ξµ(k) 7→ xµ(k), Ψµ(k)) and consider the challenge u0 u1

by Spoiler in GΣ(G1,U2). If u1 ∈ Ψµ(k), then k > 1. We set σ1 = δ′y1 · · · yk−1, and
f (u1 7→ σ1) = (Ξµ(k−1) 7→ xµ(k−1), Ψµ(k−1)). If u1 /∈ Ψµ(k), then consider the start-
bounded game Gs

Σ(G1,G2) with the initial state (∅, Ξµ(k) 7→ xµ(k)) and the first-round
challenge u0 u1. Let (Γ, Ξ 7→ z) be the response of Duplicator according to S , for
some z ∈ ∆G2 , u1 ∈ Ξ. If z ∈ Ind(K2), we set σ1 = z (note, in this case σ0 ∈ Ind(K2)),
otherwise we set σ1 = σ0z. The f -value is defined as f (u1 7→ σ1) = (Γ, Ξ 7→ z).

Suppose we defined S ′
(
(σh−1, uh−1 uh)

)
as (uh 7→ σh), for h < n, and the value

of f for (uh 7→ σh), moreover assume σh = δ′y1 · · · yk′z1 · · · zl for 0 ≤ k′ ≤ k, l ≥ 0.
If now there is no valid challenge uh uh+1, then further moves of Duplicator do not
need to be defined. Otherwise consider the challenge (σh, uh uh+1) for Duplicator in
GΣ(G1,U2).

Assume f (uh 7→ σh) = (Γ′, Ξ′ 7→ x′), where x′ = tail(σh), and by induction hy-
pothesis uh ∈ Ξ′. Note that in this case, l ≥ 1. If uh uh+1 is a challenge from
(Γ′, Ξ′ 7→ x′) in Gs

Σ(G1,G2), consider the response (Γ, Ξ 7→ z) of Duplicator accord-
ing to S : if z ∈ Ind(K2) we set σh+1 = z, otherwise we set σh+1 = σhz. The
f -value is defined as f (uh+1 7→ σh+1) = (Γ, Ξ 7→ z). If uh uh+1 is not a valid
challenge from (Γ′, Ξ′ 7→ x′) in Gs

Σ(G1,G2), it is the case (nbk) does not hold for
(Γ′, Ξ′ 7→ x′) and (Ξ′, x′, uh uh+1), which means x′ /∈ Ind(K2), uh+1 ∈ Γ′, and
rG1

Σ (uh, uh+1) ⊆ r̄G2
Σ (z, x′), where z is the element preceding zl in σh. Two cases are

possible:

– l = 1, therefore the predecessor of (Γ′, Ξ′ 7→ x′) according to S is the starting
state (∅, Ξµ(k′) 7→ xµ(k′)) of the game Gs

Σ(G1,G2), which has been launched from

(Ξµ(k′) 7→ xµ(k′), Ψµ(k′)) in GΣ(G1,G2). It follows, rG1
Σ (uh, uh+1) ⊆ r̄G2

Σ (yk′ , z1) and,
as Γ′ = Ξµ(k′), we have uh+1 ∈ Ξµ(k′). So we set σh+1 = δ′y1 · · · yk′ , and f (uh+1 7→ σh+1) =

(Ξµ(k′) 7→ xµ(k′), Ψµ(k′)).

– l > 1, we consider the predecessor (Γ, Ξ 7→ x) of (Γ′, Ξ′ 7→ x′) in Gs
Σ(G1,G2) ac-

cording to S , with x = zl−1. We have Γ′ = Ξ, hence uh+1 ∈ Ξ, so we set
σh+1 = δ′y1 · · · yk′z1 · · · zl−1, and f (uh+1 7→ σh+1) = (Γ, Ξ 7→ x).

Alternatively, assume f (uh 7→ σh) = (Ξ′ 7→ x′, Ψ′), where x′ = tail(σh), and by in-
duction hypothesis uh ∈ Ξ′. Then l = 0 and (Ξ′ 7→ x′, Ψ′) = (Ξµ(k′) 7→ xµ(k′), Ψµ(k′)).
We proceed here as in the base case. If uh+1 ∈ Ψµ(k′), then k′ > 1: indeed, by con-
struction of δ, if k = m, then Ψ1 = ∅, otherwise k = n + 1, so provided that h ≤ n,

6.2 U N I V E R S A L U C Q - S O L U T I O N S W I T H S I M P L E A B OX E S 85

it cannot be the case k′ = 1. We set σh+1 = δ′y1 · · · yk′−1, and f (uh+1 7→ σh+1) =

(Ξµ(k′−1) 7→ xµ(k′−1), Ψµ(k′−1)). If uh+1 /∈ Ψµ(k′), then consider the start-bounded game
Gs

Σ(G1,G2) with the initial state (∅, Ξµ(k′) 7→ xµ(k′)) and the first-round challenge uh
uh+1. Let (Γ, Ξ 7→ z) be the response of Duplicator according to S , for some z ∈ ∆G2 ,
uh+1 ∈ Ξ. If z ∈ Ind(K2), we set σh+1 = z, otherwise we set σh+1 = σhz. The f -value
is defined as f (uh+1 7→ σh+1) = (Γ, Ξ 7→ z).

We have constructed the strategy S ′ from (u0 7→ σ0) in the game GΣ(G1,U2). It can
be straightforwardly verified that S ′ is n-winning.

The latter condition in the lemma above can be checked in time O(|Ind(K1)| ×
2|∆

G1\Ind(K1)| × |∆G2 |), which can be readily seen by analysing the game graph for
GΣ(G1,G2). Therefore we obtain the following upper bound.

Theorem 6.2.9. The membership problem for universal UCQ-solutions with simple
ABoxes is in EXPTIME.

D I S C U S S I O N O N T H E T E C H N I Q U E S . We would like to comment on various EX-
PTIME techniques that are capable of traversing infinite trees, both in forward and back-
ward directions. Those are µ-calculus [80], Guarded Fixed Point logic [63], two-way
alternating automata (employed in Section 5.3.2) [102], pushdown processes [105, 93],
and infinite two player games on directed (of exponential size) graphs [73, 87]. Thus,
for instance, the automata in Section 5.3 could be easily adapted to check general ho-
momorphisms (however there is no elegant way to check finite homomorphisms), while
start-bounded games can be described using pushdown processes that use a stack to re-
member the current path in U2. We chose the games as they are easy to understand and
provide the necessary means to encode the desired behavior (by changing the definition
of the game graph).

6.2.2 The non-emptiness problem

In this section we show that the non-emptiness problem for universal UCQ-solutions
with simple ABoxes is solvable in exponential time. To do so, we exploit the algorithm
devised in the previous section.

Given that we can check in EXPTIME the membership problem for universal UCQ-
solutions with simple ABoxes, and each target KB that is a candidate for being a uni-
versal UCQ-solution is of polynomial size, we obtain a naïve EXPTIME algorithm for
the non-emptiness problem for universal UCQ-solutions with simple ABoxes, which
provides an upper bound for the non-emptiness problem.

Theorem 6.2.10. The non-emptiness problem for universal UCQ-solutions with simple
ABoxes is in EXPTIME.

Proof. Assume given a mapping M = (Σ1, Σ2, T12) and a KB K1 over Σ1. Then if
K2 = 〈T2,A2〉 is a universal UCQ-solution with simple ABoxes for K1 under M, it
must be the case that Ind(A2) ⊆ Ind(A1), hence A2 is of polynomial size. Next, T2

is a DL-LiteR TBox defined over the signature Σ2, so T2 must be of polynomial size as
well. Now, a naïve EXPTIME algorithm for checking the non-emptiness problem, first,
guesses a target KB K2 = 〈T2,A2〉 with Ind(A2) ⊆ Ind(A1) (in NP), then checks
whether K2 is a universal UCQ-solution for K1 underM (in EXPTIME).

86 R E A S O N I N G A B O U T U N I V E R S A L U C Q - S O L U T I O N S

The exact complexity of this problem could, however, turn out to be simpler, and it is
left as an open problem.

C O M P U T I N G U N I V E R S A L UCQ - S O L U T I O N S W I T H S I M P L E A B OX E S . We
present an algorithm for computing a universal UCQ-solution for a given source KB
K1 and a mapping M, which can be extracted from the proof of Theorem 6.2.10. The
algorithm is presented in Figure 14.

Algorithm COMPUTEUNIVERSALUCQSOLUTION(M , K1)

Input: mappingM = (Σ1 , Σ2 , T12) and KB K1 = 〈T1 , A1 〉 over Σ1

Output: a universal UCQ-solution K2 for K1 underM if it exists, nothing otherwise.

1. Guess an ABox A2 over Σ2 such that Ind(A2) ⊆ Ind(A1).
2. Guess a TBox T2 over Σ2.

if K2 = 〈T2 , A2 〉 is a universal UCQ-solution for K1 underM, return K2.
else return nothing.

Figure 13: Algorithm COMPUTEUNIVERSALUCQSOLUTION.

6.3 U N I V E R S A L U C Q - S O L U T I O N S W I T H E X T E N D E D A B OX E S

In this section, we report on the known
results for the membership and non-
emptiness problems for universal UCQ-
solutions with extended ABoxes. The re-
sults for the former problem are carried
over from the corresponding problem with
simple ABoxes. And as for the latter prob-
lem, we provide only a PSPACE-lower
bound.

Translation

ABox

Decision problem

universal solution

universal UCQ-solution

UCQ-representation

sim
ple ABoxes

extended ABoxes

membership

non-emptiness

6.3.1 The membership problem

We observe that the EXPTIME algorithm developed in Section 6.2.1 also solves the
membership problem for universal UCQ-solutions with extended ABoxes. In fact, as-
sume K1 = 〈T1 , A1 〉 is a simple KB, K2 = 〈T2 , A2 〉 is an extended KB, and
Σ a signature. Let U1 and U2 be the universal models of K1 and K2, respectively.
Then, a Σ-homomorphism h from U2 to U1 is a function from ∆U2 to ∆U1 such that
(i) h(a) = a for each a ∈ Ind(K2), (ii) tU2

Σ (x) ⊆ tU1
Σ (h(x)) and rU2

Σ (x , y) ⊆
tU1

Σ (h(x) , h(y)) for all x , y ∈ ∆U2 . Observe that for x ∈ Null(A2) there are no
extra constraints on h(x), that is, h(x) can be an arbitrary element in ∆U1 . As the
algorithm based on reachability games in Section 6.2.1 “checks” the existence of ex-
actly such homomorphisms, we conclude that this algorithm can be used to solve the
membership problem for universal UCQ-solutions with extended ABoxes. Therefore,
the following result holds.

6.3 U N I V E R S A L U C Q - S O L U T I O N S W I T H E X T E N D E D A B OX E S 87

Corollary 6.3.1. The membership problem for universal UCQ-solutions with extended
ABoxes is in EXPTIME.

6.3.2 The non-emptiness problem

In this section, we prove a PSPACE-lower bound for the non-emptiness problem for
universal UCQ-solutions when extended ABoxes are allowed in the target. We do it
by reduction from the non-emptiness problem for universal solutions with extended
ABoxes, which has been shown to be PSPACE-hard in Section 5.3.2. The main idea
of this reduction is that in some cases, even for universal UCQ-solutions, the target
TBox must be trivial. So there exists a universal UCQ-solution if and only if there exists
a target ABox, finitely Σ2-homomorphically equivalent to the canonical model of the
source KB and the mapping.

Theorem 6.3.2. The non-emptiness problem for universal UCQ-solutions with extended
ABoxes is PSPACE-hard.

Proof. LetM = (Σ1, Σ2, T12) be a mapping, and K1 = 〈T1,A1〉 a KB over Σ1. We
construct K′1 and M′ such that there exists a universal solution for K1 under M iff
there exists a universal UCQ-solution for K′1 underM′.

DefineM′ to be equal to (Σ′1, Σ′2, T ′12), where Σ′1 extends Σ1 with fresh concept and
roles names {X1 | X ∈ Σ2} and fresh role names Q1, Q2, Σ′2 extends Σ2 with a fresh
role name Q, and T ′12 = T12 ∪ {X1 v X | X ∈ Σ2} ∪ {Q1 v Q, Q2 v Q}. Let
K′1 = 〈T ′1 ,A′1〉, where A′1 is the union of A1, assertions

{X1(aX) | X ∈ Σ2 is a concept name} ∪ {X1(aX, bX) | X ∈ Σ2 is a role name},

for fresh constants aX, bX for each symbol X, and assertions {∃Q1(aQ), Q2(aQ, bQ)},
for fresh constants aQ, bQ. If K1 is not Σ2-safe with respect to M, then T ′1 = T1 ∪
{∃Q−1 v ∃Q1}, otherwise T ′1 = T1. We prove K′1 andM′ are as required.

Assume K1 and M are inconsistent, that is, the KB 〈T1 ∪ T12,A1〉 is inconsistent.
Then each inconsistent target KB is a universal solution for K1 underM. On the other
hand,K′1 andM′ are inconsistent, and, again, each inconsistent target KB is a universal
UCQ-solution for K′1 underM′. In what follows, we assume K1 andM are consistent,
and K′1 andM′ are consistent.

Assume there exists a universal solutionA2 forK1 underM. ThenK1 is Σ2-safe with
respect toM, and it is easy to see that A2 ∪ {X(aX) | X ∈ Σ2 is a concept name} ∪
{X(aX, bX) | X ∈ Σ2 is a role name} ∪ {Q(aQ, bQ)} is a universal UCQ-solution for
K′1 underM′.

Now, assume there exists a universal UCQ-solutionK2 = 〈T2,A2〉 forK′1 underM′.
First, it follows that U〈T ′1∪T ′12,A′1〉 does not contain an infinite Q-chain starting from aQ,
hence T ′1 does not contain the axiom ∃Q−1 v ∃Q1 andK1 is Σ2-safe with respect toM.
Second, without loss of generality, we may assume that T2 does not contain disjointness
assertions. Finally, UK2 is finitely Σ2-homomorphically equivalent to U〈T ′1∪T ′12,A′1〉, so for
each concept name A ∈ Σ2, A(aA) ∈ A2 and for each role name P ∈ Σ2, P(aP, bP) ∈
A2. We show that T2 is a trivial TBox. By contradiction, assume α ∈ T2 is a non-trivial
axiom. Consider various cases of α:

α = A v B, for concept name B distinct from concept name A. Then K2 |= B(aA),
however 〈T ′1 ∪ T ′12,A′1〉 6|= B(aA), hence it is not the case UK2 is finitely Σ2-
homomorphically equivalent to U〈T1∪T ′12,A′1〉. Contradiction.

88 R E A S O N I N G A B O U T U N I V E R S A L U C Q - S O L U T I O N S

α = ∃P v A, for role name P. ThenK2 |= A(aP), however 〈T ′1 ∪T ′12,A′1〉 6|= A(aP),
hence it is not the case UK2 is finitely Σ2-homomorphically equivalent to U〈T ′1∪T ′12,A′1〉.
Contradiction.

α = ∃P− v A, for role name P. As above, but in this case K2 |= A(bP) and 〈T ′1 ∪
T ′12,A′1〉 6|= A(bP).

α = P v R, for role R distinct from role name P. Then K2 |= R(aP, bP), however
〈T ′1 ∪T ′12,A′1〉 6|= R(aP, bP), hence it is not the case UK2 is finitely Σ2-homomor-
phically equivalent to U〈T ′1∪T ′12,A′1〉. Contradiction.

α = A v ∃R, for role R. Then there exists σ ∈ ∆UK2 distinct from aA such that R ∈
rUK2 (aA, σ). Since in U〈T ′1∪T ′12,A′1〉, aA is not connected to anything, UK2 is not
finitely Σ2-homomorphically embeddable into U〈T ′1∪T ′12,A′1〉. Contradiction.

α = ∃P v ∃R, for role R distinct from role name P. Then there exists σ ∈ ∆UK2 dis-
tinct from aP such that R ∈ rUK2 (aP, σ). If σ = bP then we get a contradiction
similar to the case α = P v R. If σ 6= bP then we get a contradiction as above.

α = ∃P− v ∃R, for role R distinct from P−. As above.

α = ∃P− v ∃P, for role name P. Then in UK2 there exists an infinite P-chain starting
from bP, and obviously, it is not finitely Σ2-homomorphically embeddable into
U〈T ′1∪T ′12,A′1〉. Contradiction.

Therefore, T2 is a trivial TBox, so we obtain that UA2 is finitely Σ2-homomorphically
equivalent to U〈T ′1∪T ′12,A′1〉. Since UA2 is finite, it follows UA2 is Σ2-homomorphically
equivalent to U〈T ′1∪T ′12,A′1〉. Let A−2 be the subset of A2 such that Ind(A′2) = Ind(A1).
It is easy to see that UA−2 is Σ2-homomorphically equivalent to U〈T1∪T12,A1〉, and as K1

is Σ2-safe with respect toM, we conclude that A−2 is a universal solution for K1 under
M.

Unlike for universal UCQ-solutions with simple ABoxes, for universal UCQ-solutions
with extended ABoxes it is not possible to derive a straightforward algorithm for the non-
emptiness problem given the algorithm for the membership problem. The non-emptiness
problem for universal UCQ-solutions with extended ABoxes is inherently more difficult
as there is no bound on the size of the target extended ABox known apriori. Moreover,
at the moment we do not have a characterization of the cases when a universal UCQ-
solution with extended ABoxes exists.

6.4 U N I V E R S A L U C Q - S O L U T I O N S I N D L - L I T ERDFS

Recall that every universal solution is also a universal UCQ-solution. Therefore, as a
corollary of Theorem 5.4.1 and Proposition 4.2.1 we get a trivial complexity bound for
the non-emptiness problem for universal UCQ-solutions in DL-LiteRDFS.

Theorem 6.4.1. The non-emptiness problem for universal solutions in DL-LiteRDFS is in
TRIVIAL.

6.4 U N I V E R S A L U C Q - S O L U T I O N S I N D L - L I T ERDFS 89

Let us turn now to the membership problem. By Lemma 5.1.2 and by the way homo-
morphisms are defined on constants, it follows that a simple target ABox A2 is a uni-
versal solution for a source KB K1 = 〈T1,A1〉 under a mappingM = (Σ1, Σ2, T12) if
and only if UA2 agrees with U〈T1∪T12,A1〉 on concepts and roles from Σ2. The latter can
be checked very efficiently, so we obtain the following complexity bound.

Theorem 6.4.2. In DL-LiteRDFS, the membership problem for universal solutions with
simple ABoxes is NLOGSPACE-complete.

Proof. We show the lower bound by reduction from the reachability problem in directed
graphs.

As for the membership problem with extended ABoxes, clearly the upper bound is
inherited from the same problem in DL-LiteR. To see that the lower bound applies as
well, observe that in the reduction from the 3-colorability problem to show that the
membership problem with extended ABoxes is NP-hard we use only role inclusions,
hence the instance of KB exchange problem we construct is in DL-LiteRDFS. The theorem
below is a straightforward corollary of Theorem 5.3.3.

Theorem 6.4.3. In DL-LiteRDFS, the membership problem for universal solutions with
extended ABoxes is NP-complete.

7
R E A S O N I N G A B O U T
U C Q - R E P R E S E N TAT I O N S

In this chapter we develop the techniques and complexity results for the problem of
UCQ-representability. In Sections 7.1 and 7.2, we tackle the membership and non-emptiness
problems, respectively, and in Section 7.3 we conclude with the weak UCQ-representability
problem.

7.1 T H E M E M B E R S H I P P RO B L E M

In this section we show that the mem-
bership problem for UCQ-representations
is NLOGSPACE-complete by developing
graph-theoretic techniques.

Translation

ABox

Decision problem

universal solution

universal UCQ-solution

UCQ-representation

sim
ple ABoxes

extended ABoxes

membership

non-emptiness

weak UCQ-representability

We start by considering the membership problem for UCQ-representations.
One can immediately notice some similarities between this task and the member-

ship problem for universal UCQ-solutions, which was shown to be PSPACE-hard in
Theorem 6.2.1. However, the universal quantification over ABoxes in the definition of
the notion of UCQ-representation makes the latter problem computationally simpler
(in NLOGSPACE instead PSPACE-hard). We now list several observations that help to
understand our characterization of UCQ-representations in Lemma 7.1.1, and also to un-
derstand why UCQ-representability is a considerably simpler problem than the problem
of universal UCQ-solutions.

In the following, assume fixed a mappingM = (Σ1, Σ2, T12), a source TBox T1 and
a target TBox T2. We will try to understand what conditions T2 must satisfy in order to
be a UCQ-representation of T1 underM.

1) For simplicity, assume here that T1, T12, and T2 do not contain disjointness asser-
tions.

LetA1 be a source singleton ABox,A1 = {A(a)} for atomic concept A, and assume
that T1 ∪ T12 |= A v B′ for some basic concept B′ over Σ2. Then 〈T1 ∪ T12,A1〉 |=
B′(a), and q = B′(a) evaluates to true over 〈T1 ∪ T12,A1〉, i.e., 〈T1 ∪ T12,A1〉 |=
q. Hence, for T2 to be a UCQ-representation of T1 under M, it should be the case
〈T2 ∪ T12,A1〉 |= q. Therefore, from Lemma 6.1.1 it follows that U〈T2∪T12,A1〉 |= B′(a),
and by (ctype), T2 ∪ T12 |= A v B′. The converse can be shown if we start with the
assumption T2 ∪ T12 |= A v B′. It is easy to extend the above reasoning to the case

91

92 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

A1 = {B(a)} for a basic concept B over Σ1, orA1 = {R(a, b)} for a basic role R over
Σ1. As we quantify over all possible source ABoxes, we are free to choose any such
concept B or role R, therefore, if T2 is a UCQ-representation of T1 underM, then for
each basic concept or role X over Σ1 and each basic concept or role X′ over Σ2,

T1 ∪ T12 |= X v X′ if and only if T2 ∪ T12 |= X v X′.

This is the main intuition behind condition (ii) in Lemma 7.1.1.

In what follows, for better readability, for a source ABox A1, let us denote by K1 the
KB 〈T1 ∪ T12,A1〉, by K2 the KB 〈T2 ∪ T12,A1〉, and by U1 and U2 their respective
canonical models. Then, for a TBox T , a concept B and a role R, we write T |= B @ ∃R
if for an arbitrary constant a ∈ Na, it holds that a 〈T ,{B(a)}〉 w[R].

2) Again, let A1 = {A(a)} for an atomic concept A over Σ1, and assume that

T1 |= A @ ∃R for a basic role R over Σ1,

T1 ∪ T12 |= R v R′ for a basic role R′ over Σ2, and

T1 ∪ T12 |= ∃R− v B′ for some basic concept B′ over Σ2.

Then

aw[R] ∈ ∆U1 , R′ ∈ rU1
Σ2
(a, aw[R]), and B′ ∈ tU1

Σ2
(aw[R]).

Next, for T2 to be a UCQ-representation of T1 under M, by Lemma 6.1.4, it fol-
lows that U1 has to be finitely Σ2-homomorphically equivalent to U2. Let h be a Σ2-
homomorphism from all paths of length two in ∆U1 to ∆U2 . Then h(a) = a and there
exists aw[S] ∈ ∆U2 for a basic role S over Σ2 (as Ind(A1) = {a} and there are no loops
on a in A1, the image of aw[R] cannot be a constant) such that

h(aw[R]) = aw[S], R′ ∈ rU2
Σ2
(a, aw[S]), and B′ ∈ tU2

Σ2
(aw[S]).

By construction of the canonical model and by the shape of T12, it follows then that it
should be the case that

T2 ∪ T12 |= A v ∃S, T2 |= S v R′, and T2 |= ∃S− v B′.

Then the Σ2-reducts of the canonical models of K1 and K2, and inclusions implied by
T1, T12, and T2 can be partially depicted as follows.

U1
a

∃R′

aw[R]

∃R′−, B′

R′

U2
a
∃S, ∃R′

aw[S]

∃S−, ∃R′−, B′

S, R′

T1

A

∃R

∃R−

R

T2

∃S

∃S−
∃R′

∃R′−
B′

S

R′

T12

Clearly, given T2 and T12, one can check existence of such S effectively. Note that
in the case, rU1

Σ2
(a, aw[R]) = ∅, the homomorphic image of aw[R] could be any ele-

ment y in ∆U2 with tU1
Σ2
(aw[R]) ⊆ tU2

Σ2
(y). This is the intuition behind condition (iii) in

Lemma 7.1.1.

7.1 T H E M E M B E R S H I P P RO B L E M 93

3) Continue with A1 = {A(a)} for an atomic concept A over Σ1, and assume now

T2 ∪ T12 |= A @ ∃R′ for a basic role R′ over Σ2,

T2 |= ∃R′− v B′ for some basic concept B′ over Σ2.

Then

aw[R′] ∈ ∆U2 , B′ ∈ tU2
Σ2
(aw[R′]), and R′ ∈ rU2

Σ2
(a, aw[R′]).

Now we are interested in homomorphisms in the opposite direction, so let h be a Σ2-
homomorphism from all paths of length two in ∆U2 to ∆U1 . Then h(a) = a and there
exists aw[S] ∈ ∆U1 for a basic role S such that

h(aw[R′]) = aw[S], B′ ∈ tU1
Σ2
(aw[S]), and R′ ∈ rU1

Σ2
(a, aw[S]).

By construction of the canonical model and by the shape of T12, it follows then that it
should be the case that

T1 ∪ T12 |= A v ∃S, T1 ∪ T12 |= S v R′, and T1 ∪ T2 |= ∃S− v B′.

Then the Σ2-reducts of the canonical models of K1 and K2, and inclusions implied by
T1, T12, and T2 can be partially depicted as follows.

U1
a

∃R′

aw[S]

∃R′−, B′

R′

U2
a
∃R′

aw[R′]

∃R′−, B′

R′

T1

A

∃S

∃S−

S

T2

∃R′

∃R′−

B′

R′

T12

Again, given T1 and T12, the existence of such S can be checked effectively. This is the
intuition behind condition (iv) in Lemma 7.1.1.

Observe that it is sufficient to consider only chains of roles of length 1 as it was done
in 2) and 3). That is, if T1 ∪ T12 |= A v ∃R and T1 ∪ T12 |= ∃R− v ∃Q for roles R,Q,
and for A1 = {A(a)}, aw[R]w[Q] ∈ ∆U1 , it is enough to consider two separate cases
covered by condition (iii) and discussed in 2):

• A1 = {A(a)} and T1 ∪ T12 |= A v ∃R,

• A1 = {∃R−(a)} and T1 ∪ T12 |= ∃R− v ∃Q.

And analogously, for chains of roles by T2 ∪ T12.

4) To conclude, we analyze the cases when T1, T12 and T2 contain disjointness as-
sertions. First, notice that without loss of generality we can assume that there are no
disjointness assertions in T1 as Equation (†) should be satisfied only for ABoxes A1

that are consistent with T1. So we will take into account only disjointness in T12 and
T2. Next, for a source ABox A1 consistent with T1 it is possible that 〈T1 ∪ T12,A1〉
is inconsistent due to the disjointness assertions in the mapping, which will make all
possible tuples to be in the answer to every query. Below we say a pair (B, B′) of ba-
sic concepts is T -consistent for a TBox T , if the KB 〈T , {B(a), B′(a)}〉 is consistent,
where a is an arbitrary constant, and (B, B′) is T -inconsistent otherwise.

94 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

Consider a two-element ABox A1 = {A(a), C(a)} for atomic concepts A, C over
Σ1, and assume it is consistent with T1. Further, assume (A, C) is T1 ∪ T12-inconsistent,
then K1 is inconsistent, and by definition of certain answers over an inconsistent KB,
cert(q,K1) = AllTup(q,A1) for each target UCQ q. Therefore, in order for T2 to be a
UCQ-representation of T1 underM, K2 has to be inconsistent as well. To ensure that
it is the case, we need to check that (A, C) is also T2 ∪ T12-inconsistent. Similarly in
the opposite direction, if we start with the assumption (A, C) is T2 ∪ T12-inconsistent,
it should be verified that (A, C) is T1 ∪ T12-inconsistent. This is the intuition behind
condition (i). Observe that this condition guarantees that for every ABox A1 over Σ1

that is consistent with T1, it holds that: 〈T1 ∪ T12,A1〉 is consistent if and only 〈T2 ∪
T12,A1〉 is consistent.

We introduce a couple of notations and prove several simple properties about DL-
LiteR KBs and their canonical models before proceeding with the characterization of
UCQ-representations. Here, for a TBox T , we say a pair (R, R′) of basic roles is T -
consistent, if the KB 〈T , {R(a, b), R′(a, b)}〉 is consistent, where a, b are arbitrary
constants, and (R, R′) is T -inconsistent otherwise. Moreover, a concept or role X is
T -consistent iff (X, X) is T -consistent, and T -inconsistent otherwise.

Let K = 〈T ,A〉 be a consistent KB, a, b ∈ Na, σ ∈ ∆UK , and tail(σ) K w[R].
Then the following properties hold:

(C T Y P E) B ∈ tUK(a) iff A |= B′(a) and T |= B′ v B, and
R ∈ rUK(a, b) iff A |= R′(a, b) and T |= R′ v R;

Proof : first, by definition of the canonical model, B ∈ tUK(a) if and only if K |=
B(a). Next, assume A 6|= B(a), i.e., neither B(a) ∈ A, nor R(a, b) /∈ A for
B = ∃R and some b ∈ Na. Obviously, a ∈ Ind(A), so for some concept B′,
B′(a) ∈ A, or for some role R, R(a, b) ∈ A. By contradiction, assume that T 6|=
B′ v B for each B′(a) ∈ A, and T 6|= ∃R v B for each R(a, b) ∈ A. Then there
exists a model I of K such that aI /∈ BI , which contradicts K |= B(a). Hence,
T |= B′ v B for some B′(a) ∈ A or T |= ∃R v B for some R(a, b) ∈ A. The
opposite direction is obvious. The proof for R ∈ rUK(a, b) is analogous.

(N T Y P E) B ∈ tUK(σw[R]) iff T |= ∃R− v B, and
R ∈ rUK(σ, σw[R′]) iff T |= R′ v R.

Proof : Follows from the definition of the canonical model and the types.

(C G E N) Let a K w[R] for some basic role R. Then there exists a basic concept B,
such that A |= B(a) and T |= B @ ∃R.

Proof : by definition of a K w[R] it follows that K |= ∃R(a) and R is a minimal
with respect to ≤T role among all {R′ | K |= ∃R′(a)}. By (ctype) we have
that A |= B(a) for some concept B, and T |= B v ∃R. Now, consider KB
B = 〈T , {B(o)}〉 for some o ∈ Na. Obviously, B |= ∃R(o), B 6|= R(o, o), and
R is a minimal with respect to≤T role among all {R′ | B |= ∃R′(o)}. Therefore,
o B w[R], and T |= B @ ∃R.

(N G E N) Let wS K w[R] for basic roles S and R. Then T |= ∃S− @ ∃R.

Proof : by definition of w[S] K w[R] it follows that T |= ∃S− v ∃R, [S−] 6=
[R], and R is a minimal with respect to ≤T role among all {R′ | T |= ∃S− v

7.1 T H E M E M B E R S H I P P RO B L E M 95

∃R′}. Consider KB B = 〈T , {∃S−(o)}〉 for some o ∈ Na. The rest of the proof
is similar to the proof of (cgen).

(S T Y P E) Let {B1, . . . , Bn} be a set of basic concepts, and T ′ a TBox such that B =

〈T , {B1(o), . . . , Bn(o)}〉 and 〈T ∪ T ′,A〉 are consistent. Assume y ∈ ∆GB . If
for some σ ∈ ∆U〈T ∪T ′ ,A〉 , {B1, . . . , Bn} ⊆ tU〈T ∪T ′ ,A〉(σ), then there exists δ ∈
∆U〈T ∪T ′ ,A〉 such that

tGB (y) ⊆ tU〈T ∪T ′ ,A〉(δ) and rGB (o, y) ⊆ rU〈T ∪T ′ ,A〉(σ, δ) (13)

Proof : consider the cases of y ∈ ∆GB . If y = o, then δ = σ. Let y = ow[R1] · · ·w[Rm]

for m ≥ 1: then for some 1 ≤ i ≤ n, T |= Bi v ∃R1, and for 1 ≤ j < m,
T |= ∃R−j v ∃Rj+1. Obviously, these entailments are valid in T ∪ T ′, so

∃R1 ∈ tU〈T ∪T ′ ,A〉(σ) and there exists δ1 ∈ ∆U〈T ∪T ′ ,A〉 s.t. R1 ∈ rU〈T ∪T ′ ,A〉(σ, δ1)

and ∃R−1 ∈ tU〈T ∪T ′ ,A〉(δ1). Moreover, for each 1 ≤ j < m, we have that ∃Rj+1 ∈
tU〈T ∪T ′ ,A〉(δj) and there exists δj+1 ∈ ∆U〈T ∪T ′ ,A〉 such that Rj+1 ∈ rU〈T ∪T ′ ,A〉(δj, δj+1)

and ∃R−j+1 ∈ tU〈T ∪T ′ ,A〉(δj+1). So we take δ to be equal to δm. It is easy to see that
(13) is satisfied.

Finally, we list all conditions that characterize UCQ-representations.

Lemma 7.1.1. A TBox T2 over Σ2 is a UCQ-representation of a TBox T1 over Σ1 under
the mappingM = (Σ1, Σ2, T12) if and only if following conditions hold:

(i) for each pair of T1-consistent concepts or roles X, X′ over Σ1,
(X, X′) is T1 ∪ T12-consistent iff (X, X′) is T2 ∪ T12-consistent;

(ii) for each T1 ∪ T12-consistent concept or role X over Σ1 and each X′ over Σ2,
T1 ∪ T12 |= X v X′ iff T2 ∪ T12 |= X v X′;

(iii) for each T1 ∪ T12-consistent concept B over Σ1 and each role R such that
T1 ∪ T12 |= B @ ∃R there exists y ∈ ∆G〈T2∪T12,{B(o)}〉 such that

(a) t
G〈T1∪T12,{B(o)}〉
Σ2

(w[R]) ⊆ tG〈T2∪T12,{B(o)}〉(y),

(b) r
G〈T1∪T12,{B(o)}〉
Σ2

(o, w[R]) ⊆ rG〈T2∪T12,{B(o)}〉(o, y);

(iv) for each T1 ∪ T12-consistent concept B over Σ1 and each role R such that
T2 ∪ T12 |= B @ ∃R there exists y ∈ ∆G〈T1∪T12,{B(o)}〉 such that

(a) t
G〈T2∪T12,{B(o)}〉
Σ2

(w[R]) ⊆ tG〈T1∪T12,{B(o)}〉(y),

(b) r
G〈T2∪T12,{B(o)}〉
Σ2

(o, w[R]) ⊆ rG〈T1∪T12,{B(o)}〉(o, y)

Proof. (⇐) Let the conditions above hold for T1, T2 and T12. Let A1 be an ABox over
Σ1 such that 〈T1,A1〉 is consistent, denote byK1 the KB 〈T1 ∪ T12,A1〉, and byK2 the
KB 〈T2 ∪ T12,A1〉. We show K1 is Σ2-query equivalent to K2.

Observe that condition (i) ensures that K1 is consistent iff K2 is consistent. Indeed, if
K1 is consistent, then for each pair of basic concepts B, B′ over Σ1 such thatA1 |= B(a)
andA1 |= B′(a) for some a ∈ Ind(A1), the KBK1

′ = 〈T1 ∪T12,A1 ∪{B(a), B′(a)}〉
is consistent, and by monotonicity of first-order logic we obtain that the KB 〈T1 ∪
T12, {B(a), B′(a)}〉 is also consistent, and thus (B, B′) is T1 ∪ T12-consistent. And

96 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

similarly, for each pair of basic roles R, R′ over Σ1 such that A1 |= R(b, c) and
A1 |= R′(b, c) for some b, c ∈ Ind(A1), we can derive that (R, R′) is T1 ∪ T12-
consistent. Then, by (i) for each B, B′ over Σ1 such that A1 |= B(a) and A1 |= B′(a)
for some a ∈ Ind(A1), (B, B′) is T2 ∪ T12-consistent, and for each R, R′ over Σ1 such
that A1 |= R(b, c) and A1 |= R′(b, c) for some b, c ∈ Ind(A1), (R, R′) is T2 ∪ T12-
consistent. To see that K2 is consistent, consider the interpretation I defined as the
union of the canonical models U〈T2∪T12,{B(a),B′(a)}〉 and U〈T2∪T12,{R(b,c),R′(b,c)}〉 for B, B′,
R, R′, and a, b, c as above, that is a model K2. Note that in this paragraph, B and B′

can denote the same concept, and R and R′ can denote the same role. The proof can be
inverted to show K2 is consistent implies K1 is consistent.

First, assume K1 is inconsistent, it follows cert(q,K1) = AllTup(q) for each UCQ

q over Σ2. By the paragraph above, K2 is inconsistent, so cert(q,K2) = AllTup(q) for
each UCQ q over Σ2 as well, hence K1 is Σ2-query equivalent to K2.

Now assume K1 is consistent. In Proposition 7.1.2 below, we show that from (ii)
and (iii) it follows that UK1

is Σ2-homomorphically embeddable into UK2
. Since K2

is consistent, then we can apply Lemma 6.1.4 to obtain K2 Σ2-query entails K1. On
the other hand, in Proposition 7.1.3, we show that (ii) and (iv) imply that UK2

is Σ2-
homomorphically embeddable into UK1

, and K1 Σ2-query entails K2 by Lemma 6.1.4.
We again obtain K1 is Σ2-query equivalent to K2.

(⇒) Assume, by contradiction, one of the conditions (i) – (iv) is not satisfied. We
produce a T1-consistent ABox A1 over Σ and a Boolean CQ q over Σ2 such that it is
not the case that K1 |= q iff K2 |= q.

Assume, first, condition (i) is violated, then we take A1 = {B1(o), B2(o)} for con-
cepts B1 and B2 violating it and q = B1(a) for some constant a distinct from o. If B1, B2

are T1 ∪ T12-consistent, but T2 ∪ T12-inconsistent, it follows K1 6|= q and K2 |= q, and
the opposite holds if B1, B2 are T2 ∪ T12-consistent, but T1 ∪ T12-inconsistent. If (i) is
violated for roles, the proof is analogous.

Let now condition (ii) be violated for some T1 ∪ T12-consistent concept B over Σ1.
Assume there is B′ such that T1 ∪ T12 |= B v B′ and T2 ∪ T12 6|= B v B′, and consider

A1 = {B(o)} and q = B′(o). Then by B′ ∈ t
UK1
Σ2

(o) and B′ /∈ t
UK2
Σ2

(o), so it follows
UK1
|= q and UK2

6|= q; finally by Lemma 6.1.1 it follows K1 |= q and K2 6|= q. The
opposite follows if we assume T1 ∪ T12 6|= B v B′ and T2 ∪ T12 |= B v B′, which
completes the proof for this case. If (ii) is violated for some role, the proof is analogios.

Next, assume condition (iii) is violated, so there exists a T1 ∪ T12-consistent concept
B over Σ1 and a role R such that T1 ∪ T12 |= B @ ∃R and for A1 = {B(o)}, for all
y ∈ ∆GK2 either

t
GK1
Σ2

(w[R]) 6⊆ tGK2 (y) or r
GK1
Σ2

(o, w[R]) 6⊆ rGK2 (o, y).

Let ~B = t
GK1
Σ2

(w[R]), ~R = r
GK1
Σ2

(o, w[R]), and consider

q = ∃x
(∧

B′∈~B

B′(x) ∧
∧

R′∈~R

R′(o, x)
)
,

where B′(x) denotes atom A(x) if B′ = A for atomic concept A, and B′(x) denotes
formula ∃x′.S(x, x′) if B′ = ∃S for a role S. Then UK1

|= q with substitution x 7→
ow[R]. On the other hand, UK2

6|= q as there exists no substitution for x in ∆UK2 . Using
Lemma 6.1.1 we then obtain K1 |= q and K2 6|= q.

7.1 T H E M E M B E R S H I P P RO B L E M 97

The case when (iv) is violated is analogous to the case above. The proof is complete.
In the end we provide the proofs of the aforementioned propositions.

Proposition 7.1.2. Let conditions (ii) and (iii) hold, and A1 an ABox over Σ1 such that
〈T1 ∪ T12,A1〉 and 〈T2 ∪ T12,A1〉 are consistent. Then UK1

is Σ2-homomorphically
embeddable into UK2

.

Proof. We build a function h from ∆UK1 to ∆UK2 , which is a Σ2-homomorphism from
UK1

to UK2
.

Base of induction. Initially, for each a ∈ Ind(A1) we define h(a) = a. Let us

immediately verify that t
UK1
Σ2

(a) ⊆ t
UK2
Σ2

(a). Let B′ ∈ t
UK1
Σ2

(a), it follows by (ctype)
there exists B over Σ1 such that A1 |= B(a) and T1 ∪ T12 |= B v B′. Note that B is
T1 ∪ T12-consistent, then by (ii), T2 ∪ T12 |= B v B′, therefore we obtain B′ ∈ tUK2 (a).

The proof of r
UK1
Σ2

(a, b) ⊆ r
UK2
Σ2

(a, b) is analogous.

Next, assume σ ∈ ∆UK1 and σ = aw[R], we show how to define h(σ). It follows
a K1

w[R] and by (cgen) we obtain a concept B over Σ1 such that A1 |= B(a),
and T1 ∪ T12 |= B @ ∃R. Then B is T1 ∪ T12-consistent, and by (iii) there exists
y ∈ ∆G〈T2∪T12,{B(o)}〉 such that

t
G〈T1∪T12,{B(o)}〉
Σ2

(w[R]) ⊆ tG〈T2∪T12,{B(o)}〉(y),

r
G〈T1∪T12,{B(o)}〉
Σ2

(o, w[R]) ⊆ rG〈T2∪T12,{B(o)}〉(o, y).

Since {B} ⊆ tUK2 (a), by (stype) there exists δ ∈ ∆UK2 such that

tG〈T2∪T12,{B(o)}〉(y) ⊆ tUK2 (δ), and rG〈T2∪T12,{B(o)}〉(o, y) ⊆ rUK2 (a, δ).

As for a TBox T , ABoxes A and A′, and x ∈ ∆G〈T ,A〉 , z ∈ ∆U〈T ,A′〉 with x = tail(z),
the concept and role types of x and z coincide, it follows now by transitivity that

t
UK1
Σ2

(aw[R]) ⊆ t
UK2
Σ2

(δ), and r
UK1
Σ2

(a, aw[R]) ⊆ r
UK2
Σ2

(a, δ).

Hence, we assign h(σ) = δ.

Inductive step. We show now how to define homomorphism for σw[R] ∈ ∆UK1 with
σ = σ′w[S] given that the h(σ) and h(σ′) are defined. It follows w[S] K1

w[R] and S
is a basic role over Σ1 by the structure of T1 ∪ T12. Then ∃S− is T1 ∪ T12-consistent,
and by (ngen), T1 ∪ T12 |= ∃S− @ ∃R. So (iii) is triggered, and there exists y ∈
∆G〈T2∪T12,{∃S−(o)}〉 satisfying

t
G〈T1∪T12,{∃S−(o)}〉
Σ2

(w[R]) ⊆ t
G〈T2∪T12,{∃S−(o)}〉
Σ2

(y),

r
G〈T1∪T12,{∃S−(o)}〉
Σ2

(o, w[R]) ⊆ r
G〈T2∪T12,{∃S−(o)}〉
Σ2

(o, y).

Let B = uT12
Σ2

(∃S−), C = uT12
Σ2

(∃S), and S = uT12
Σ2

(S), where for a TBox T
and a concept B, uTΣ (B) denotes the set of all concepts B′ over Σ such that T |=
B v B′; and uTΣ (R) is defined analogously for a role R. Then U〈T1∪T12,{∃S−(o)}〉 and
U〈T2∪T12,{∃S−(o)}〉 can be partially depicted as follows. Note that here the presented con-
cept and role labels are NOT the exact concept and role types. Moreover, we depict only
those individuals and links between them, which are guaranteed to exist given the infor-
mation at hand. Note also, that in the pictures further in this proof, we depict only the
necessary bits of information.

98 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

G〈T1∪T12,{∃S−(o)}〉

o
∃S−, ∃R, B

w[S−]
∃S, C

w[R]

∃R−

S, S

R

G〈T2∪T12,{∃S−(o)}〉

o
∃S−, B

w[S−]
∃S, C

y

S, S

Denote by B(o) assertions B1(o), . . . , Bm(o) for Bi ∈ B, and similarly for C(a). More-
over, denote by S(a, o) assertions S1(a, o), . . . , Sk(a, o) for Si ∈ S. There are two pos-
sible cases considering that T12 is a set of inclusions from Σ1 to Σ2, T2 is a TBox over
Σ2, and S is a role over Σ1.

(I) o 〈T2∪T12,{∃S−(o)}〉 w[Q1] · · · w[Qn], n ≥ 0 and Qi are roles over Σ2.
Then, if n = 0, y = o, otherwise y = w[Qn].

Consider KB 〈T2, {B(o)}〉, then we obtain that y ∈ ∆G〈T2,{B(o)}〉 and

t
G〈T2∪T12,{∃S−(o)}〉
Σ2

(y) ⊆ t
G〈T2,{B(o)}〉
Σ2

(y),

r
G〈T2∪T12,{∃S−(o)}〉
Σ2

(o, y) ⊆ r
G〈T2,{B(o)}〉
Σ2

(o, y).

Observe that B ⊆ t
UK2
Σ2

(h(σ)), since obviously B ⊆ t
UK1
Σ2

(σ) and h is a homomorphism

on σ. Therefore, by (stype) we obtain δ ∈ ∆UK2 such that

t
G〈T2,{B(o)}〉
Σ2

(y) ⊆ t
UK2
Σ2

(δ), and r
G〈T2,{B(o)}〉
Σ2

(o, y) ⊆ r
UK2
Σ2

(h(σ), δ).

As above, it follows t
UK1
Σ2

(σw[R]) ⊆ t
UK2
Σ2

(δ), and r
UK1
Σ2

(σ, σw[R]) ⊆ r
UK2
Σ2

(h(σ), δ).
Hence, we assign h(σw[R]) = δ. This case can be depicted as follows:

G〈T1∪T12,{∃S−(o)}〉

o
∃S−, ∃R, B

w[R]

∃R−

R

G〈T2,{B(o)}〉

o
B

y = w[Qn]

UK1

σ′
∃S, C

σ = σ′w[S]

∃S−, ∃R, B

σw[R]

∃R−

S, S

R

UK2

h(σ′)
C

h(σ)
B

δ

S

(II) o 〈T2∪T12,{∃S−(o)}〉 w[S−] w[Q1] · · · w[Qn], n ≥ 0, Qi are roles over Σ2.
Then, if n = 0, y = w[S−], otherwise y = w[Qn].

Consider KB 〈T2, {C(a), S(a, o)}〉. Then a 〈T2,{C(a),S(a,o)}〉 w[Q1] · · · w[Qn],
y′ ∈ ∆G〈T2,{C(a),S(a,o)}〉 : if n = 0, y′ = a, otherwise y′ = w[Qn], and

t
G〈T2∪T12,{∃S−(o)}〉
Σ2

(y) ⊆ t
G〈T2,{C(a),S(a,o)}〉
Σ2

(y′),

r
G〈T2∪T12,{∃S−(o)}〉
Σ2

(o, y) ⊆ t
G〈T2,{C(a),S(a,o)}〉
Σ2

(o, y′).

7.1 T H E M E M B E R S H I P P RO B L E M 99

As above, C ⊆ t
UK2
Σ2

(h(σ′)), therefore by (stype) we obtain δ ∈ ∆UK2 such that

t
G〈T2,{C(a),S(a,o)}〉
Σ2

(y′) ⊆ t
UK2
Σ2

(δ).

Observe that if r
G〈T1∪T12,{∃S−(o)}〉
Σ2

(o, w[R]) 6= ∅, it has to be the case that

y = w[S−], y′ = a, and δ = h(σ′).

Let R′ ∈ r
G〈T1∪T12,{∃S−(o)}〉
Σ2

(o, w[R]), it follows R′ ∈ r
G〈T2,{C(a),S(a,o)}〉
Σ2

(o, a), and from the

latter, T2 |= S−i v R′ for some Si ∈ S. As Si ⊆ r
UK2
Σ2

(h(σ′), h(σ)), we obtain that

R′ ∈ t
UK2
Σ2

(h(σ), h(σ′)).

All in all, it follows that t
UK1
Σ2

(σw[R]) ⊆ t
UK2
Σ2

(δ), and r
UK1
Σ2

(σ, σw[R]) ⊆ r
UK2
Σ2

(h(σ), δ).
Hence, we set h(σw[R]) = δ. We conclude with a graphical representation of this case:

G〈T1∪T12,{∃S−(o)}〉

o
∃S−, ∃R, B

w[R]

∃R−

R

G〈T2,{C(a),S(a,o)}〉

o a
C

y′ = w[Qn]

S

UK1

σ′
∃S, C

σ = σ′w[S]

∃S−, ∃R, B

σw[R]

∃R−

S, S

R

UK2

h(σ′)
C

h(σ)
B

δ

S

In such a way we can define h(σ) for each σ ∈ ∆UK1 , hence h is a Σ2-homomorphism
from UK1

to UK2
.

Proposition 7.1.3. Let conditions (ii) and (iv) hold, and A1 an ABox over Σ1 such that
〈T1 ∪ T12,A1〉 and 〈T2 ∪ T12,A1〉 are consistent. Then UK2

is Σ2-homomorphically
embeddable into UK1

.

Proof. We build a function h from ∆UK2 to ∆UK1 , which is a Σ2-homomorphism from
UK2

to UK1
.

Base of induction. Initially, for each a ∈ Ind(A1) we define h(a) = a. Let us

immediately verify that t
UK2
Σ2

(a) ⊆ t
UK1
Σ2

(a). Let B′ ∈ t
UK2
Σ2

(a), it follows by (ctype) there
exists B over Σ1 such that A1 |= B(a) and T2 ∪ T12 |= B v B′. Then B is T1 ∪ T12-
consistent (recall that K1 = 〈T1 ∪ T12,A1〉 is consistent), so by (ii), T1 ∪ T12 |= B v
B′, therefore we obtain B′ ∈ tUK1 (a). The proof of r

UK2
Σ2

(a, b) ⊆ r
UK1
Σ2

(a, b) is analogous.

Next, assume σ ∈ ∆UK2 and σ = aw[R], we show how to define h(σ). It follows
a K2

w[R] and by (cgen) we obtain B over Σ1 such that A1 |= B(a), and T2 ∪ T12 |=
B @ ∃R. We are going to show now there exists y ∈ ∆G〈T1∪T12,{B(o)}〉 such that

t
G〈T2∪T12,{B(o)}〉
Σ2

(w[R]) ⊆ t
G〈T1∪T12,{B(o)}〉
Σ2

(y), and (14)

r
G〈T2∪T12,{B(o)}〉
Σ2

(o, w[R]) ⊆ r
G〈T1∪T12,{B(o)}〉
Σ2

(o, y). (15)

Assume, first, R is a role over Σ2, and observe that B is T1 ∪ T12-consistent, then by (iv)
there exists y ∈ ∆G〈T1∪T12,{B(o)}〉 satisfying (14) and (15).

100 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

Assume now R is a role over Σ1, then it follows B = ∃R. Let o 〈T1∪T12,{∃R(o)}〉 w[Q]

for a roleQ over Σ1 such that T1 |= Q v R (such Q always exists, for instance R itself
if it does not have proper subroles). Then we choose y to be w[Q], and show first that

(14) is satisfied. Let B ∈ t
G〈T2∪T12,{∃R(o)}〉
Σ2

(w[R]), then by (ntype), T2 ∪ T12 |= ∃R− v B,

and as ∃R− ∈ t
G〈T1∪T12,{∃R(o)}〉
Σ1

(w[Q]), by (ii) we obtain that B ∈ t
G〈T1∪T12,{∃R(o)}〉
Σ2

(w[Q]). In
a similar way, we can show that (15) is satisfied.

To continue the proof consider {B} ⊆ tUK1 (a), then by (stype) there exists δ ∈
∆UK1 such that tG〈T1∪T12,{B(o)}〉(y) ⊆ tUK1 (δ) and rG〈T1∪T12,{B(o)}〉(o, y) ⊆ rUK1 (a, δ). It

follows now using (14) that t
UK2
Σ2

(aw[R]) ⊆ t
UK1
Σ2

(δ). Analogously using (15) one obtains

r
UK2
Σ2

(a, aw[R]) ⊆ r
UK1
Σ2

(a, δ).

Inductive step. We show how to define homomorphism for σw[R] ∈ ∆UK2 with σ =

σ′w[S] given that h(σ) is defined. It follows w[S] K2
w[R], therefore T2 ∪ T12 |=

∃S− v ∃R, and R is a role over Σ2 distinct from S−. By (ntype) it also follows ∃R ∈
tUK2 (σ), and since h is a Σ2-homomorphism, ∃R ∈ t

UK1
Σ2

(h(σ)). AsA1 is an ABox over

Σ1 and T1 is a TBox over Σ1, there exists a concept B over Σ1 such that B ∈ tUK1 (h(σ))
and T12 |= B v ∃R. Next, assume that o 〈T2∪T12,{B(o)}〉 w[Q] for some role Q such
that T2 ∪ T12 |= Q v R. Then B is T1 ∪ T12-consistent and T2 ∪ T12 |= B @ ∃Q. As
above for σ = aw[R], by (iv) there exists y ∈ ∆G〈T1∪T12,{B(o)}〉 such that

t
G〈T2∪T12,{B(o)}〉
Σ2

(w[Q]) ⊆ t
G〈T1∪T12,{B(o)}〉
Σ2

(y), and

r
G〈T2∪T12,{B(o)}〉
Σ2

(o, w[Q]) ⊆ r
G〈T1∪T12,{B(o)}〉
Σ2

(o, y).

Again, by (stype) we obtain δ in ∆UK1 such that tG〈T1∪T12,{B(o)}〉(y) ⊆ tUK1 (δ) and
rG〈T1∪T12,{B(o)}〉(o, y) ⊆ rUK1 (h(σ), δ). Observe that T2 ∪ T12 |= Q v R, so the concept
and role types of w[R] and (o, w[R]) are subsumed by those of w[Q] and (o, w[Q]) in

G〈T2∪T12,{B(o)}〉. Finally, we obtain that tUK2 (σw[R]) ⊆ tUK1 (δ) and rUK2 (σ, σw[R]) ⊆
rUK1 (h(σ), δ). Hence, we assign h(σw[R]) = δ.

In such a way we can define h(σ) for each σ ∈ ∆UK2 , hence h is a Σ2-homomorphism
from UK2

to UK1
.

This concludes the proof of Lemma 7.1.1.

Having devised a characterization of UCQ-representations, we discuss several exam-
ples of (non-)UCQ-representations.

Example 7.1.4. Assume thatM = (Σ1, Σ2, T12), where Σ1 = {A(·), R(·, ·)}, Σ2 =

{A′(·), R′(·, ·), B′(·)}, and T12 = {A v A′, ∃R− v B′}. Moreover, let T1 = {A v
∃R}, and

(1) T2 = {A′ v B′}. In Example 4.3.2 we showed that T2 is not a UCQ-representation
of T1 under M. In fact, in this case condition (ii) is not satisfied, as T2 ∪ T12 |=
A v B′ while T1 ∪ T12 6|= A v B′.

7.1 T H E M E M B E R S H I P P RO B L E M 101

(2) T2 = {A′ v ∃R′, ∃R′− v B′}. We also showed in that example that this T2 is not
a UCQ-representation of T1 underM. In this case, condition (iv) is not satisfied, as
T2 ∪ T12 |= A @ ∃R′, but there exists no y ∈ ∆G〈T1∪T12,{A(o)}〉 such that

t
G〈T2∪T12,{A(o)}〉
Σ2

(w[R′]) ⊆ tG〈T1∪T12,{A(o)}〉(y),

r
G〈T2∪T12,{A(o)}〉
Σ2

(o, w[R′]) ⊆ rG〈T1∪T12,{A(o)}〉(o, y),

since neither y = o, nor y = w[R] in ∆G〈T1∪T12,{A(o)}〉 satisfy R′ ∈ r
G〈T1∪T12,{A(o)}〉
Σ2

(o, y).

These cases can be depicted in the following ER diagrams:

T1

A

∃R

∃R−
R

T2

A′

B′
T12

(1)

T1

A

∃R

∃R−R

T2

A′
∃R′

∃R′−
B′

R′

T12

(2)

Example 7.1.5. Assume thatM = (Σ1, Σ2, T12), where

Σ1 = {A(·), R(·, ·), S(·, ·), Q(·, ·)}
Σ2 = {A′(·), B′(·), S′(·, ·), Q′(·, ·)}
T12 = {A v A′, ∃R− v B′,

S v S′, Q v Q′, ∃Q− v B′}

and let

T1 = {A v ∃R,

A v ∃S, ∃S− v ∃Q}
T2 = {A′ v ∃S′, ∃S′− v ∃Q′,

∃Q′− v B′}

Then T2 is a UCQ-representation of T1 underM. We verify that conditions (iii) and (iv)
are satisfied. First, T1 ∪ T12 |= A @ ∃R: we take wQ′ ∈ ∆G〈T2∪T12,{A(o)}〉 and it is easy to
see that the following is satisfied:

t
G〈T1∪T12,{A(o)}〉
Σ2

(wR) ⊆ tG〈T2∪T12,{A(o)}〉(wQ′),

r
G〈T1∪T12,{A(o)}〉
Σ2

(o, wR) ⊆ rG〈T2∪T12,{A(o)}〉(o, wQ′),

as r
G〈T1∪T12,{A(o)}〉
Σ2

(o, wR) = ∅. Then for each of A @ ∃S and A @ ∃Q entailed by T1 ∪
T12, it should be clear that we take wS′ and wQ′ in ∆G〈T2∪T12,{A(o)}〉 and ∆G〈T2∪T12,{∃S−(o)}〉

respectively to satisfy condition (iii). As for the opposite direction, now differently from
Example 7.1.4, for both wS′ and wQ′ in ∆G〈T2∪T12,{A(o)}〉 and ∆G〈T2∪T12,{∃S−(o)}〉 respectively,
there exist wS and wQ in ∆G〈T1∪T12,{A(o)}〉 and ∆G〈T1∪T12,{∃S−(o)}〉 that satisfy condition (iv).
Below we illustrate the Σ2-reducts of GK1 and GK2 for K1 = 〈T1 ∪ T12, {A(o)}〉 and
K2 = 〈T2 ∪ T12, {A(o)}〉 (concept labels of the form ∃P, ∃P− for a role P are not
shown), and the ER diagrams of T1, T12 and T2:

102 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

GK1
o

A′

wR
B′

wS

wQ

B′

S′

Q′

GK2
o

A′

wS′

wQ′

B′

S′

Q′

T1

A

∃R

∃R−

∃S

∃S−

∃Q

∃Q−R

S

Q

T2

A′

∃S′
∃S′−

∃Q′
∃Q′−

B′

S′

Q′

T12

Observe that in this example, if we remove axioms A v ∃R and ∃R− v B′ from T1

and T12, T2 will still be a UCQ-representation for the remaining T1 under the remaining
M. It means that an “image” of wR ∈ ∆GK1 should be some y ∈ ∆GK2 for K1 =

〈T1 ∪ T12, {A(o)}〉 and K2 = 〈T2 ∪ T12, {A(o)}〉, such that for n ≥ 1

o K2
y1 K2

· · · K2
yn = y,

which is also a “one-to-one image” of some x ∈ ∆GK1 , that is

o K1
x1 K1

· · · K1
xn = x,

r
GK1
Σ2

(o, x1) = r
GK2
Σ2

(o, y1), r
GK1
Σ2

(xi, xi+1) = r
GK2
Σ2

(yi, yi+1), and t
GK1
Σ2

(xi) = t
GK2
Σ2

(yi).
This fact is important for solving the non-emptiness problem in the next section.

Example 7.1.6. Assume that M = ({A(·), B(·), C(·), D(·)}, {A′(·), B′(·)}, T12),
where T12 = {A v A′, B v B′, C v ¬A′, D v B′}, moreover, let T1 = {D v C} and
T2 = {A′ v ¬B′}. As we showed in Example 4.3.4, T2 is not a UCQ-representation
of T1 underM. We verify that using the characterization. In fact, although, T2 satisfies
condition (i) for the pair of concepts (A, D), which is both T1 ∪ T12-inconsistent and
T2 ∪ T12-inconsistent, T2 violates this condition for the pair (A, B), which is clearly
T1 ∪ T12-consistent, however T2 ∪ T12-inconsistent as T2 ∪ T12 |= A v ¬B′ and T2 ∪
T12 |= B v B′.

A

C

D

B

A′

B′

Note that the proof of Lemma 7.1.1 implies another characterization of UCQ-represen-
tations, in the spirit of the characterizations of universal solutions and universal UCQ-
solutions.

Lemma 7.1.7. A TBox T2 over Σ2 is a UCQ-representation of a TBox T1 over Σ1 under
a mappingM = (Σ1, Σ2, T12) if and only if following conditions hold:

• for each ABoxA1 consistent with T1, 〈T1∪T12,A1〉 is consistent iff 〈T2∪T12,A1〉
is consistent;

7.1 T H E M E M B E R S H I P P RO B L E M 103

• for each ABox A1 consistent with T1 ∪ T12, U〈T1∪T12,A1〉 is Σ2-homomorphically
equivalent to U〈T2∪T12,A1〉.

Proof. (⇒) Follows from the proof of Lemma 7.1.1: if T2 is a UCQ-representation of
T1 under M then conditions (i) – (iv) of Lemma 7.1.1 are satisfied, and the required
follows from them.

(⇐) Straightforward.

Finally, we conclude with the main result of this section. We can derive an efficient
algorithm for checking the membership problem for UCQ-representations from the con-
ditions in Lemma 7.1.1. Combining it with the complexity of reasoning in DL-LiteR,
we obtain the following complexity bound:

Theorem 7.1.8. The membership problem for UCQ-representations is NLOGSPACE-
complete.

Proof. The lower bound can be obtained by the reduction from the directed graph reach-
ability problem, which is known to be NLOGSPACE-hard: given a graph G = (V, E) and
a pair of vertices vk, vm ∈ V, decide if there is a directed path from vk to vm. To encode
the problem, we need a source signature Σ1 of concept names {Vi | vi ∈ V} and a target
signature Σ2 of concept names {V ′i | vi ∈ V}. Consider T1 = {Vk v Vm} ∪ {Vi v Vj |
(vi, vj) ∈ E}, T12 = {Vi v V ′i | vi ∈ V}, and T2 = {V ′i v V ′j | (vi, vj) ∈ E}. One
can easily verify that the condition ii of Lemma 7.1.1 is satisfied iff there is a directed
path from vk to vm in G, whereas the other conditions of Lemma 7.1.1 are satisfied
trivially. Therefore,

• there is a directed path from vk to vm in G iff T2 is a UCQ-representation of T1

underM = (Σ, Σ2, T12).

This concludes the proof of the lower bound.
For the upper bound, we show that the conditions (i) – (iv) of Lemma (7.1.1) can be

verified in NLOGSPACE. It is well known (see, e.g., [15]), that given a pair of DL-LiteR
concepts B, B′, and a TBox T , it can be verified in NLOGSPACE, if B, B′ is T consistent
(using an algorithm, based on directed graph reachability solving procedure); the same
holds for a pair of DL-LiteR roles R, R′. The same algorithm can be straightforwardly
adopted to check, if T |= B v B′ or T |= R v R′. Therefore, clearly, the conditions (i)
and (ii) can be verified in NLOGSPACE.

The conditions (iii) and (iv) are slightly more involved; first of all, observe that,
given a concept B and a role R, and a TBox T , it can be checked in NLOGSPACE,
whether T |= B @ ∃R, using an algorithm based on the directed graph reachabil-
ity solving procedure. At the same time, given z ∈ {o} ∪ {w[R] | R is a role}, we
can verify, if there exists y ∈ ∆G〈T ,{B(o)}〉 with z = tail(y): we “follow” the sequence
of roles R1, . . . , Rn = R (with n ≥ 0) in the way that when we “guess” Ri+1, we
check w[Ri] 〈T ,{B(o)}〉 w[Ri+1] (by the algorithm, similar to the one for checking
o 〈T ,{B(o)}〉 w[R]), and “forget” Ri.

Furthermore, in a way similar to testing T |= B v B′, one can check if a con-

cept B′ ∈ t
U〈T ,{B(o)}〉
Σ2

(ow[R]) in NLOGSPACE; the same holds for checking if a role

R′ ∈ r
G〈T ,{B(o)}〉
Σ2

(o, w[R]), and, then, for checking B′ ∈ t
G〈T ,{B(o)}〉
Σ2

(y), for y as above. By
combining the algorithms outlined above, one can produce a procedure that checks the
conditions (iii) and (iv) in NLOGSPACE.

104 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

7.2 T H E N O N - E M P T I N E S S P RO B L E M

In this section we develop a bit more
involved graph-theoretic techniques and
show that the non-emptiness problem for
UCQ-representations can also be solved ef-
ficiently (in NLOGSPACE).

Translation

ABox

Decision problem

universal solution

universal UCQ-solution

UCQ-representation

sim
ple ABoxes

extended ABoxes

membership

non-emptiness

weak UCQ-representability

We start with a example that provides some intuition to how the non-emptiness prob-
lem is solved.

Example 7.2.1. AssumeM and a UCQ-representable T1 from Example 4.3.1-(3):M =

(Σ1, Σ2, T12), where Σ1 = {A(·), B(·), C(·)}, Σ2 = {A′(·), B′(·), C′(·)} and T12 =

{A v A′, B v B′, A v C′}, and T1 = {A v B}. It follows that T1 ∪ T12 |= A v B′.
First and obvious requirement for a UCQ-representation T2 is that T2 should entail an
axiom of the form D′ v B′ so that T2 ∪ T12 |= A v B′ (hence, T12 |= A v D′). On
the other hand, it could be that T12 |= D v D′ for some D distinct from A, in which
case it follows also T2 ∪ T12 |= D v B′. Since we want T2 to be a UCQ-representation,
it should be the case T1 ∪ T12 |= D v B′. In this case, we can take D′ equal to A′ or C′,
and there exists no concept D: it is easy to see that there are two UCQ-representations
of T1 underM: {A′ v B′} and {C′ v B′}.

Assume now a slightly different T12 = {A v A′, B v B′, C v A′} from Exam-
ple 4.3.1-(4), where we showed T1 is not UCQ-representable. As before, T1 ∪ T12 |=
A v B′. However now, the only candidate for D′ is A′, and there exists a concept C
distinct from A such that T12 |= C v A′. So on the one hand, the only way to have a
UCQ-representation T2 is to include axiom A′ v B′ to T2, but on the other hand since
T1 ∪ T12 6|= C v B′, this axiom cannot be in T2. In general, there is no way to “repre-
sent” inclusion A v B′ in the target, so in this case T1 is not UCQ-representable under
M.

A

C

B

A′

C′

B′

(3)

A

C

B

A′

C′

B′

(4)

Example 7.2.2. Assume M and T1 from Example 4.3.4, where we showed T1 is not
UCQ-representable:M = (Σ1, Σ2, T12), where Σ1 = {A(·), B(·), C(·), D(·)}, Σ2 =

{A′(·), B′(·)}, T12 = {A v A′, B v B′, C v ¬A′, D v B′}, and T1 = {D v C}.
It follows that the pair of concepts (A, D) is T1 ∪ T12-inconsistent as T1 ∪ T12 |=

A v A′ and T1 ∪ T12 |= D v ¬A′. So a candidate UCQ-representation T2 should be
such that (A, D) is T2 ∪ T12-inconsistent. One possible way to achieve that is by having
T2 ∪ T12 |= D v ¬A′, and since D is transferred only to B′ through the mapping,
it means that T2 should entail B′ v ¬A′, or B′ v ¬B′, or A′ v ¬A′. In the first

7.2 T H E N O N - E M P T I N E S S P RO B L E M 105

case, however, we result with the pair (A, B) being T2 ∪ T12-inconsistent as well, since
A v A′ and B v B′ are in T12. Then, for T2 to be a UCQ-representation of T1 under
M, (A, B) should be T1 ∪ T12-inconsistent, which is not the case. So it cannot be that
T2 |= B′ v ¬A′. In the second case, we result with the pair (B, B) being T2 ∪ T12-
inconsistent, and since (B, B) is T1 ∪ T12-consistent, it cannot be that T2 |= B′ v ¬B′.
Similarly, we get that it cannot be the case that T2 |= A′ v ¬A′.

In general, it is not possible to have a target TBox T2 such that (A, D) is T2 ∪ T12-
inconsistent and T2 is a UCQ-representation of T1 underM, that is, it is not possible
“contradict” concepts A and D in the target.

We explained in the examples above that in order to check whether T1 is UCQ-
representable under M one needs to verify whether the axioms implied by T1 ∪ T12

are “representable”, and whether T1 ∪ T12-inconsistent pairs are “target contradictable”.
To define these notions required for the characterization in Lemma 7.2.8, we first in-
troduce the notion of reserved UCQ-representation. We say that a target TBox T2 is a
reserved UCQ-representation of T1 underM, if for every ABoxA1 over Σ1 that is con-
sistent with T1, 〈T1 ∪ T12,A1〉 Σ2-query entails 〈T2 ∪ T12,A1〉. Observe that the empty
TBox is a reserved UCQ-representation.

In the definitions below, X and Y denote basic concepts or roles over Σ1, and X′

denotes a basic concept or role over Σ2.

Definition 7.2.3. Inclusion X v X′ is representable in T1 andM, if there exists a target
axiom α (possibly trivial) such that whenever T2 is a reserved UCQ-representation of
T1 underM, it holds that T ′2 = T2 ∪ {α} is also a reserved UCQ-representation of T1

underM, moreover T ′2 ∪ T12 |= X v X′.
In that case, X v X′ is representable by α.

Definition 7.2.4. Pair (X, Y) is target contradictable in T1 andM, if there exists a tar-
get axiom α (possibly trivial) such that whenever T2 is a reserved UCQ-representation
of T1 underM, it holds that T ′2 = T2 ∪ {α} is also a reserved UCQ-representation of
T1 underM, moreover (X, Y) is T ′2 ∪ T12-inconsistent.

In that case, (X, Y) is target contradictable by α.

Our last definition before we present a characterization of the cases when T1 is UCQ-
representable underM is the notion of a generating pass. In the case T1 ∪ T12 |= B @
∃R for some concept B and role R, existence of a generating pass for (B, R) ensures that
there exists a reserved UCQ-representation T2 satisfying condition (iii) for B and R. The
main reason behind this non-trivial definition is to ensure that for R that is not translated
via the mapping, i.e., T1 ∪ T12 6|= R v R′ for any role R′ over Σ2, there exists an
“image” y ∈ ∆G〈T2∪T12,{B(o)}〉 that need not be a neighbor of o and that is already a “one-to-
one” image of some other x ∈ ∆G〈T1∪T12,{B(o)}〉 . For instance, in Example 7.1.5, for B = A,
this y was equal to wQ′ , which was a “one-to-one image” of wQ ∈ ∆G〈T1∪T12,{A(o)}〉 . To the
contrast, if we find y ∈ ∆G〈T2∪T12,{B(o)}〉 that is not a “one-to-one image” of any element
in ∆G〈T1∪T12,{B(o)}〉 , then such T2 could not be a UCQ-representation, as demonstrated in
Example 7.1.4.

For a TBox T and a concept B, denote by uTΣ (B) the set of all concepts B′ over Σ
such that T |= B v B′; uTΣ (R) is defined analogously for a role R.

Definition 7.2.5. Let B be a concept over Σ1 and R a role. A generating pass for (B, R)
in T1 andM is a tuple of concepts 〈C0, C1, . . . Cn〉 of length greater or equal 1, such
that C0 = B, and it holds for T = T1 ∪ T12 and i = 0, . . . , n− 1

106 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

(R C H A I N) Ci+1 = ∃Q−i for some role Qi s.t. T |= Ci v ∃Qi and uTΣ2
(Qi) 6= ∅;

(C PA S S) for each Di ∈ uTΣ2
(Ci), inclusion Ci v Di is representable in T1 andM;

(R PA S S) for each Si ∈ uTΣ2
(Qi), inclusion Qi v Si is representable in T1 andM;

(E T Y P E) uTΣ2
(∃R−) ⊆ uTΣ2

(Cn), and uTΣ2
(R) ⊆ uTΣ2

(C0, Cn).

Example 7.2.6. Assume M and T1 from Example 7.1.5. Then 〈A, ∃S−, ∃Q−〉 is a
generating pass for (A, R) in T1 andM. Below we represent it graphically, where the
Σ2 super concepts and super roles of concepts and roles over Σ1 are shown at the ends
of the “wavy” arrows.

Σ1

A

∃S−

∃Q−

S

Q

Σ2

A′, ∃S′

∃S′−, ∃Q′

∃Q′−, B′

S′

Q′

Example 7.2.7. AssumeM and T1 from Example 7.1.4. Then there exists no generat-
ing pass for (A, R) in T1 andM.

We also make use of the following properties.

(T I N C O N S C) concept B is T -inconsistent iff T |= B v C u D for some concept
disjointness C v ¬D ∈ T , or there exist n ≥ 1 and roles R1, . . . , Rn such that
T |= {B @ ∃R1, ∃R−i @ ∃Ri+1}, and

• T |= ∃R−n v C u D, for some concept disjointness C v ¬D ∈ T , or

• T |= Rn v S u Q or T |= Rn v S− u Q−, for some role disjointness
S v ¬Q ∈ T .

(T I N C O N S R) role R is T -inconsistent iff T |= R v S u Q or T |= R v S− u Q−

for some role disjointness S v ¬Q ∈ T , or one of ∃R, ∃R− is T -inconsistent.

Having defined all notions above, we provide a characterization of the cases when T1

is UCQ-representable underM, which has a similar structure to the characterization of
UCQ-representations in Lemma 7.1.1.

Lemma 7.2.8. Given a mapping M = (Σ1, Σ2, T12) and a TBox T1 over Σ1, T1 is
UCQ-represen-table underM, if and only if the following conditions are satisfied:

(I) For each T1-consistent pair of concepts or roles X, Y over Σ1 such that (X, Y) is
T1 ∪ T12-inconsistent, (X, Y) is target contradictable in T1 andM.

(II) For each T1 ∪ T12-consistent concept or role X over Σ1 and each X′ over Σ2

such that T1 ∪ T12 |= X v X′, inclusion X v X′ is representable in T1 andM.

(III) For each T1 ∪ T12-consistent concept B over Σ1 and each role R such that
T1 ∪ T12 |= B @ ∃R, there exists a generating pass for (B, R) in T1 andM.

7.2 T H E N O N - E M P T I N E S S P RO B L E M 107

Proof. (⇐) Assume conditions (I) – (III) are satisfied, we construct a TBox T2 over Σ2

and prove it is a UCQ-representation for T1 underM. The required T2 will be given as
the union of the three sets of axioms presented below. First, let (B, C) be a T1-consistent
and T1 ∪ T12-inconsistent pair of concepts over Σ1, then (B, C) is target contradictable
by condition (I): assume (B, C) is target contradictable by α, then define set axi(B, C) to
be equal to {α}. Similarly, we define axi(R, Q) = {α} for T1-consistent and T1 ∪ T12-
inconsistent pair of roles R, Q over Σ1. Next, take a T1 ∪ T12-consistent concept B over
Σ1, and assume T1 ∪ T12 |= B v C′ for C′ over Σ2, then by condition (II), B v C′ is
representable in T1 and M: let axii(B, C′) = {α} such that B v C′ ia representable
by α. Similarly, for a T1 ∪ T12-consistent role R over Σ1 and Q′ over Σ2, such that
T1 ∪ T12 |= R v Q′. Finally, for each T1 ∪ T12-consistent concept B over Σ1 and each
role R such that T1 ∪T12 |= B @ ∃R, define the set axiii(B, R) from the generating pass
〈C0, . . . , Cn〉 for (B, R) in T1 andM given by condition (III). Take axiii(B, R) equal to
the set of all axioms α, where Ci v Di is representable by α in (cpass), or Qi v Si is
representable by α in (rpass). Finally we have:

T2 =
⋃

X,Y conc. or roles over Σ1,
T1-consistent and
T1∪T12-inconsistent

axi(X, Y) ∪
⋃

X conc. or role over Σ1,
T1∪T12-consistent ,

X′ over Σ2, T1∪T12|=XvX′

axii(X, X′) ∪

⋃
T1∪T12-cons. B over Σ1,
T1∪T12|=B@ ∃R

axiii(B, R)

Then it immediately follows that T2 is a UCQ-representation of T1 underM: On the
one hand, by construction, T2 is a reserved UCQ-representation. On the other hand, the
⇒ directions of conditions (i) and (ii), and condition (iii) of Lemma 7.1.1 are satisfied
by construction of T2 and by definition of axi, axii, axiii. From which, it follows that
for each ABox A1 consistent with T1, 〈T2 ∪ T12,A1〉 Σ2-query entails 〈T1 ∪ T12,A1〉.
Hence, indeed, T2 is a UCQ-representation of T1 underM.

Below we show satisfaction of condition (iii) of Lemma 7.1.1. Denote by T the TBox
T1 ∪ T12, let B be T -consistent concept over Σ1 and R a role T |= B @ ∃R, moreover
let 〈C0, . . . , Cn〉 be a generating pass for (B, R) in T1 andM given by condition (III)
such that n ≥ 0, C0 = B, Ci+1 = ∃Q−i and

t
G〈T ,{B(o)}〉
Σ2

(w[R]) ⊆ uTΣ2
(Cn) and r

G〈T ,{B(o)}〉
Σ2

(o, w[R]) ⊆ uTΣ2
(C0, Cn).

For n = 0, if t
G〈T ,{B(o)}〉
Σ2

(w[R]) = ∅, then we take y ∈ ∆G〈T2∪T12,{B(o)}〉 equal to o. If

t
G〈T ,{B(o)}〉
Σ2

(w[R]) 6= ∅, then t
G〈T ,{B(o)}〉
Σ2

(w[R]) ⊆ t
G〈T ,{B(o)}〉
Σ2

(o) and again, we take y = o.
If n > 0, it follows by (rpass) that uTΣ2

(Qi) 6= ∅, and uTΣ2
(Ci) 6= ∅. Consequently,

by construction of axiii(B, R), T2 ∪ T12 |= Ci v Di for each Di ∈ uTΣ2
(Ci), and

T2 ∪ T12 |= Qi v Si for each Si ∈ uTΣ2
(Qi). Recall the shape of T12 and T2: it follows

there exists y ∈ ∆G〈T2∪T12,{B(o)}〉 such that

t
G〈T ,{B(o)}〉
Σ2

(w[R]) ⊆ t
G〈T2∪T12,{B(o)}〉
Σ2

(y) and r
G〈T ,{B(o)}〉
Σ2

(o, w[R]) ⊆ t
G〈T2∪T12,{B(o)}〉
Σ2

(o, y).

(⇒) Let T2 be a UCQ-representation for T1 under M. It is easy to see that condi-
tions (I) and (II) are satisfied.

108 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

We show (III) is satisfied; Denote by T the TBox T1∪T12, assume B is a T -consistent
concept over Σ1 and T |= B @ ∃R for some role R, by condition (iii) of Lemma 7.1.1
it follows there exists y ∈ ∆G〈T2∪T12,{B(o)}〉 such that

t
G〈T ,{B(o)}〉
Σ2

(w[R]) ⊆ t
G〈T2∪T12,{B(o)}〉
Σ2

(y), and r
G〈T ,{B(o)}〉
Σ2

(o, w[R]) ⊆ r
G〈T2∪T12,{B(o)}〉
Σ2

(o, y).

Assume that y = w[Qn] for n ≥ 0, where o 〈T2∪T12,{B(o)}〉 w[Q1] · · · w[Qn].

Then T2∪T12 |= {B v ∃Q1, ∃Q−i v ∃Qi+1, ∃Q−n v B′}, for all B′ ∈ t
G〈T ,{B(o)}〉
Σ2

(w[R]),

and T2 ∪ T12 |= {Q1 v R′ | R′ ∈ r
G〈T ,{B(o)}〉
Σ2

(o, w[R])} if r
G〈T ,{B(o)}〉
Σ2

(o, w[R]) 6= ∅. One
can show by induction that for each i, there exist Si over Σ1 such that T |= Si v Qi and

T |= {B v ∃Si, ∃S−i v ∃Si+1, ∃S−n v B′}, for all B′ ∈ t
G〈T ,{B(o)}〉
Σ2

(w[R]). We define
a sequence 〈C0, . . . , Cn〉 as C0 = B, Ci+1 = ∃S−i : it can be straightforwardly verified
that 〈C0, . . . , Cn〉 is a generating pass for (B, R) in T1 andM.

We now use the above characterization to verify UCQ-representability in the follow-
ing examples.

Example 7.2.9. AssumeM and T1 from Example 7.1.5, that is,M = (Σ1, Σ2, T12),
where

Σ1 = {A(·), R(·, ·), S(·, ·), Q(·, ·)}
Σ2 = {A′(·), B′(·), S′(·, ·), Q′(·, ·)}
T12 = {A v A′, ∃R− v B′,

S v S′, Q v Q′, ∃Q− v B′}

and
T1 = {A v ∃R,

A v ∃S, ∃S− v ∃Q}

Then the ER diagrams of T1 and T12 can be depicted as follows:

T1

A

∃R

∃R−

∃S

∃S−

∃Q

∃Q−R

S

Q

Σ2

A′

∃S′
∃S′−

∃Q′
∃Q′−

B′

S′

Q′

T12

Then one can see that conditions (I) – (III) are satisfied. Thus, for instance, T1 ∪ T12 |=
A v ∃S′ and T1 ∪ T12 |= ∃S− v ∃Q′: clearly both inclusions are representable
in T1 and M. Then, T1 ∪ T12 |= A @ ∃R and T1 ∪ T12 |= A @ ∃S, and in both
cases there exist generating passes: 〈A, ∃S−, ∃Q−〉 from Example 7.2.6 and 〈A, ∃S−〉,
respectively. This confirms that T1 is UCQ-representable underM.

Example 7.2.10. AssumeM and T1 from Example 7.1.4, that is,M = (Σ1, Σ2, T12),
where Σ1 = {A(·), R(·, ·)}, Σ2 = {A′(·), R′(·, ·), B′(·)}, T12 = {A v A′, ∃R− v B′},
and T1 = {A v ∃R}. The ER diagrams of T1 and T12 can be depicted as follows:

7.2 T H E N O N - E M P T I N E S S P RO B L E M 109

T1

A

∃R

∃R−R

Σ2

A′
∃R′

∃R′−
B′

R′

T12

In contrast with the previous example, condition (III) is not satisfied. In fact, T1 ∪T12 |=
A v ∃R, however there exists no generating pass 〈C0, . . . , Cn〉 for (A, R) in T1 andM,

such that t
G〈T1∪T12,{A(o)}〉
Σ2

(w[R]) ⊆ uT1∪T12
Σ2

(Cn). So indeed, T1 is not UCQ-representable
underM.

Example 7.2.11. Assume thatM = ({A(·), B(·), C(·)}, {A′(·), B′(·)}, T12), where
T12 = {A v A′, B v B′, C v ¬A′}, and let T1 = {B v C}. (This case was
considered in Example 4.3.3–(3).) We show condition (I) is satisfied: the pairs (A, C)
and (A, B) are T1 ∪T12-inconsistent. As the former pair is already T12-inconsistent, this
case is not interesting. Consider the latter pair, then one can easily verify that (A, B) is
target contradictable in T1 and M: A v A′ ∈ T12 and disjointness B v ¬A′ is
representable in T1 andM by B′ v ¬A′, as only A is transfered positively to A′, only
B is transfered positively to B′, and it is not the case that (A, B) is a T1 ∪ T12-consistent
pair. It is easy to see that condition (II) is satisfied, because for concepts D and D′ over
Σ1 and over Σ2, respectively, it holds that T1 ∪ T12 |= D v D′ implies T12 |= D v D′.

Finally, we obtain the complexity bound of the non-emptiness problem for UCQ-
representations.

Theorem 7.2.12. The non-emptiness problem for UCQ-representations is NLOGSPACE-
complete.

Proof. As in the case of Theorem 7.1.8, the lower bound is shown by the reduction from
the directed graph reachability problem, however, we need a slightly more involved
encoding.To encode the graph G = (V, E), we need a set of Σ1-concept names {Vi |
vi ∈ V} ∪ {S, F, X, Y} and a set of Σ2-concept names {V ′i | vi ∈ V} ∪ {S′, X′, Y′}.
Consider the TBox

T1 = {Vi v Vj | (vi, vj) ∈ E} ∪ {S v Vk, Vm v F, X v Y},

where vk and vm are, respectively, the initial and final vertices. Then, let

T12 = {Vi v V ′i | vi ∈ V} ∪ {S v S′, S v X′, F v Y′, X v X′, Y v Y′};

we will show:

• there is a directed path from vk to vm in G iff there exists a UCQ-representation
for T1 underM = (Σ1, Σ2, T12).

Indeed, using Lemma 7.2.8, there exists a representation iff condition (II) is satisfied.
By the structure of T1 ∪ T12 one can see that it is the case iff inclusions X v Y′ is
representable in T1 andM by X′ v Y′, i.e., iff T1 ∪ T12 |= S v X′ implies T1 ∪ T12 |=

110 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

S v Y′, and that holds iff T1 |= S v F, which is the case iff there exists a path from vk
to vm in G. This completes the proof of the lower bound.

To show the upper bound, we prove that conditions (I) – (III) of Lemma 7.2.8 can
be checked in NLOGSPACE. First, there are syntactic conditions that allow to check
whether an inclusion is representable in T1 and M, and whether a pair is target con-
tradictable in T1 and M (see Propositions 7.2.13, 7.2.14, 7.2.15 and 7.2.16). In fact,
these conditions can be checked using the algorithm, based on directed graph reacha-
bility solving procedure, similar to the proof of Theorem 7.1.8. The only new case is
condition (III); to verify for a T1 ∪ T12-consistent concept B over Σ1 and a role R such
that T1 ∪T12 |= B @ ∃R, that there exists a generating pass π = 〈C0, . . . Cn〉 for (B, R)
in T1 andM, we can use the following procedure, running in NLOGSPACE. First, we
take C0 = B and decide, if the pass ends here (i.e., n = 0). If we decided so, it only
remains verify (cpass). This verification can be performed in NLOGSPACE, similarly
to the method described in the proof of Theorem 7.1.8. If, on the other hand, we de-
cide, that the pass continues, we “guess” C1 = ∃Q− for some role Q, and verify that
(rchain) and (cpass) are satisfied. Now, if we decide that the pass stops, it remains to
verify (rpass). If, on the contrary, we decide that the pass continues, we can “forget” C0,
“guess” C2, and proceed with it in the same way, as we did with C1. Finally, when we
reach the concept Cn, such that the algorithm decides to stop, it remains to verify (cpass).
It should be clear that whenever a generating pass π = 〈C0, . . . Cn〉 for (B, R) in T1 and
M exists, we can find it by the above non-determinictic procedure.

Below, we provide propositions that establish the syntactic conditions for checking
whether an inclusion is representable and whether a pair is target contradictable.

Proposition 7.2.13. For a concept B over Σ1 and C′ over Σ2, inclusion B v C′ is
representable in T1 andM if and only if there exists B′ over Σ2 such that T12 |= B v B′,
and for each T1-consistent concept D over Σ1:

(C I N C L) T1 ∪ T12 |= D v B′ implies T1 ∪ T12 |= D v C′,

(M RO L E) if B′ = ∃Q′− for some role Q′ over Σ2, then T1 ∪ T12 |= D v ∃Q′ implies
T1 ∪ T12 |= D @ ∃Q for some role Q s.t. T1 ∪ T12 |= {Q v Q′, ∃Q− v C′}.

In this case, B v C′ is representable by B′ v C′.

Proof. (⇐) Let B be a concept over Σ1 and C′ over Σ2, B′ 6= C′, and conditions (cincl)
and (mrole) are satisfied. We show inclusion B v C′ is representable in T1 andM by
B′ v C′. Take T2 a reserved UCQ-representation for T1 under M: we prove T ′2 =

T2 ∪ {B′ v C′} is a reserved UCQ-representation by showing the following is satisfied:

• for each T1-consistent and T ′2 ∪ T12-inconsistent pair of concepts or roles (X, Y),
it follows (X, Y) is T1 ∪ T12-inconsistent, which corresponds to the⇐ direction
of condition (i) of Lemma 7.1.1,

• for each T1 ∪ T12-consistent concept or role X over Σ1 and each X′ over Σ2,
T ′2 ∪ T12 |= X v X′ implies T1 ∪ T12 |= X v X′, which corresponds to the⇐
direction of condition (ii) of Lemma 7.1.1, and

• condition (iv) of Lemma 7.1.1.

7.2 T H E N O N - E M P T I N E S S P RO B L E M 111

Observe that from T2 is a reserved UCQ-representation of T1 underM, it follows the
above conditions are already satisfied for T2, T1 andM.

First, for condition (ii) of Lemma 7.1.1, let D be a T1 ∪ T12-consistent concept over
Σ1 and E′ a concept over Σ2 such that T ′2 ∪ T12 |= D v E′ and T2 ∪ T12 6|= D v E′.
Hence, there exists D′ over Σ2 such that T2 |= {D′ v B′, C′ v E′} and T12 |=
D v D′. Since T2 is a reserved UCQ-representation and T2 ∪ T12 |= D v B′, it
follows T1 ∪ T12 |= D v B′, so there exists B1 over Σ1 such that T1 |= D v B1 and
T12 |= B1 v B′. Next, B′, C′ satisfy condition (cincl), therefore T1 ∪ T12 |= B1 v C′,
so there exists C over Σ1 such that T1 |= B1 v C and T12 |= C v C′. And we can
continue by analogy. To summarize, there exist B1, C and E over Σ1 such that

T1 |= {D v B1, B1 v C, C v E} (16)

and T12 |= {B1 v B′, C v C′, E v E′}. Finally, we obtain that T1 ∪ T12 |= D v E′.

Next, for condition (i), let (D1, D2) be a pair of T1-consistent, T2 ∪ T12-consistent
and T ′2 ∪ T12-inconsistent concepts. For the sake of contradiction, assume (D1, D2) is
T1 ∪ T12-consistent (hence, each Di is T1 ∪ T12-consistent).

Suppose both Di are T ′2 ∪ T12-consistent. Without loss of generality, we may assume
that for some D′ over Σ2, T ′2 ∪ T12 |= {D1 v D′, D2 v ¬D′}. From condition ii, it
follows there exists D over Σ1 such that T1 |= D1 v D and T12 |= D v D′. Consider
the following cases:
1) T2 ∪ T12 |= D2 v ¬D′ (and T2 ∪ T12 6|= D1 v D′). Then, either there exist
D′2, F′ over Σ2 such that T2 |= {D′2 v F′, F′ v ¬D′} and T12 |= D2 v D′2 (see the
diagram below), or T12 |= D2 v ¬D′. In both cases, (D, D2) is T2 ∪ T12-inconsistent,
so it follows (D, D2) is T1 ∪ T12-inconsistent. In view of T1 |= D1 v D, we obtain
contradiction with the assumption (D1, D2) is T1 ∪ T12-consistent.
2) T2 ∪ T12 6|= D2 v ¬D′. Then, there exists F′ over Σ2 such that T ′2 ∪ T12 |= D2 v F′

and T2 |= F′ v ¬D′ (note, T2 ∪ T12 6|= D2 v F′). From condition ii, it follows
there exists F over Σ1 such that T1 |= D2 v F and T12 |= F v F′. Now, as (D, F)
is T2 ∪ T12-inconsistent, it follows (D, F) is T1 ∪ T12-inconsistent, which in view of
T1 |= {D1 v D, D2 v F} contradicts the assumption (D1, D2) is T1 ∪ T12-consistent.

T1
D1

D2

D

T2
D′1

D′

D′2

F′

(1)

T1
D2

D1

F

D

T2
D′2

D′

D′1

F′

(2)

Suppose one of Di is T ′2 ∪ T12-inconsistent. Consider the following two cases by (tin-
consc):
1) for some D′ over Σ2, T ′2 ∪ T12 |= {Di v D′, Di v ¬D′}. The contradiction is
obtained similarly as in the case both Di are T ′2 ∪ T12-consistent.
2) there exist n ≥ 1 and distinct roles S′1, . . . , S′n such that T ′2 ∪ T12 |= {Di @
∃S′1, ∃S′−j @

 ∃S′j+1} and T ′2 ∪ T12 |= S′n v R′ u Q′ for R′ v ¬Q′ ∈ T2, or
T ′2 ∪ T12 |= ∃S′−n v E′ u F′ for E′ v ¬F′ ∈ T2.

If n = 1 and S′1 is a role over Σ1 (i.e., Di = ∃S′1 and S′1 is T1 ∪ T12-consistent), then
from condition ii, it follows T1 ∪ T12 |= S′1 v R′ uQ′ or T1 ∪ T12 |= ∃S′−1 v E′ u F′.

112 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

In the former case, there exist roles R, Q over Σ1 such that T1 |= S′1 v RuQ and T12 |=
{R v R′, Q v Q′}; then (R, Q) is T2 ∪ T12-inconsistent, since T2 is a reserved UCQ-
representation, it follows (R, Q) is T1 ∪ T12-inconsistent. In the latter case, there exist
concepts E, F over Σ1 such that T1 |= ∃S′−1 v E u F and T12 |= {E v E′, F v F′};
then (E, F) is T2 ∪ T12-inconsistent, hence (E, F) is T1 ∪ T12-inconsistent. In any case
we obtain S′1 is T1 ∪ T12-inconsistent, which contradicts the assumption Di is T1 ∪ T12-
consistent.

If n = 1 and S′1 is a role over Σ2, assume T2 ∪ T12 6|= Di v ∃S′1. From condition (ii)
it follows T1 ∪ T12 |= Di v ∃S′1, so there exists D over Σ1 such that T1 |= Di v
D and T12 |= D v ∃S′1. Then T2 ∪ T12 |= D @

 ∃T′ for some role T′ (possibly
coinciding with S′1) such that T2 ∪ T12 |= T′ v S′1. In the case T2 ∪ T12 |= S′1 v
R′ u Q′ or T2 ∪ T12 |= ∃S′−1 v E′ u F′, since T2 is a reserved UCQ-representation,
from condition (iv) it follows there exists a role T such that T1 ∪ T12 |= D @ ∃T, and
T1 ∪ T12 |= T v R′ u Q′ or T1 ∪ T12 |= ∃T− v E′ u F′. Again, we obtain that D is
T1 ∪ T12-inconsistent, which contradicts the assumption Di is T1 ∪ T12-consistent.

Assume now T2 ∪ T12 6|= ∃S′−1 v E′ u F′ (the case T2 ∪ T12 6|= S′1 v R′ u Q′ is
not possible). Then it follows T2 |= {∃S′−1 v B′, C′ v E′} and/or T2 |= {∃S′−1 v
B′, C′ v F′}, and the role T above is such that T1 ∪ T12 |= ∃T− v B′. If T is over
Σ1, then T1 |= ∃T− v B1 and T12 |= B1 v B′ for some concept B1 over Σ1, next we
have that T ′2 ∪ T12 |= B1 v E′ u F′, so from condition (ii) it follows T1 ∪ T12 |= B1 v
E′ u F′, and as before B1 is T1 ∪ T12-inconsistent, which contradicts the assumption Di
is T1 ∪T12-consistent. If T is over Σ2, then B′ = ∃T− = ∃S−1 , and by (mrole) it follows
there exists S1 such that T1 ∪ T12 |= D @ ∃S1 and T1 ∪ T12 |= {S1 v S′1, ∃S−1 v
C′}. Since ∃S′−1 6= C′, it follows S1 is over Σ1, and there exists C over Σ1 such that
T1 |= ∃S−1 v C and T12 |= C v C′. Now, we have that T ′2 ∪ T12 |= C v E′ u F′, from
condition (ii) it follows T1∪T12 |= C v E′ u F′, so as before C is T1∪T12-inconsistent,
which contradicts the assumption Di is T1 ∪ T12-consistent.

For n > 1, we can continue reasoning as for the case n = 1 to obtain a contradic-
tion. Finally, we conclude that Di is T1 ∪ T12-inconsistent, hence (D1, D2) is T1 ∪ T12-
inconsistent.

Let (S1, S2) be a pair of T1-consistent, T2 ∪ T12-consistent and T ′2 ∪ T12-inconsistent
roles (this is the only non-trivial case). Since T ′2 extends T2 with a concept inclusion, we
have that there exist D1, D2 covering {∃S1, ∃S2} or {∃S−1 , ∃S−2 } such (D1, D2) is T ′2 ∪
T12-inconsistent and T2 ∪ T12-consistent. By reasoning as above, we obtain (D1, D2) is
T1 ∪ T12-inconsistent, therefore (S1, S2) is T1 ∪ T12-inconsistent.

To show condition (iv) of Lemma 7.1.1 assume a T1 ∪ T12-consistent concept D over
Σ1 and a role R such that T ′2 ∪ T12 |= D @ ∃R and T2 ∪ T12 6|= D @ ∃R. Hence, R
is a role over Σ2, and there exists D′ over Σ2 such that T2 |= {D′ v B′, C′ v ∃R}
and T12 |= D v D′. As before, we can conclude there exists (a T1 ∪ T12-consistent) C
over Σ1 such that T12 |= C v C′ (and T1 |= D v C). It means T2 ∪ T12 |= C v ∃R,
therefore either T2 ∪ T12 |= C @ ∃R, or C = ∃Q for some role Q over Σ1 such
that T2 ∪ T12 |= Q v R, and T2 ∪ T12 |= C @ ∃Q. Since T2 is a reserved UCQ-
representation, it follows there exists z ∈ ∆G〈T1∪T12,{C(o)}〉 such that

t
G〈T2∪T12,{C(o)}〉
Σ2

(x) ⊆ t
G〈T1∪T12,{C(o)}〉
Σ2

(z) and r
G〈T2∪T12,{C(o)}〉
Σ2

(o, x) ⊆ r
G〈T1∪T12,{C(o)}〉
Σ2

(o, z),

with x = w[R] or x = w[Q]. Observe that R ∈ r
G〈T2∪T12,{C(o)}〉
Σ2

(o, x), which implies that
z = w[S] for some role S such that T1 ∪ T12 |= C v ∃S. Now, notice that T1 ∪ T12 |=

7.2 T H E N O N - E M P T I N E S S P RO B L E M 113

D v ∃S: we obtain that o 〈T1∪T12,{D(o)}〉 w[T] for some role T (possibly coinciding
with S) such that T1 ∪ T12 |= T v S. Finally, we have that

t
G〈T ′2∪T12,{D(o)}〉
Σ2

(w[R]) ⊆ t
G〈T1∪T12,{D(o)}〉
Σ2

(w[T]),

r
G〈T ′2∪T12,{D(o)}〉
Σ2

(o, w[R]) ⊆ r
G〈T1∪T12,{D(o)}〉
Σ2

(o, w[T]),

so we take y in condition (ii) to be equal to w[T].
Assume now B′ = ∃R− for some role R over Σ2, and D is a T1 ∪ T12-consistent

concept over Σ1 such that T2 ∪T12 |= D @ ∃R. By condition (ii), it follows T1 ∪T12 |=
D v ∃R. The interesting case to consider is t

G〈T2∪T12,{D(o)}〉
Σ2

(w[R]) = {∃R−} (hence,

r
G〈T2∪T12,{D(o)}〉
Σ2

(o, w[R]) = {R}), as for T2 it is enough to take y ∈ ∆G〈T1∪T12,{D(o)}〉 equal
to w[S] such that T1 ∪ T12 |= D @ ∃S and T1 ∪ T12 |= S v R (such S exists: we take
S equal to R if T1 ∪ T12 |= D @ ∃R). However, given the axiom ∃R− v C′ in T ′2 ,

we have t
G〈T ′2∪T12,{D(o)}〉
Σ2

(w[R]) ⊇ {∃R−, C′} (note, still r
G〈T ′2∪T12,{D(o)}〉
Σ2

(o, w[R]) = {R}).
As B′ and C′ satisfy (mrole) and T1 ∪ T12 |= D v ∃R, it follows there exists S such
that T1 ∪ T12 |= D @

 ∃S and T1 ∪ T12 |= {S v R, ∃S− v C′}; moreover by
C′ 6= ∃R− and the structure of T1 ∪ T12 it follows S is over Σ1. From the latter we
obtain a role Q over Σ1 such that T1 |= S v Q and T12 |= Q v R, moreover ∃Q− and
Q are T1 ∪ T12-consistent. Now, assume T2 |= ∃R− v E′; then T2 ∪ T12 |= ∃Q− v
E′, and since T2 satisfies condition (ii) it follows T1 ∪ T12 |= ∃Q− v E′, therefore

E′ ∈ t
G〈T1∪T12,{D(o)}〉
Σ2

(w[S]). Thus t
G〈T ′2∪T12,{D(o)}〉
Σ2

(w[R]) ⊆ t
G〈T1∪T12,{D(o)}〉
Σ2

(w[S]), and we
take y = w[S] to satisfy condition (iv) of Lemma 7.1.1.

(⇒) Suppose inclusion B v C′ is representable in T1 and M by a target axiom
α. Then T2 = {α} is a reserved UCQ-representation and T2 ∪ T12 |= B v C′. If
T12 |= B v C′, we take B′ equal to C′: obviously, (cincl) and (mrole) are satisfied.
Now, assume T12 6|= B v C′. Then it must be the case α is of the form D′ v C′ and
T12 |= B v D′ for some concept D′ over Σ2. So we take B′ equal to D′, and prove
below (cincl) and (mrole) are satisfied.

For (cincl), let T1 ∪ T12 |= D v B′ for a T1 ∪ T12-consistent concept D over Σ1. It
follows T1 |= D v B1 and T12 |= B1 v B′ for some concept B1 over Σ1. Consequently,
T2 ∪ T12 |= B1 v C′, and as T2 is a reserved UCQ-representation, we obtain that
T1 ∪ T12 |= B1 v C′. Finally, we proved that T1 ∪ T12 |= D v C′.

For (mrole), assume B′ is of the form ∃Q′− for some role Q′ over Σ2, and T1 ∪
T12 |= D v ∃Q′. As above, there exists B1 over Σ1 such that T12 |= B1 v ∃Q′. Then,
T2 ∪ T12 |= B1 @ ∃S′ for some role S′ (possibly coinciding with Q′) such that T2 ∪
T12 |= S′ v Q′. By condition (iv) of Lemma 7.1.1 and Q′ ∈ r

G〈T2∪T12,{B1(o)}〉
Σ2

(o, w[S′]),
there exists a role S such that

t
G〈T2∪T12,{B1(o)}〉
Σ2

(w[S′]) ⊆ t
G〈T1∪T12,{B1(o)}〉
Σ2

(w[S]),

r
G〈T2∪T12,{B1(o)}〉
Σ2

(o, w[S′]) ⊆ r
G〈T1∪T12,{B1(o)}〉
Σ2

(o, w[S]).

It implies, T1 ∪ T12 |= B1 @ ∃S. Further, since T1 ∪ T12 |= D v B1, we have that
T1 ∪T12 |= D @ ∃Q for some role Q (possibly coinciding with S) such that T2 ∪T12 |=
Q v S. It is straightforward to verify that T1 ∪ T12 |= {Q v Q′, ∃Q− v C′}.

114 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

Proposition 7.2.14. For a role R over Σ1 and Q′ over Σ2, inclusion R v Q′ is repre-
sentable in T1 andM if and only if there exists R′ over Σ2 s.t. T12 |= R v R′, and

(R I N C L) for each T1-consistent role S over Σ1, T1 ∪ T12 |= S v R′ implies
T1 ∪ T12 |= S v Q′;

(E X I N C L) B′, C′ satisfy conditions (cincl) and (mrole) for B′ = ∃R′, C′ = ∃Q′, and
B′ = ∃R′−, C′ = ∃Q′−.

Then, R v Q′ is representable by R′ v Q′.

Proof. (⇐) Let R be a role over Σ1 and Q′ over Σ2, R′ 6= Q′, and conditions (rincl) and
(exincl) are satisfied. We show inclusion R v Q′ is representable in T1 andM by R′ v
Q′. Similarly, to the proof of Proposition 7.2.13, take T2 a reserved UCQ-representation
for T1 underM: we prove T ′2 = T2 ∪ {R′ v Q′} is a reserved UCQ-representation by
showing the direction of condition (i) stating that for each T1-consistent and T ′2 ∪ T12-
inconsistent pair of concepts or roles (X, Y), (X, Y) is T1 ∪ T12-inconsistent, the ⇐
direction of condition (ii), and condition (iv) of Lemma 7.1.1 are satisfied.

Satisfaction of conditions (ii) and (i) of Lemma 7.1.1 can be shown by analogy with
the corresponding proofs in Proposition 7.2.13. Note, here for concept inclusions/dis-
jointness assertions we use the fact that ∃R′, ∃Q′ and ∃R′−, ∃Q′− satisfy (cincl), and
for role inclusions/disjoint-ness assertions we use the fact R′, Q′ satisfy (rincl).

For condition (iv), the interesting case to consider is T2 ∪ T12 |= D @ ∃R′, with D a
T1 ∪ T12-consistent concept over Σ1, such that

t
G〈T2∪T12,{D(o)}〉
Σ2

(w[R]) = {∃R′−} and r
G〈T2∪T12,{D(o)}〉
Σ2

(o, w[R]) = {R′}.

Now, given R′ v Q′ ∈ T ′2 , we have that

t
G〈T ′2∪T12,{D(o)}〉
Σ2

(w[R]) ⊇ {∃R′−, ∃Q′−} and r
G〈T ′2∪T12,{D(o)}〉
Σ2

(o, w[R]) ⊇ {R′, Q′}.

By condition (ii), it follows T1 ∪ T12 |= D v ∃R′. As ∃R′− and ∃Q′− satisfy (mrole)
and T1 ∪ T12 |= D v ∃R′, it follows there exists S such that T1 ∪ T12 |= D @ ∃S and
T1 ∪ T12 |= {S v R′, ∃S− v ∃Q′−}; moreover by ∃Q′− 6= ∃R′− and the structure
of T1 ∪ T12 it follows S is over Σ1. From the latter we obtain a role Q over Σ1 such
that T1 |= S v Q and T12 |= Q v R, moreover ∃Q− and Q are T1 ∪ T12-consistent.
Now, assume T2 |= ∃R′− v E′; then T2 ∪ T12 |= ∃Q− v E′, and since T2 satisfies

condition (ii) it follows T1 ∪ T12 |= ∃Q− v E′, therefore E′ ∈ t
G〈T1∪T12,{D(o)}〉
Σ2

(w[S]).

Similarly, for T′ such that T2 |= R′ v T′, we can show T′ ∈ r
G〈T1∪T12,{D(o)}〉
Σ2

(o, w[S]).
Thus, we take y = w[S] to satisfy condition (iv) of Lemma 7.1.1.

(⇒) Suppose inclusion R v Q′ is representable in T1 and M by a target axiom
α. Then T2 = {α} is a reserved UCQ-representation and T2 ∪ T12 |= R v Q′. If
T12 |= R v Q′, we take R′ equal to Q′: obviously, (rincl) and (exincl) are satisfied.
Now, assume T12 6|= R v Q′. Then it must be the case α is of the form S′ v Q′ and
T12 |= R v S′ for some role S′ over Σ2. So we take R′ equal to S′, then (rincl) is
shown similarly to (cincl) in the proof of Proposition 7.2.13, and satisfaction of (exincl)
is shown exactly as in the proof of⇒ of Proposition 7.2.13 for B′ = ∃R′, C′ = ∃Q′,
and B′ = ∃R′−, C′ = ∃Q′−.

7.2 T H E N O N - E M P T I N E S S P RO B L E M 115

Proposition 7.2.15. For roles R1, R2 over Σ1, (R1, R2) is target contradictable in T1

andM iff either for {R, Q} ⊆ {R1, R2} there exists R′ over Σ2 such that

(A) T12 |= R v R′, and Q v ¬R′ ∈ T12, or there is Q′ over Σ2 s.t. T12 |= Q v Q′ and
(R I N C O N S) for each T1 ∪ T12-consistent pair of roles S1, S2 over Σ1 it is not the

case T1 ∪ T12 |= {S1 v R′, S2 v Q′};
(N O G E N) for each T1 ∪ T12-consistent concept D over Σ1 and each role S such

that T1 ∪ T12 |= D @ ∃S, it is neither the case T1 ∪ T12 |= S v R′ uQ′, nor
T1 ∪ T12 |= S v R′− uQ′−,

(B) or T12 |= R v ¬R′ and inclusion Q v R′ is representable in T1 andM;

or for {B, C} ⊆ {∃R1, ∃R2} or {∃R−1 , ∃R−2 } there exists B′ over Σ2 such that

(C) T12 |= B v B′, and C v ¬B′ ∈ T12, or there is C′ over Σ2 s.t. T12 |= C v C′ and
(C I N C O N S) for each T1 ∪ T12-consistent pair of concepts D1, D2 over Σ1 it is

not the case T1 ∪ T12 |= {D1 v B′, D2 v C′};
(N O R E N D) for each T1 ∪ T12-consistent concept D over Σ1 and each role S such

that T1 ∪ T12 |= D @ ∃S it is not the case T1 ∪ T12 |= ∃S− v B′ u C′,
(D) or T12 |= B v ¬B′ and inclusion C v B′ is representable in T1 andM;

Then (R1, R2) is target contradictable by either R′ v R′, or Q′ v ¬R′ in (A), by axiom
α, where Q v R′ is representable by α in (B), by either B′ v B′, or C′ v ¬B′ in (C),
and by axiom α, where C v B′ is representable by α in (D).

Proof. (⇐) Let R1, R2 be roles over Σ1 and one of the conditions (A), (B), (C), or (D) is
satisfied. We show (R1, R2) is target contradictable by α given by each of the conditions.
Take T2 a reserved UCQ-representation for T1 underM: we prove T ′2 = T2 ∪ {α} is
a reserved UCQ-representation, by showing conditions (i), (ii), and (iv) of Lemma 7.1.1
are satisfied (only the required directions, see the proof of Proposition 7.2.13). That
(R1, R2) is T ′2 ∪ T12-inconsistent, follows immediately from the shape of α and T12 in
each of the cases. Observe that if α is given by one of the conditions (B) or (D), then
T ′2 is a reserved UCQ-representation follows from the proof of Propositions 7.2.13 and
7.2.14. As for α given by conditions (A) or (C), it should be clear that conditions (ii) and
(iv) of Lemma 7.1.1 are satisfied, as disjointness assertions do not affect entailments of
the concept and role inclusions. Therefore, below we show T ′2 satisfies condition (i).

Assume condition (A) is satisfied, and α = Q′ v ¬R′ (the case α = R′ v R′ is
trivial), hence T12 6|= Q v ¬R′. Let (D1, D2) be a pair of T1-consistent, T2 ∪ T12-
consistent and T ′2 ∪ T12-inconsistent concepts. The case both Di is T ′2 ∪ T12-consistent
is not possible due to the shape of α. Then some Di is T ′2 ∪ T12-inconsistent, and by
(tinconsc) it follows there exist n ≥ 1 and distinct roles S′1, . . . , S′n such that T2 ∪T12 |=
{Di @ ∃S′1, ∃S′−j @

 ∃S′j+1} and T2 ∪ T12 |= S′n v R′ u Q′ or T2 ∪ T12 |= S′n v
R′− uQ′−. In the following, we consider only T2 ∪ T12 |= S′n v R′ uQ′.

For the sake of contradiction, assume Di is T1 ∪ T12-consistent. If n = 1 and S′1 is a
role over Σ1 (i.e., Di = ∃S′1 and S′1 is T1 ∪T12-consistent), then we obtain contradiction
with (rincons) rised from the assumption Di is T1 ∪ T12-consistent. If n = 1 and S′1 is a
role over Σ2, then since T2 is a reserved UCQ-representation and T2 ∪ T12 |= Di @ ∃S′1,
by condition (iv), we obtain a role S1 such that T1 ∪ T12 |= Di @ ∃S1, and T1 ∪ T12 |=
S1 v R′ uQ′: contradiction with (nogen).

116 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

For n > 1, inductively using condition (iv), we obtain roles S1, . . . , Sn−1 over Σ1 and
Sn s.t. T1 ∪ T12 |= {Di @ ∃S1, ∃S−j @ ∃Sj+1}, and T1 ∪ T12 |= Sn v R′ u Q′. Then
(nogen) implies that ∃S−n−1 is T1 ∪ T12-inconsistent, which contradicts the assumption
Di is T1 ∪ T12-consistent. Finally, we conclude that Di is T1 ∪ T12-inconsistent, hence
(D1, D2) is T1 ∪ T12-inconsistent.

Let (S1, S2) be a pair of T1-consistent, T2 ∪ T12-consistent and T ′2 ∪ T12-inconsistent
roles. For the sake of contradiction, assume (S1, S2) is T1 ∪ T12-consistent (and each of
Si is T1 ∪ T12-consistent).

Suppose both Si is T ′2 ∪ T12-consistent. From the shape of α, without loss of gener-
ality, we may assume that T ′2 ∪ T12 |= {S1 v R′, S2 v Q′}. From condition (ii), we
obtain T1 ∪ T12 |= {S1 v R′, S2 v Q′}, which contradicts (rincons).

Suppose one of Si is T ′2 ∪ T12-inconsistent. Then by (tinconsr) either T2 ∪ T12 |=
Si v R′ u Q′ or T2 ∪ T12 |= Si v R′− u Q′−, or D is T ′2 ∪ T12-inconsistent for
D = ∃Si or D = ∃S−i . In the latter case, we obtain contradiction as in the case (D1, D2)

is T ′2 ∪ T12-inconsistent. In the former case, from condition (ii), it follows T1 ∪ T12 |=
Si v R′ uQ′ or T1 ∪ T12 |= Si v R′− uQ′−, which contradicts (rincons). Finally, we
conclude (S1, S2) is T1 ∪ T12-inconsistent.

Assume condition (C) is satisfied, and α = C′ v ¬B′ (the case α = B′ v B′ is
trivial), hence T12 6|= C v ¬B′. Let (D1, D2) be a pair of T1-consistent, T2 ∪ T12-
consistent and T ′2 ∪ T12-inconsistent concepts. For the sake of contradiction, assume
(D1, D2) is T1 ∪ T12-consistent (and each of Di is T1 ∪ T12-consistent).

Suppose both Di is T ′2 ∪ T12-consistent. From the shape of α, without loss of gener-
ality, we may assume that T2 ∪ T12 |= {D1 v B′, D2 v C′}. From condition (ii), it
follows T1 ∪ T12 |= {D1 v B′, D2 v C′}: contradiction with (cincons).

Suppose one of Di is T ′2 ∪ T12-inconsistent. By (tinconsc), consider T2 ∪ T12 |=
Di v B′ u C′. From condition (ii), it follows T1 ∪ T12 |= Di v B′ u C′: contradiction
with (cincons). Now, consider the case there exist n ≥ 1 and distinct roles S′1, . . . , S′n
such that T2 ∪ T12 |= {Di @ ∃S′1, ∃S′−j @

 ∃S′j+1} and T2 ∪ T12 |= ∃S′−n v B′ u
C′. Inductively using condition (iv), we obtain roles S1, . . . , Sn−1 over Σ1 and Sn s.t.
T1 ∪ T12 |= {Di @ ∃S1, ∃S−j @ ∃Sj+1}, and T1 ∪ T12 |= ∃S−n v B′ u C′. Then
(norend) implies that ∃S−n−1 (or Di if n = 1) is T1 ∪ T12-inconsistent, which contradicts
the assumption Di is T1 ∪ T12-consistent. Finally, we conclude that Di is T1 ∪ T12-
inconsistent, hence (D1, D2) is T1 ∪ T12-inconsistent.

Let (S1, S2) be a pair of T1-consistent, T2 ∪ T12-consistent and T ′2 ∪ T12-inconsistent
roles. From the shape of α, it follows D is T ′2 ∪ T12-inconsistent, for D = ∃Si or
D = ∃S−i and i ∈ {1, 2}. It can be shown D is T1 ∪ T12-inconsistent as above.

(⇒) Suppose pair (R1, R2) is target contradictable in T1 and M by a target axiom
α. If (R1, R2) is T12-inconsistent, then there exist R, Q ∈ {R1, R2} and R′ over Σ2

such that T12 |= {R v R′, Q v ¬R′} (hence, (A) is satisfied), or there exist B, C in
{∃R1, ∃R2} or in {∃R1, ∃R2} and B′ over Σ2 such that T12 |= {B v B′, C v ¬B′}
(hence, (C) is satisfied).

Assume (R1, R2) is T12-consistent. Then α is a non-trivial axiom, T2 = {α} is a
reserved UCQ-representation, and (R1, R2) is T2 ∪ T12-inconsistent.

Suppose α is a role disjointness assertion S1 v ¬S2. Then it follows there exist
R, Q ∈ {R1, R2} and S, T ∈ {S1, S2} such that T12 |= {R v S, Q v T}. So we set R′

equal to S and Q′ equal to T. We prove (rincons) and (nogen) are satisfied. For (rincons),

7.2 T H E N O N - E M P T I N E S S P RO B L E M 117

assume a T1 ∪ T12-consistent pair of roles S1, S2 over Σ1 such that T1 ∪ T12 |= {S1 v
R′, S2 v Q′}. It follows there exist S11, S22 over Σ1 such that T1 |= {S1 v S11, S2 v
S22} and T12 |= {S11 v R′, S22 v Q′}. Next, (S11, S22) is T2 ∪ T12-inconsistent, and
since T2 is a reserved UCQ-representation, it follows (S11, S22) is T1 ∪ T12-inconsistent,
which contradicts (S1, S2) is T1 ∪ T12-consistent. Hence, it cannot be the case T1 ∪
T12 |= {S1 v R′, S2 v Q′}. For (nogen), assume a T1 ∪ T12-consistent concept D
over Σ1 such that T1 ∪ T12 |= D @

 ∃S and T1 ∪ T12 |= S v R′ u Q′. If S is over
Σ1, then as above, we obtain a contradiction with D being T1 ∪ T12-consistent. If S is
over Σ2, it follows S = R′ = Q′, and there exists a concept D1 over Σ1 such that
T1 |= D v D1 and T12 |= D1 v ∃S. As above, (D1, D1) is T2 ∪ T12-inconsistent, and
since T2 is a reserved UCQ-representation, it follows (D1, D1) is T1 ∪ T12-inconsistent,
which contradicts D is T1 ∪ T12-consistent. Hence, it cannot be the case T1 ∪ T12 |=
S v R′ u Q′. In a similar way we obtain a contradiction if assume T1 ∪ T12 |= S v
R′− uQ′−. Thus, (A) is satisfied.

Suppose α is a role inclusion assertion S1 v S2. Then it follows there exist R, Q ∈
{R1, R2} such that T12 |= {R v ¬S2, Q v S1}. So we set R′ equal to S2, the proof
Q v R′ is representable by S1 v R′ is similar to the proof of⇒ of Proposition 7.2.14.
Thus, (B) is satisfied.

Suppose α is a concept disjointness assertion D1 v ¬D2. Then there exist B, C in
{∃R1, ∃R2} or {∃R−1 , ∃R−2 } and D, E ∈ {D1, D2} such that T12 |= {B v D, C v E}.
So we set B′ equal to D and C′ equal to E. We can prove (cincons) and (norend) are
satisfied by analogy with the proof of (rincons) and (nogen). Thus, (C) is satisfied.

Suppose α is a concept inclusion assertion D1 v D2. Then it follows there exist B, C
in {∃R1, ∃R2} or {∃R−1 , ∃R−2 } such that T12 |= {B v ¬D2, C v D1}. So we set B′

equal to D2, the proof C v B′ is representable by D1 v B′ is similar to the proof of⇒
of Proposition 7.2.13. Thus, (D) is satisfied.

Proposition 7.2.16. For concepts B1, B2 over Σ1, (B1, B2) is target contradictable in T1

andM if either for {B, C} ⊆ {B1, B2} there exists B′ over Σ2 such that

(E) T12 |= B v B′, and either C v ¬B′ ∈ T12, or there exists C′ over Σ2 s.t. T12 |=
C v C′ and
(C I N C O N S) for each T1 ∪ T12-consistent pair of concepts D1, D2 over Σ1 it is

not the case T1 ∪ T12 |= {D1 v B′, D2 v C′};
(N O R E N D) for each T1 ∪ T12-consistent concept D over Σ1 and each role S such

that T1 ∪ T12 |= D @ ∃S it is not the case T1 ∪ T12 |= ∃S− v B′ u C′,

(F) or T12 |= B v ¬B′ and inclusion C v B′ is representable in T1 andM;

or B1 = ∃R or B2 = ∃R for a role R, and

(G) (R, R) is target contradictable in T1 andM.

Then (B1, B2) is target contradictable by either B′ v B′ or C′ v ¬B′ in (E), by axiom
α, where C v B′ is representable by α in (F), and by axiom α such that (R, R) is target
contradictable by α in (G).

Proof. The proof is similar to the proof of Proposition 7.2.15.

This concludes the proof of Theorem 7.2.12.

118 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

7.2.1 Computing UCQ-representations

We conclude with an algorithm for computing a UCQ-representation for a given source
TBox T1 and a mapping M, which can be extracted from the proof of Lemma 7.2.8.
The algorithm is presented in Figure 14.

Algorithm COMPUTEUCQREPRESENTATION(M, T1)

Input: mappingM = (Σ1, Σ2, T12) and TBox T1 over Σ1

Output: TBox T2 over Σ2 if T1 is UCQ-representable underM, nothing otherwise.

T2 := {}.
for each T1-consistent pair of concepts B, C over Σ1

if (B, C) is T1 ∪ T12-inconsistent
if (B, C) is target contradictable in T1 andM
T2 = T2 ∪ {α}, where (B, C) is target contradictable by α.

else return nothing.

for each T1-consistent pair of roles R, S over Σ1

if (R, S) is T1 ∪ T12-inconsistent
if (R, S) is target contradictable in T1 andM
T2 := T2 ∪ {α}, where (R, S) is target contradictable by α.

else return nothing.

for each T1-consistent concept B over Σ1 and concept B′ over Σ2

if T1 ∪ T12 |= B v B′

if B v B′ is representable in T1 andM
T2 := T2 ∪ {α}, where B v B′ is representable by α.

else return nothing.

for each T1-consistent role R over Σ1 and role R′ over Σ2

if T1 ∪ T12 |= R v R′

if R v R′ is representable in T1 andM
T2 := T2 ∪ {α}, where R v R′ is representable by α.

else return nothing.

return T2.

Figure 14: Algorithm COMPUTEUCQREPRESENTATION.

7.3 W E A K U C Q - R E P R E S E N TA B I L I T Y

In this final section we show how the
weak UCQ-representability problem can
be solved in NLOGSPACE-complete rely-
ing on the procedure for checking the non-
emptiness problem.

Translation

ABox

Decision problem

universal solution

universal UCQ-solution

UCQ-representation

sim
ple ABoxes

extended ABoxes

membership

non-emptiness

weak UCQ-representability

7.3 W E A K U C Q - R E P R E S E N TA B I L I T Y 119

We start with some example of weakly UCQ-representable TBoxes.

Example 7.3.1. Assume that M = (Σ1, Σ2, T12), where Σ1 = {A(·), B(·), C(·)},
Σ2 = {A′(·), B′(·), C′(·)} and T12 = {B v B′}. Moreover, let T1 = {A v B}. It
was shown in Example 4.3.1-(1), that T1 is not UCQ-representable under M. By the
characterization in Lemma 7.2.8, condition (II) is violated: there is no way to imply
by a target TBox and T12 the axiom A v B′ implied by T1 ∪ T12. So one can simply
enrich the mapping by exactly this inclusion: consider M? = (Σ1, Σ2, T ?

12), where
T ?

12 = T12 ∪ {A v B′}, then T1 is UCQ-representable under M? and T2 = {} is a
UCQ-representation of T1 underM?.

A

C

B

A′

C′

B′

Hence T1 is weakly UCQ-representable underM.

Example 7.3.2. Assume that M = ({A(·), B(·), C(·), D(·)}, {A′(·), B′(·)}, T12),
where T12 = {A v A′, B v B′, C v ¬A′, D v B′}, and let T1 = {D v C}. We
explained in Example 7.1.6 why T1 is not UCQ-representable underM: condition (I) of
Lemma 7.2.8 is violated for the pair (A, D), which is T1 ∪ T12-inconsistent. Note, that
there is no problem for the pair (A, C), which is actually T12-inconsistent. From (A, D)

is T1 ∪ T12-inconsistent it follows that for some concept D′ over Σ2, T1 ∪ T12 |= A v
D′ and T1 ∪ T12 |= D v ¬D′: in this case D′ = A′ and T12 |= A v A′. So we can add
the axiom D v ¬A′ to the mapping to achieve that (A, D) is inconsistent with respect
to the mapping alone. Thus, considerM? = (Σ1, Σ2, T ?

12), where T ?
12 = T12 ∪ {D v

¬A′}, then T1 is UCQ-representable underM? and T2 = {} is a UCQ-representation
of T1 underM?.

A

C

D

B

A′

B′

Hence T1 is weakly UCQ-representable underM.

The following example illustrates a case of a TBox that is not weakly UCQ-representable.

Example 7.3.3. LetM = (Σ1, Σ2, T12), where Σ1 = {A(·), R(·, ·)}, Σ2 = {A′(·), B′(·)},
and T12 = {A v A′, ∃R− v B′}. Furthermore, assume that T1 = {A v ∃R}. In
Example 4.3.2 we showed that T1 is not UCQ-representable under M, now we will
show that is not weakly UCQ-representable either. Recall that in the definition of weak
UCQ-representability, we are looking for an extended mapping M? = (Σ1, Σ2, T ?

12)

such that T12 ⊆ T ?
12 and T1 ∪ T12 |= T ?

12, and in this example, the maximal such T ?
12

coincides with T12 itself. Therefore, there exists noM? as above such that T1 is UCQ-
representable underM?, and T12 is not weakly UCQ-representable underM.

These three examples give an idea of how it is possible to check weak UCQ-representability.

120 R E A S O N I N G A B O U T U C Q - R E P R E S E N TAT I O N S

Lemma 7.3.4. Given a mappingM = (Σ1, Σ2, T12) and a TBox T1 over Σ1, such that
T1 is not UCQ-representable under M. Let M? = (Σ1, Σ2, T ?

12) be a mapping such
that T ?

12 is the maximal (with respect to set-inclusion) TBox from Σ1 to Σ2 satisfying
T12 ⊆ T ?

12 and T1 ∪ T12 |= T ?
12. Then T1 is weakly UCQ-representable underM if and

only if T1 andM? satisfy condition (III) of Lemma 7.2.8.

Proof. (⇐) Assume T1 andM? satisfy condition (III). We show conditions (I) and (II)
are satisfied for T1 andM?.

(I) Assume (B, C) is NOT target contradictable in T1 and M, for a T1-consistent
pair of concepts B, C over Σ1, such that (B, C) is T1 ∪ T12-inconsistent. Let D′

be a concept over Σ2 such that T1 ∪ T12 |= {B v D′, C v ¬D′} or T1 ∪
T12 |= {B v ¬D′, C v D′}. Such D′ exists because (B, C) is T1-consistent and
T1 ∪T12-inconsistent. Then by construction of T ?

12, it contains inclusions B v D′,
C v ¬D′ in the former case, and B v ¬D′, C v D′ in the latter case. So, (B, C)
is target contradictable in T1 andM?.

(II) Assume (R, Q) is NOT target contradictable in T1 and M, for a T1-consistent
pair of roles R, Q over Σ1, such that (R, Q) is T1 ∪ T12-inconsistent. Let S′ be
a role over Σ2 such that T1 ∪ T12 |= {R v S′, Q v ¬S′} or T1 ∪ T12 |=
{R v ¬S′, Q v S′}. Such S′ exists because (R, Q) is T1-consistent and T1∪T12-
inconsistent. Then T ?

12 contains inclusions R v S′, Q v ¬S′ in the former case,
and R v ¬S′, Q v S′ in the latter case. So, (R, Q) is target contradictable in T1

andM?.

(III) Assume inclusion B v B′ is NOT representable in T1 and M, for a T1 ∪ T12-
consistent concept B over Σ1 and a concept B′ over Σ2 such that T1 ∪ T12 |= B v
B′. Then T ?

12 contains B v B′, so B v B′ is representable in T1 andM?.

(IV) Assume inclusion R v R′ is NOT representable in T1 and M, for a T1 ∪ T12-
consistent role R over Σ1 and a role R′ over Σ2 such that T1 ∪ T12 |= R v R′.
Then T ?

12 contains R v R′, so R v R′ is representable in T1 andM?.

Therefore, T1 is UCQ-representable underM?, hence T1 is weakly UCQ-representable
underM.

(⇒) Assume condition (III) of Lemma 7.2.8 is violated by T1 and M?. Then by
Lemma 7.2.8, T1 is not UCQ-representable underM?. SinceM? = (Σ1, Σ2, T ?

12), and
T ?

12 is the maximal TBox that satisfies T12 ⊆ T ?
12 and T1 ∪ T12 |= T ?

12, we conclude T1

is not weakly UCQ-representable underM.

Therefore, we obtain the following complexity bound.

Theorem 7.3.5. The weak UCQ-representability problem is NLOGSPACE-complete.

We conclude with the case of DL-LiteRDFS. Interestingly, in this case for a source TBox
T1 and a mappingM, condition (III) of Lemma 7.2.8 is never triggered as in DL-LiteRDFS

it is not possible to generate new objects. Therefore, this condition is trivially satisfied,
so in DL-LiteRDFS, it is always possible to represent the source implicit knowledge by
enriching mappings.

Theorem 7.3.6. In DL-LiteRDFS, the weak UCQ-representability problem is in TRIVIAL.

8
R E L AT E D W O R K

8.1 DATA E X C H A N G E

Data exchange is the starting point for the knowledge base exchange problem, and the
former is related to the latter mainly in two respects. First, the motivation for KB ex-
change originates from data exchange, and in particular from data exchange with in-
complete information. Second, the definition of the KB exchange framework inherits
many notions and definitions from the data exchange framework. Below we give a short
introduction to data exchange and data exchange with incomplete information.

8.1.1 Data Exchange with Complete Data

Data exchange deals with transferring data between differently structured databases. A
schema is a finite set R = {R1, . . . , Rn} of relation symbols Ri each with the associated
arity ni. Given a schemaR, an instance I of R, assigns to each relation symbol Ri of R
a finite ni-ary relation RI

i . The domain of an instance I, denoted by dom(I), is the set
of all elements that occur in any of the relations RI

i , where each element can be either a
constant, or a labeled null.

Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be two disjoint schemas. Then a
schema mapping is a triple M = (S, T, Σ) such that Σ is a finite set of constraints,
(closed) formulas in a logic L over S∪T. S is called the source schema, and T is called
the target schema. Given a instance I of S (called source instance), the instance J of T
(called target instance) is said to be a solution for I under M, if (I, J) satisfies every
sentence in Σ. The set of all solutions for I underM is denoted by SolM(I). The data
exchange problem is given a mappingM and a source instance I, to find a solution for
I underM.

The class of constraints usually employed for data exchange are tuple-generating
dependencies (tgds) and equality-generating dependencies (egds) that are first-order for-
mulas of the form ∀x∀y(φ(x, y) → ∃z.ψ(x, z)) and φ(x) → (xi = xj) respectively,
where φ(x, y) and ψ(x, z) are conjunctions of atomic formulas. Moreover, for a source
schema S and a target schema T, a tgd ∀x∀y(φ(x, y)→ ∃z.ψ(x, z)) is called a source-
to-target tgd (st-tgd) if φ is a formula over S and ψ is a formula over T. Observe that,
DL-Lite constraints are a subclass of so called linear tgds, which are in turn a subclass
of guarded tgds (see, e.g., [66]).

Due to the existentially quantified variables on the right-hand side of tgds, it is pos-
sible to have (infinitely) many solutions. A natural question to ask then is which of
them should be materialized. To this purpose, the concept of universal solution was in-
troduced in [50] and it was argued that universal solutions are the preferred solutions
in data exchange as they are the “most general” solutions: a solution J for I underM
is said to be a universal solution for I under M if for every solution J′ for I under
M, there exists a homomorphism h : J → J′. Next, the “best” universal solution was

121

122 R E L AT E D W O R K

identified in [52] as the smallest universal solution, which is the core of all universal
solutions.

Most of results in data exchange focus on schema mappings of the form

(S, T, Σst ∪ Σt),

where Σst is a set of st-tgds and Σt is a set of target tgds and egds. In addition, in many
cases one considers a syntactic restriction on tgds: full and weakly acyclic tgds. Full
tgds do not contain existentially quantified variables, thus exclude incompleteness in
the target. The latter notion of weak acyclicity is widely adopted in data exchange as it
assures termination of the chase, used to compute solutions. Below we present some of
the known results on data exchange:

• There exists a data exchange settingM = (S, T, Σst ∪ Σt), such that for a given
source instance I, the problem of deciding whether I has a solution underM, is
undecidable.

• Let M = (S, T, Σst ∪ Σt) be a fixed data exchange setting, such that Σt is the
union of a set of target egds and a weakly acyclic set of target tgds.

– There is a polynomial time algorithm such that for every source instance I, it
first decides whether a solution for I exists, and if that is the case, it computes
a universal solution for I in polynomial time using the chase [50];

– There is a polynomial time algorithm that for every source instance I, computes
the core of the universal solutions for I, if it exists [61];

– Let q be a UCQ. Then the problem of computing certain answers for q under
M can be solved in polynomial time [50];

8.1.2 Data Exchange with Incomplete Data

Recently there has been an interest in data exchange with data in the source incompletely
specified [6, 12, 13]. A general framework for data exchange with incomplete data was
proposed in [6]: in this setting the source data may be incompletely specified, and thus
may represent (possibly infinitely) many source instances. This framework in based on
the general notion of representation system: a representation system is a tuple (R, REP),
where R is a set of representatives and REP is a function that assigns a set of instances
to every element in R. Intuitively, in terms of first-order logic, if I ∈ R, then REP(I) is
the set of all possible models of I.

Let R = (R, REP) be a representation system, M = (S, T, Σ) a mapping from a
schema S to a schema T, and I, J R-elements of S and T, respectively. For X a set of
instances of S, define SolM(X) =

⋃
I∈X SolM(I). Then J is said to be an R-solution

for I underM if REP(J) ⊆ SolM(REP(I)), and J is said to be a universal R-solution
for I underM if REP(J) = SolM(REP(I)).

The above mentioned definitions of solutions are extended in a natural way to the
representation system of knowledge bases, where a knowledge base over a schema S
is a pair (I, T) with I an instance of S and T a set of logical sentences over S, and
REP corresponds to MOD, the set of all possible models. We cite two results on knowl-
edge exchange from [6], where tgd knowledge bases are being considered, that is, a tgd
knowledge base is a pair (I, T), where I is an instance and T is a set of tgds.

8.2 O N T O L O G Y M O D U L A R I T Y A N D C O N S E RVAT I V E E X T E N S I O N S 123

• There exists a mapping M = (S1, S2, Σ12), with Σ12 a set of full st-tgds, for
which the problem of verifying, given a tgd KB K1 over S1 and a tgd KB K2 over
S2, whether K2 is a solution for K1 underM, is undecidable.

• LetM = (S1, S2, Σ12), with Σ12 a set of st-tgds. Then the problem of verifying,
given a full-tgd KB K1 over S1 and a full-tgd KB K2 over S2, whether K2 is a
solution for K1 underM, is in PTIME.

Although, the KB exchange framework is largely based on the data exchange framework,
it was not possible to adopt the techniques developed for the latter. There are two main
reasons for that:

1) in KB exchange, we have to deal with the fact that a source KB represents (possibly
infinitely) many actual models of possibly unbounded size, which then need to be
“translated” according to the mapping. While in data exchange, there is one complete
source instance for which it is straightforward to compute the translation (using the
chase procedure).

2) Nevertheless, in the traditional data exchange setting, non-terminating chase (that
generates an instance of unbounded size) can occur when trying to obtain a target
instance satisfying the target constraints. Since in general the problem of existence
of a solution is undecidable, to regain decidability one resorts to considering (weakly)
acyclic sets of tgds, for which the chase procedure always terminates. In the context
of DL-LiteR, which is already a very light-weight DL, one usually does not limit
consideration to weakly acyclic TBoxes, as it is possible to obtain algorithms for the
general case.

8.2 O N T O L O G Y M O D U L A R I T Y A N D C O N S E RVAT I V E E X -
T E N S I O N S

Modularity is another approach for collaborative ontology engineering and reuse of
existing ontologies [39, 38, 101, 76]. The main idea of modularity is given an ontol-
ogy O to split it into preferably small sub-ontologies, each of which can be used “au-
tonomously” and independently of the rest of the ontology. Such sub-ontologies are
called modules, and since they are typically of a small size (whereas the entire ontology
could be huge), it is easier to understand them and to perform reasoning with them.

A logical framework for ontology modularity has been defined in [38] and is based
on the notion of conservative extensions that provide the necessary formal means for
defining and checking correctness of modules. Conservative extensions is a well-known
notion in mathematical logic, where a logical theory T2 is said to be a (proof theoretic)
conservative extension of a theory T1 if the language of T2 extends the language of T1;
every theorem of T1 is a theorem of T2; and every theorem of T2 that is in the language
of T1 is already a theorem of T1.

In the Description Logics domain, conservative extensions have been shown to be
necessary in the context of ontology modularity and ontology refinement [59, 36], so
it led to rise of several works on conservative extensions in expressive DLs [86], in
EL [85], and in DL-Lite [78, 79, 77].

124 R E L AT E D W O R K

While the data exchange setting influenced the decisions taken to define the KB ex-
change framework, conservative extensions are related to the KB exchange problem
from the technical point of view:

• given two KBs K1 and K2, and a signature Σ, K1 Σ-model entails K2 if for
each model I1 of K1 there exists a model I2 of K2 such that I1 and I2 agree
on interpreted constants and on symbols from Σ, and K1 and K2 are Σ-model
inseparable if they Σ-model entail each other.

One can see that K2 is a universal solution for K1 = 〈T1,A1〉 under M =

(Σ1, Σ2, T12) iff K2 is Σ2-model inseparable with 〈T1 ∪ T12,A1〉.

• given two KBs K1 and K2, and a signature Σ, K1 Σ-query entails K2 if for each
query q over Σ, cert(q,K2) ⊆ cert(q,K1), and K1 and K2 are Σ-query insepara-
ble if they Σ-query entail each other.

Obviously, K2 is a universal UCQ-solution for K1 = 〈T1,A1〉 under M =

(Σ1, Σ2, T12) iff K2 is Σ2-query inseparable with 〈T1 ∪ T12,A1〉.

• given two TBoxes T1 and T2, and a signature Σ, T1 Σ-query entails T2 if for each
ABoxA, 〈T1,A〉 Σ-query entails 〈T2,A〉, and T1 and T2 are Σ-query inseparable
if they Σ-query entail each other.

Then, T2 and T1∪T12 are Σ2-query inseparable implies T2 is a UCQ-representation
for K1 = 〈T1,A1〉 underM = (Σ1, Σ2, T12).

Note that TBox inseparability is a more general problem than UCQ-representability
as in the former problem the quantification is over arbitrary ABoxes A (includ-
ing those over Σ2), while in the latter problem the quantification is over source
ABoxes only (excluding those over Σ2). Moreover, due to the particular shape of
the TBox T1 ∪T12, there is a contrasting difference in the computational complex-
ities of the two problems: UCQ-representability is NLOGSPACE-complete, while
TBox CQ-inseparability is EXPTIME-complete.

Each of these problems reduces to checking some form of Σ-homomorphisms (finite or
general). The techniques developed for inseparabilities can be used for solving the mem-
bership problems in the KB exchange framework and the other way around. In fact, we
have shown in [23] the close connection between the membership problem for universal
UCQ-solutions and the Σ-query inseparability problem (this result is out of the scope
of this thesis). Currently, there are no known results for Σ-model entailment/insepara-
bility in DL-LiteR, however we conjecture that the devised automata techniques can be
used/adapted to this purpose.

8.3 O N T O L O G Y A L I G N M E N T

There exists a whole body of work on ontology alignment, also referred to as ontology
mapping and ontology matching [34, 47, 99, 48]. The task of ontology alignment is
given two ontologies to find correspondences between semantically related entities of
ontologies resulting in a mapping between the ontologies. Such a problem arises in the

8.3 O N T O L O G Y A L I G N M E N T 125

contest of ontology merging, integration and alignment, which can be considered as an
ontology reuse process.

There have been implemented several prototypes that allow for detecting and con-
structing mappings between ontologies such as PROMPT [94], SAMBO [82], Falcon [70],
LogMap [71] and others. Moreover, in this community an ontology alignment evaluat-
ing initiative (OAEI) has been organized, where once a year the existing systems are
being compared and evaluated [3, 99, 60].

Despite seeming similarity of the ontology alignment and knowledge base exchange
problems, the former problem can be seen as the opposite of the latter, since in the KB
exchange framework, a source KB and a mapping are assumed to be the input, and the
task is to materialize a target KB, while in ontology alignment the input is two ontologies
and the task is to find a mapping between them (which might not have a direction).

9
D I S C U S S I O N

9.1 C O N C L U S I O N S

In this thesis we addressed the knowledge base exchange problem for Description Logic
(DL) knowledge bases (KBs).

In Chapter 3 we defined the knowledge base exchange framework, where we specified
three types of translations we would like to materialize: universal solutions, universal
UCQ-solutions and UCQ-representations. Moreover, we defined the reasoning problems
that we investigated in the rest of the thesis: the membership and the non-emptiness
problems for each kind of translation.

Then, in Chapter 4 we discussed the basic properties of the three notions of solutions,
and compared these to each other. There it became clear why we also need to consider
extended ABoxes in the target.

In Chapter 5, we studied the complexity of KB exchange for universal solutions, and
obtained various computational bounds for DL-LiteR depending on the decision prob-
lem (membership or non-emptiness) and on the shape of target ABoxes (simple or ex-
tended):

• When only simple ABoxes are allowed in the target, we showed that both the
membership and non-emptiness problems for universal solutions are solvable in
polynomial time by providing a reduction to reachability games on graphs, and
proved that this bound is tight.

• In the case where extended ABoxes are allowed in the target, we proved that
the membership problem becomes NP-complete and identified labeled nulls as
the source of complexity. In fact, even if the source TBox is empty, the problem
remains NP-hard. Moreover, we provided a polynomial space lower bound and
an exponential time algorithm based on two-way alternating automata for the non-
emptiness problem in the latter case.

Such a discrepancy of results although surprising at first sight, can be easily justified.
First of all, restricting attention to simple ABoxes reduces the space of all target ABoxes
that need to be considered (actually, a finite number of them). Second, checking exis-
tence of a homomorphism from a tree to a graph formed by constants, which is required
for solving the membership problem, is easy. On the other hand, the number of all pos-
sible extended target ABoxes is infinite, and checking existence of a homomorphism
from a(n infinite) tree to a forest generated by constants is hard. As for DL-LiteRDFS KBs
and mappings, we showed that the non-emptiness problem is trivially always true, and
the membership problem is NLOGSPACE and NP-complete for simple and extended
ABoxes respectively.

Next, in Chapter 6, we studied the complexity of KB exchange for universal UCQ-
solutions, and showed that both the membership problem for simple target ABoxes and

127

128 D I S C U S S I O N

Universal solutions simple ABoxes extended ABoxes

Membership PTIME-complete NP-complete

Non-emptiness PTIME-complete PSPACE-hard, in EXPTIME

Universal UCQ-solutions simple ABoxes extended ABoxes

Membership PSPACE-hard in EXPTIME

Non-emptiness in EXPTIME PSPACE-hard

UCQ-representations Complexity

Membership NLOGSPACE-complete

Non-emptiness NLOGSPACE-complete

Weak UCQ-representability NLOGSPACE-complete

Table 3: Complexity results for the membership and non-emptiness problems in DL-LiteR.

the non-emptiness problem for extended target ABoxes are PSPACE-hard. As for DL-
LiteRDFS KBs and mappings, it turned out that the complexity of universal UCQ-solutions
coincides with the complexity of universal solutions.

Finally, in Chapter 7, we studied the complexity of computing UCQ-representations,
and obtained that UCQ-representations are the translations that are the simplest from the
computational point of view.

• we developed graph-theoretic techniques for checking the membership and non-
emptiness problems in NLOGSPACE;

• we showed that these two problems are NLOGSPACE-hard;

• we also obtained that the weak UCQ-representability problem is NLOGSPACE-
complete.

These bounds hold for DL-LiteR, and in the case of DL-LiteRDFS there is only one differ-
ence: weak UCQ-representability is trivially true for any input TBox and mapping.

The summary of the results is once again presented in Tables 3 and 4.

9.2 W H AT I S A P R E F E R R E D S O L U T I O N ?

Out of the three notions of translations defined in Chapter 3, there is no single translation
that could be unequivocally “preferred” in all possible scenarios. Each notion has its
strengths and its weaknesses, which can be summarized as in Table 5.

Unquestionably, if one is interested in preserving logical correctness of the knowledge
stored in the target KB, then universal solutions is the preferred translation: universal
solutions are the most precise, model-theoretical translations. However, they present
several limitations from the practical point of view:

• If one considers extended ABoxes, then universal solutions can be of exponential
size.

9.2 W H AT I S A P R E F E R R E D S O L U T I O N ? 129

Universal solutions simple ABoxes extended ABoxes

Membership NLOGSPACE-complete NP-complete

Non-emptiness TRIVIAL TRIVIAL

Universal UCQ-solutions simple ABoxes extended ABoxes

Membership NLOGSPACE-complete NP-complete

Non-emptiness TRIVIAL TRIVIAL

UCQ-representations Complexity

Membership NLOGSPACE-complete

Non-emptiness NLOGSPACE-complete

Weak UCQ-representability TRIVIAL

Table 4: Complexity results for the membership and non-emptiness problems in DL-LiteRDFS.

• Universal solutions are sensitive to presence of disjointness assertions: in some
cases one disjointness assertion is enough to ruin existence of a universal solution
(see Example 4.1.7). Moreover, as will be discussed in Section 9.3, disjointness
assertions complicate the characterization of universal solutions when more ex-
pressive target ABoxes are considered.

• Universal solutions are sensitive to whether the UNA is employed or not: there
are examples when a universal solution exists under the UNA, but does not exist
without the UNA.

Instead, if one considers a scenario where the main/only reasoning task is query an-
swering over the target KB, then the query-based notions of translations become of
particular interest. From Table 5 one can see that universal UCQ-solutions are more ro-
bust and behave better than universal solutions: they are usually more compact (in the
worst case of the same size), and exist more often than universal solutions. Moreover,
universal UCQ-solutions, in contrast with universal solutions and UCQ-representations,
exist in every simple case, that is, a universal UCQ-solution exists whenever T1 ∪ T12

is sufficiently simple (when A1 is given, it means that U〈T1∪T12,A1〉 is finite). All this
makes universal UCQ-solutions a good candidate for the preferred translation.

Lastly, in a scenario where data is changing or is not known, and the main reason-
ing task is query answering, UCQ-representations immediately appeal with their nice
computational properties: they are decidable in polynomial time and their size is bound
by a polynomial. When a UCQ-representation exists, it provides a straightforward poly-

logically
implied

compact computatio-
nally simple

robust
to UNA

robust to
disjointness

exist in
simple cases

universal solutions YES NO YES/NO NO NO NO/YES

universal UCQ-solutions NO YES/NO NO YES YES YES

UCQ-representations NO YES YES YES YES NO

Table 5: Properties of the three types of translation.

130 D I S C U S S I O N

nomial time algorithm for computing universal UCQ-solutions of polynomial size. The
main obstacle, however, for defining UCQ-representations to be the preferred translation
is their “fragility”: UCQ-representations do not exist even in some very minimalistic
settings (see Example 4.3.1). Fortunately, this problem can be “fixed” by allowing for
weak UCQ-representations and employing a reasonable assumption that usually roles
get translated by the mapping (i.e., for “almost” each role R1 over Σ1 there exists an
assertion of the form R1 v R2 in the mapping).

Putting everything together, we conclude that the query-based notions of translations
(universal UCQ-solutions and UCQ-representations) are probably the more promising
translations to be materialized and used in practice.

9.3 O P E N P RO B L E M S

We conclude with some open problems and future work.
To begin with, from the summary of the results one can see that some bounds are

not tight or are missing. We note that it is already known that the membership problem
for universal UCQ-solutions with simple target ABoxes is EXPTIME-complete, but the
lower bound was not included in the thesis as it was not obtained in of the scope of the
thesis. As for the non-emptiness problem, we explained how to obtain a naive EXPTIME

algorithm, however we do not have any lower bound. In fact, this problem could turn
out to be much simpler than EXPTIME. It still remains to investigate the complexity of
universal UCQ-solutions when extended ABoxes are allowed in the target.

Then, a straightforward extension to our work is to consider additional types of ex-
tended ABoxes. For instance, it is easy to see that allowing for inequalities between
terms (e.g., a 6= b in Example 4.1.7) and for negated atoms in the (target) ABox would
allow one to obtain more universal solutions. However doing so would require employ-
ing some new techniques, as it immediately leads to some counter-intuitive examples:

Example 9.3.1. Assume thatM = (Σ1, Σ2, T12), where Σ1 = {A(·), R(·, ·)}, Σ2 =

{S(·, ·)} and T12 = {R v ¬S, A v ¬∃S}. Moreover, let T1 = {A v ∃R, ∃R− v
∃R} and A1 = {A(a)}. Then A2 = {¬∃S(a),¬S(a, a)} is a universal solution for
〈T1,A1〉 underM.

Now, if we imagine that the canonical model can have negated labels and the defini-
tion of homomorphism is extended accordingly, this example is counter-intuitive as A2

does not satisfy the characterization of universal solutions in Lemma 5.1.2.

In the following example, we have an inequality between constants in the source
ABox.

Example 9.3.2. Assume thatM = (Σ1, Σ2, T12), where

Σ1 = {A(·), R(·, ·), S(·, ·), B(·), C(·)},
Σ2 = {B′(·), C′(·)},
T12 = {∃R− v B′, ∃S− v C′, B v B′, C v C′}.

Moreover, let

T1 = {A v ∃R, A v ∃S, ∃R− v ¬∃S−}, and

A1 = {A(a), B(b), C(c), C(d), c 6= d}.

9.3 O P E N P RO B L E M S 131

Then A2 = {B′(b), C′(c), C′(d), c 6= d} is a universal solution for 〈T1,A1〉 underM.
In fact, it is easy to see that for each model I ofK1 and each J such that (I ,J) |= T12,
J is a model of A2. And on the other hand, for every model J of A2, there exists a
model I of K1 such that (I ,J) |= T12. Note that, even if such a J interprets b and,
say, c as the same object, still, we can construct a model of K1 which interprets aw[R]
and aw[S] as different objects: namely, awI[R] = bJ and awI[S] = dJ .

What goes against our intuition obtained from the previous development, is that there
is no inequality between b and c, nor between b and d, but still,A2 is a universal solution
for K1 underM. This example suggests that one needs to reason about the cardinality
of the domain, moreover, homomorphisms, even extended ones, cannot be used to char-
acterize universal solutions when we allow for inequalities between constants.

We conclude with some directions for future work.
Many of the existing results can be extended to other Horn DLs, such as DL-LiteHhorn,
ELH, and Horn-ALCHI , namely the algorithms based on reachability games and
two-way alternating automata, both of which heavily rely on the notion of the canonical
model.

In this thesis we have not dealt with other “standard” data exchange reasoning tasks,
such as composition and inversion of mappings [53, 49, 54, 4]. These problems are
certainly of interest in the KB exchange framework.

The work presented in this thesis is assumed to lay foundational basis for KB ex-
change and contains only purely theoretical results. So one of the next steps is to see
how the obtained results can be applied to practice. This would require to develop a pro-
totype system for KB exchange, in which the devised algorithms could be implemented.

Part II

A P P E N D I X

A
A P P E N D I X

A.1 T H E T H E O RY O F AU T O M ATA , L O G I C , A N D I N F I N I T E

G A M E S

In this section we define two important theories historically emerged in an attempt to
construct and verify reactive programs, such as communication protocols or control
systems: alternating tree automata and infinite two-person games. While their primary
application is that of model-checking, in this thesis we use both of them for checking
homomorphism between trees generated by DL-LiteR KBs. We are employing a game-
theoretic approach in Section 5.2 for deciding the membership problem for universal
solutions with simple ABoxes, and an automata-theoretic approach in Section 5.3.2 for
deciding the non-emptiness problem for universal solutions with extended ABoxes.

A.1.1 Two-way Alternating Tree Automata

Alternating automata on infinite trees are a generalization of nondeterministic automata
on infinite trees, introduced in [92], which are in turn a generalization of automata on
infinite words, introduced by Büchi in [26]. They allow for an elegant reduction of
decision problems for temporal and program logics [46, 21], and µ-calculus [45, 100,
103], which are traditionally used in the automatic verification and synthesis of hardware
and software systems. In this section we are going to define two-way alternating tree
automata introduced in [102] that are alternating automata specifically design to handle
backward modalities of µ-calculus, and thus, perfectly suited to deal with inverse roles
in DL-LiteR.

We start with giving some necessary definitions.Infinite trees are represented as prefix
closed (infinite) sets of words over N (the set of positive natural numbers). Formally,
an infinite tree is a set of words T ⊆ N∗, such that if x · c ∈ T, where x ∈ N∗ and
c ∈ N, then also x ∈ T. The elements of T are called nodes, the empty word ε is the
root of T, and for every x ∈ T, the nodes x · c, with c ∈ N, are the successors of x. By
convention we take x · 0 = x, and x · i · −1 = x. The branching degree d(x) of a node
x denotes the number of successors of x. If the branching degree of all nodes of a tree
is bounded by k, we say that the tree has branching degree k. An infinite path P of T is
a prefix closed set P ⊆ T such that for every i ≥ 0 there exists a unique node x ∈ P
with |x| = i. A labeled tree over an alphabet Σ is a pair (T, V), where T is a tree and
V : T → Σ maps each node of T to an element of Σ.

In alternating automata, transition function is a Boolean formula. Therefore, let B(I)
be the set of positive Boolean formulae over I, built inductively by applying ∧ and ∨
starting from true, false, and elements of I. For a set J ⊆ I and a formula φ ∈ B(I), we
say that J satisfies φ if and only if, assigning true to the elements in J and false to those
in I \ J, makes φ true. For a positive integer k, let [k] = {−1, 0, 1, . . . , k}.

135

136 A P P E N D I X

Finally, a two-way alternating tree automaton (2ATA) running over infinite trees with
branching degree k, is a tuple A = 〈Σ, Q, δ, q0, F〉, where Σ is the input alphabet, Q is
a finite set of states, δ : Q× Σ → B([k]× Q) is the transition function, q0 ∈ Q is the
initial state, and F specifies the acceptance condition.

The transition function maps a state q ∈ Q and an input letter σ ∈ Σ to a positive
boolean formula over [k]× Q. Intuitively, if δ(q, σ) = φ, then each pair (c, q′) appear-
ing in φ corresponds to a new copy of the automaton going to the direction suggested
by c and starting in state q′. For example, if k = 2 and δ(q1, σ) = ((1, q2) ∧ (1, q3)) ∨
((−1, q1) ∧ (0, q3)), when the automaton is in the state q1 and is reading the node x
labeled by the letter σ, it proceeds either by sending off two copies, in the states q2 and
q3 respectively, to the first successor of x (i.e., x · 1), or by sending off one copy in the
state q1 to the predecessor of x (i.e., x · −1) and one copy in the state q3 to x itself (i.e.,
x · 0).

A run of a 2ATA A over a labeled tree (T, V) is a labeled tree (Tr, r) in which every
node is labeled by an element of T×Q. A node in Tr labeled by (x, q) describes a copy
of A that is in the state q and reads the node x of T. The labels of adjacent nodes have
to satisfy the transition function of A. Formally, a run (Tr, r) is a T × Q-labeled tree
satisfying:

• ε ∈ Tr and r(ε) = (ε, q0).

• Let y ∈ Tr, with r(y) = (x, q) and δ(q, V(x)) = φ. Then there is a (possibly
empty) set S = {(c1, q1), . . . , (cn, qn)} ⊆ [k]×Q such that:

– S satisfies φ and

– for all 1 ≤ i ≤ n, we have that y · i ∈ Tr, x · ci is defined (x · ci ∈ T), and
r(y · i) = (x · ci, qi).

A run (Tr, r) is accepting if all its infinite paths satisfy the acceptance condition. Given
an infinite path P ∈ Tr, let inf (P) ⊆ Q be the set of states that appear infinitely
often in P (as second components of node labels). We consider here Büchi acceptance
conditions [26]. A Büchi condition over a state set Q is a subset F of Q, and an infinite
path P satisfies F if inf (P)∩ F 6= ∅. Notice that if a run does not contain infinite paths,
then it trivially satisfies the acceptance condition.

The non-emptiness problem for 2ATAs consists in determining, for a given 2ATA,
whether the set of trees it accepts is nonempty. It is known that this problem can be
solved in exponential time in the number of states of the input automaton A, but in
linear time in the size of the alphabet as well as in the size of the transition function
of A [102]. Moreover, a tree (T, V) is in the language L(A) of a 2ATA A if and only
if there exists an accepting run of A over (T, V).

A.1.2 Reachability games on graphs

Infinite two-person games on directed graphs provide tools for nice and intuitive proofs
for logics over trees, and are closely related to automata on infinite words, including the
two-way alternating tree automata defined in the previous section: the non-emptiness
problem for 2ATA is solved using infinite games. The idea of infinite games arose im-
plicitly in the study of synthesis of digital circuits in the 1960s; McNaughton was the
first to explicitly use the term “infinite games” [89, 90] already in 1965. For a good
introduction to infinite games the reader can refer to [87].

A.1 T H E T H E O RY O F AU T O M ATA , L O G I C , A N D I N F I N I T E G A M E S 137

The accepting conditions for games, which specify when a particular play is a win for
Player 0, are the same as in the case of automata. In this thesis we will consider reach-
ability acceptance conditions, a simpler case of Büchi acceptance conditions, hence in
this section we define reachability games.

A game is defined by a game graph (a playground) and a winning condition.
A game graph is a triple G = (S0, S1, T), where S = S0 ∪ S1 is a finite set of states,

S0 ∩ S1 = ∅ and T ⊆ S× S is a transition relation. A play in such a game graph can
be seen as moving a pebble from one state to another via transition edges starting from
some initial state. The game starts in some state s0 ∈ S, and it is played in turns. In each
turn, if the current state s is in Si (i = 0, 1), then Player i chooses some state s′ ∈ S such
that (s, s′) ∈ T. This is repeated either infinitely often or until a state without successors,
a dead end, is reached. Formally, a state s is called a dead end if {s′ | (s, s′) ∈ T} = ∅,
and a play in a game graph G can be

• an infinite path π in G, π = s0s1s2 . . . such that si ∈ S and (si, si+1) ∈ T for
each i ≥ 0, then it is called an infinite play,

• a finite path π = s0s1 . . . sk ∈ Sk+1 such that (si, si+1) ∈ T for every i ∈
{0, . . . , k− 1}, and sk is a dead end, then π is called a finite play.

The winning condition defines what are the plays won by Player 0. We will consider
a reachability acceptance condition specified as follows: given a set of accepting states
F ⊆ S, a play π is a win for Player 0 iff some vertex from F occurs in π. A strategy
for Player 0 from state s is a (partial) function f0 : S?S0 → S such that it assigns to
each sequence of states s0, s1, . . . , sk with s0 = s and sk ∈ S0, a successor state sk+1
such that (sk, sk+1) ∈ T. A play π = s0s1 · · · is said to conform with strategy f0 if
si+1 = f0(s0s1 . . . si) for every si ∈ S0. Then, a strategy f0 is a winning strategy for
Player 0 from s ∈ S if every play that conforms with f0 and starts in s is a win for
Player 0, and Player 0 wins from s if he has a winning strategy from s. Finally, the
winning region of Player 0, denoted W0 ⊆ S is the set of all states s such that he wins
from s. The corresponding notions for Player 1 are defined analogously.

Finally, a reachability game is a pair G = (G, F) where G is a game graph and F is a
set of accepting states.

Proposition A.1.1 ([87],[33]). Given a reachability game G = (G, F) and a state s in
G, it can be checked in PTIME whether Player 0 has a winning strategy from s.

B I B L I O G R A P H Y

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison Wesley Publ. Co., 1995.

[2] P. Adjiman, P. Chatalic, F. Gouasdoué, M.-C. Rousset, and L. Simon. Distributed
reasoning in a peer-to-peer setting: Application to the semantic web. J. of Artifi-
cial Intelligence Research, 25:269–314, 2006.

[3] José-Luis Aguirre, Kai Eckert, Jérôme Euzenat, Alfio Ferrara, Willem Robert
van Hage, Laura Hollink, Christian Meilicke, Andriy Nikolov, Dominique Ritze,
François Scharffe, Pavel Shvaiko, Ondrej Sváb-Zamazal, Cássia Trojahn dos San-
tos, Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Benjamin Zapilko. Re-
sults of the ontology alignment evaluation initiative 2012. In Proc. of the 7th
International Workshop on Ontology Matching, Boston, MA, USA, November 11,
2012, 2012.

[4] Marcelo Arenas, Jorge Pérez, and Cristian Riveros. The recovery of a schema
mapping: Bringing exchanged data back. ACM Trans. Database Syst., 34:22:1–
22:48, December 2009. ISSN 0362-5915. doi: http://doi.acm.org/10.1145/
1620585.1620589. URL http://doi.acm.org/10.1145/1620585.
1620589.

[5] Marcelo Arenas, Elena Botoeva, and Diego Calvanese. Knowledge base ex-
change. In Proc. of the 24th Int. Workshop on Description Logic (DL 2011),
volume 745 of CEUR Electronic Workshop Proceedings, http://ceur-ws.
org/, 2011.

[6] Marcelo Arenas, Jorge Pérez, and Juan L. Reutter. Data exchange beyond com-
plete data. In Proc. of the 30th ACM SIGMOD SIGACT SIGART Symp. on Prin-
ciples of Database Systems (PODS 2011), pages 83–94, 2011.

[7] Marcelo Arenas, Elena Botoeva, Diego Calvanese, Vladislav Ryzhikov, and
Evgeny Sherkhonov. Exchanging description logic knowledge bases. In Proc.
of the 13th Int. Conf. on Knowledge Representation and Reasoning (KR 2012),
pages 563–567. AAAI Press, 2012.

[8] Marcelo Arenas, Elena Botoeva, Diego Calvanese, Vladislav Ryzhikov, and
Evgeny Sherkhonov. Representability in DL-Liter knowledge base exchange. In
Proc. of the 25th Int. Workshop on Description Logic (DL 2012), volume 846 of
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, 2012.

[9] Marcelo Arenas, Elena Botoeva, Diego Calvanese, and Vladislav Ryzhikov. Ex-
changing OWL 2 QL knowledge bases. In Proc. of the 23rd Int. Joint Conf. on
Artificial Intelligence (IJCAI 2013), pages 703–710, 2013.

139

http://doi.acm.org/10.1145/1620585.1620589
http://doi.acm.org/10.1145/1620585.1620589
http://ceur-ws.org/
http://ceur-ws.org/
http://ceur-ws.org/

140 B I B L I O G R A P H Y

[10] Marcelo Arenas, Elena Botoeva, Diego Calvanese, and Vladislav Ryzhikov. Ex-
changing OWL 2 QL knowledge bases (extended version). CoRR Technical
Report arXiv:1304.5810, arXiv.org e-Print archive, 2013. Available at http:
//arxiv.org/abs/1304.5810.

[11] Marcelo Arenas, Elena Botoeva, Diego Calvanese, and Vladislav Ryzhikov. Com-
puting solutions in OWL 2 QL knowledge exchange. In Proc. of the 26th Int.
Workshop on Description Logic (DL 2013), volume 1014 of CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/, pages 4–16, 2013.

[12] Marcelo Arenas, Jorge Pérez, and Juan Reutter. Data exchange beyond complete
data. J. of the ACM, 60(4):28:1–28:59, September 2013. ISSN 0004-5411. doi:
10.1145/2505985. URL http://doi.acm.org/10.1145/2505985.

[13] Marcelo Arenas, Jorge Pérez, and Emanuel Sallinger. Towards general repre-
sentability in knowledge exchange. In Proc. of the 7th Alberto Mendelzon Int.
Workshop on Foundations of Data Management (AMW 2013), 2013.

[14] Marcelo Arenas, Elena Botoeva, Diego Calvanese, and Vladislav Ryzhikov.
Knowledge base exchange: The case of OWL 2 QL. Under submission to an
international journal, 2014.

[15] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-
kharyaschev. The DL-Lite family and relations. J. of Artificial Intelligence Re-
search, 36:1–69, 2009.

[16] Franz Baader. Terminological cycles in a description logic with existential restric-
tions. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003),
pages 325–330, San Francisco, CA, USA, 2003. Morgan Kaufmann Publishers
Inc.

[17] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation and Applications. Cambridge University Press, 2003.

[18] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages
364–369, 2005.

[19] Jie Bao et al. OWL 2 Web Ontology Language document overview (second
edition). W3C Recommendation, World Wide Web Consortium, December 2012.
http://www.w3.org/TR/owl2-overview/.

[20] Pablo Barceló. Logical foundations of relational data exchange. SIGMOD
Record, 38(1):49–58, 2009.

[21] Orna Bernholtz, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic ap-
proach to branching-time model checking. In Proc. of the 6th Int. Conf. on Com-
puter Aided Verification (CAV’94), volume 818 of Lecture Notes in Computer
Science, pages 142–155. Springer, 1994.

[22] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer, 1997.

http://arxiv.org/abs/1304.5810
http://arxiv.org/abs/1304.5810
http://ceur-ws.org/
http://doi.acm.org/10.1145/2505985
http://www.w3.org/TR/owl2-overview/

B I B L I O G R A P H Y 141

[23] Elena Botoeva, Roman Kontchakov, Vladislav Ryzhikov, Frank Wolter, and
Michael Zakharyaschev. Query inseparability for description logic knowledge
bases. In Proc. of the 14th Int. Conf. on Knowledge Representation and Reason-
ing (KR 2014). AAAI Press, 2014.

[24] Ronald J. Brachman and Hector J. Levesque, editors. Readings in Knowledge
Representation. Morgan Kaufmann, 1985.

[25] Dan Brickley and R. V. Guha. RDF vocabulary description language 1.0: RDF
Schema. W3C Recommendation, February 2004. Available at http://www.
w3.org/TR/rdf-schema/.

[26] J. Richard Büchi. On a decision method in restricted second order arithmetic.
In E. Nagel et al., editors, Proc. Internat. Congr. on Logic, Methodology and
Philosophy of Science, pages 1–11. Stanford University Press, 1960.

[27] Sasa Buvac and Ian A. Mason. Propositional logic of context. In Proc. of the
11th National Conf. on Artificial Intelligence (AAAI 1993), pages 412–419, 1993.

[28] Saša Buvač and Richard Fikes. A declarative formalization of knowledge trans-
lation. In Proc. of the 4th Int. Conf. on Information and Knowledge Manage-
ment (CIKM 1995, pages 340–347, New York, NY, USA, 1995. ACM. ISBN
0-89791-812-6. doi: 10.1145/221270.221610. URL http://doi.acm.org/
10.1145/221270.221610.

[29] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. 2ATAs make
DLs easy. In Proc. of the 15th Int. Workshop on Description Logic (DL 2002),
volume 53 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, pages
107–118, 2002.

[30] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. Tractable reasoning and efficient query answering in de-
scription logics: The DL-Lite family. J. of Automated Reasoning, 39(3):385–429,
2007.

[31] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular path
queries in expressive description logics: An automata-theoretic approach. In Proc.
of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007), pages 391–396,
2007.

[32] Diego Calvanese, Domenico Carbotta, and Magdalena Ortiz. A practical
automata-based technique for reasoning in expressive description logics. In Proc.
of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011), pages 798–
804, 2011.

[33] Krishnendu Chatterjee and Monika Henzinger. An o(n2) time algorithm for al-
ternating Büchi games. In Proc. of the 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2012), pages 1386–1399, 2012. URL http:
//dl.acm.org/citation.cfm?id=2095116.2095225.

[34] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology map-
ping. SIGMOD Rec., 35(3):34–41, September 2006. ISSN 0163-5808.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://doi.acm.org/10.1145/221270.221610
http://doi.acm.org/10.1145/221270.221610
http://dl.acm.org/citation.cfm?id=2095116.2095225
http://dl.acm.org/citation.cfm?id=2095116.2095225

142 B I B L I O G R A P H Y

doi: 10.1145/1168092.1168097. URL http://doi.acm.org/10.1145/
1168092.1168097.

[35] R Cote, D Rothwell, J Palotay, R Beckett, and L Brochu. The systematized
nomenclature of human and veterinary medicine. Technical report, SNOMED
International, Northfield, IL: College of American Pathologists, 1993.

[36] Bernardo Cuenca Grau, Ian Horrocks, Oliver Kutz, and Ulrike Sattler. Will my
ontologies fit together? In Proc. of the 19th Int. Workshop on Description Logic
(DL 2006), volume 189 of CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/, 2006.

[37] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Mod-
ularity and Web ontologies. In Proc. of the 10th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2006), pages 198–209, 2006.

[38] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. A
logical framework for modularity of ontologies. In Proc. of the 20th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2007), 2007.

[39] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for
modularisation. In Papers Presented at the Second Annual Workshop on Logical
Environments, pages 83–130, New York, NY, USA, 1993. Cambridge Univer-
sity Press. ISBN 0-521-43312-6. URL http://dl.acm.org/citation.
cfm?id=185881.185899.

[40] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt. The
complexity of concept languages. In Proc. of the 2nd Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR’91), pages 151–162, 1991.

[41] Dejing Dou and Drew Mcdermott. Deriving axioms across ontologies. In Proc.
of Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS 06),
pages 952–954, 2006.

[42] Dejing Dou, Drew Mcdermott, and Peishen Qi. Ontology translation on the se-
mantic web. In Journal of Data Semantics, pages 35–57, 2004.

[43] Dejing Dou, Han Qin, and Haishan Liu. Semantic translation for rule-based
knowledge in data mining. In Proc. of the 22nd Int. Conf. on Database and Ex-
pert Systems Applications - Volume Part II (DEXA 2011), pages 74–89, Berlin,
Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-23090-5. URL http:
//dl.acm.org/citation.cfm?id=2033546.2033555.

[44] Thomas Eiter, Georg Gottlob, Magdalena Ortiz, and Mantas Šimkus. Query an-
swering in the description logic Horn-SHIQ. In Proc. of the 11th Eur. Confer-
ence on Logics in Artificial Intelligence (JELIA 2008), pages 166–179, 2008.

[45] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata and
logics of programs. In Proc. of the 29th Annual Symp. on the Foundations of
Computer Science (FOCS’88), pages 328–337, 1988.

http://doi.acm.org/10.1145/1168092.1168097
http://doi.acm.org/10.1145/1168092.1168097
http://dl.acm.org/citation.cfm?id=185881.185899
http://dl.acm.org/citation.cfm?id=185881.185899
http://dl.acm.org/citation.cfm?id=2033546.2033555
http://dl.acm.org/citation.cfm?id=2033546.2033555

B I B L I O G R A P H Y 143

[46] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and de-
terminacy. In Proc. of the 32nd Annual Symp. on the Foundations of Computer
Science (FOCS’91), pages 368–377, 1991.

[47] Jérôme Euzenat and Pavel Schwaiko. Ontology Matching. Springer, 2007.

[48] Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt, Pavel Shvaiko, and
Cássia Trojahn dos Santos. Ontology alignment evaluation initiative: Six years
of experience. Journal on Data Semantics XV, 15:158–192, 2011.

[49] Ronald Fagin. Inverting schema mappings. ACM Trans. on Database Systems,
32(4), 2007.

[50] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: Semantics and query answering. In Proc. of the 9th Int. Conf. on
Database Theory (ICDT 2003), pages 207–224, 2003.

[51] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data ex-
change: Semantics and query answering. Theoretical Computer Science, 336(1):
89–124, 2005.

[52] Ronald Fagin, Phokion G. Kolaitis, and Lucian Popa. Data exchange: Getting to
the core. ACM Trans. on Database Systems, 30(1):174–210, 2005.

[53] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang-Chiew Tan. Com-
posing schema mappings: Second-order dependencies to the rescue. ACM Trans.
on Database Systems, 30(4):994–1055, 2005.

[54] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang-Chiew Tan. Quasi-
inverses of schema mappings. ACM Trans. on Database Systems, 33(2):1–52,
2008.

[55] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Reverse
data exchange: coping with nulls. In Proc. of the 28th ACM SIGMOD SIGACT
SIGART Symp. on Principles of Database Systems (PODS 2009), pages 23–32,
2009.

[56] M. Fikes, R.and Cutkosky, T. R. Gruber, and J. Van Baalen. Knowledge sharing
technology project overview. Technical Report KSL 91-71, Knowledge Systems
Laboratory, Stanford University, 1991.

[57] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C. Tan. Peer data exchange. ACM
Trans. on Database Systems, 31(4):1454–1498, 2005.

[58] M. R. Garey and D. S. Johnson. Computers and Intractability — A guide to NP-
completeness. W. H. Freeman and Company, San Francisco (CA, USA), 1979.

[59] Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did I damage my ontology? A
case for conservative extensions in description logics. In Proc. of the 10th Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006),
pages 187–197, 2006.

144 B I B L I O G R A P H Y

[60] Fausto Giunchiglia, Mikalai Yatskevich, Paolo Avesani, and Pavel Shvaiko. A
large dataset for the evaluation of ontology matching. Knowledge Eng. Review,
24(2):137–157, 2009.

[61] Georg Gottlob and Alan Nash. Data exchange: Computing cores in polynomial
time. In Proc. of the 25th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS 2006), pages 40–49, 2006.

[62] Georg Gottlob and Alan Nash. Efficient core computation in data exchange.
J. ACM, 55(2):9:1–9:49, May 2008. ISSN 0004-5411. doi: 10.1145/1346330.
1346334. URL http://doi.acm.org/10.1145/1346330.1346334.

[63] Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In Proc. of the
14th IEEE Symp. on Logic in Computer Science (LICS’99), pages 45–54. IEEE
Computer Society Press, 1999.

[64] Ramanathan Guha. Contexts: A Formalization and Some Applications. PhD
thesis, Stanford University, Stanford, CA, USA, 1992. UMI Order No. GAX92-
17827.

[65] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa, and Mary
Roth. Clio grows up: from research prototype to industrial tool. In Proc. of
the ACM SIGMOD Int. Conf. on Management of data (SIGMOD 2005), pages
805–810, New York, NY, USA, 2005. ACM. ISBN 1-59593-060-4. URL http:
//doi.acm.org/10.1145/1066157.1066252.

[66] André Hernich. Computing universal models under guarded tgds. In Proc. of the
15th Int. Conf. on Database Theory (ICDT 2012), pages 222–235. ACM, 2012.

[67] André Hernich and Nicole Schweikardt. Logic and data exchange: Which so-
lutions are “good” solutions? In Proc. of the 8th Int. Conf. on Logic and the
Foundations of Game and Decision Theory (LOFT 2008), pages 61–85, 2008.

[68] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages
448–453, 2005.

[69] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for very
expressive description logics. J. of the Interest Group in Pure and Applied Logic,
8(3):239–264, 2000.

[70] Wei Hu, Yuzhong Qu, and Gong Cheng. Matching large ontologies: A divide-
and-conquer approach. Data Knowl. Eng., 67(1):140–160, 2008.

[71] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Yujiao Zhou, and Ian Horrocks.
Large-scale interactive ontology matching: Algorithms and implementation. In
Proc. of the 20th European Conf. on Artificial Intelligence (ECAI 2012), pages
444–449, 2012.

[72] David S. Johnson and Anthony C. Klug. Testing containment of conjunctive
queries under functional and inclusion dependencies. J. of Computer and System
Sciences, 28(1):167–189, 1984.

http://doi.acm.org/10.1145/1346330.1346334
http://doi.acm.org/10.1145/1066157.1066252
http://doi.acm.org/10.1145/1066157.1066252

B I B L I O G R A P H Y 145

[73] Charanjit S. Jutla. Determinization and memoryless winning strategies. Inf. Com-
put., 133(2):117–134, March 1997. ISSN 0890-5401. doi: 10.1006/inco.1997.
2624. URL http://dx.doi.org/10.1006/inco.1997.2624.

[74] Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller. Mapping data
in peer-to-peer systems: Semantics and algorithmic issues. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD 2003), pages 325–336,
2003.

[75] Phokion G. Kolaitis. Schema mappings, data exchange, and metadata manage-
ment. In Proc. of the 24th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS 2005), pages 61–75, 2005.

[76] Boris Konev, Carsten Lutz, Dirk Walther, and Frank Wolter. Semantic modularity
and module extraction in description logics. In Proc. of the 18th European Conf.
on Artificial Intelligence (ECAI 2008), pages 55–59. IOS Press, 2008.

[77] Boris Konev, Roman Kontchakov, Michel Ludwig, Thomas Schneider, Frank
Wolter, and Michael Zakharyaschev. Conjunctive query inseparability of
OWL 2 QL TBoxes. In Proc. of the 26th Nat. Conf. on Artificial Intelligence
(AAAI 2011), 2011.

[78] Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. Can you tell the
difference between DL-Lite ontologies? In Proc. of the 11th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR 2008), pages 285–
295, 2008.

[79] Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. Logic-based on-
tology comparison and module extraction, with an application to dl-lite. Artificial
Intelligence, 174(15):1093–1141, 2010.

[80] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[81] Dexter Kozen. Theory of Computation. Springer, 2006.

[82] Patrick Lambrix and He Tan. Sambo - a system for aligning and merging biomed-
ical ontologies. J. of Web Semantics, 4(3):196–206, 2006.

[83] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proc. of the
21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems
(PODS 2002), pages 233–246, 2002.

[84] Leonid Libkin and Cristina Sirangelo. Data exchange and schema mappings in
open and closed worlds. Journal of Computer and System Sciences, 77(3):542–
571, 2011.

[85] Carsten Lutz and Frank Wolter. Conservative extensions in the lightweight de-
scription logic EL. In Proc. of the 21st Int. Conf. on Automated Deduction
(CADE 2007), 2007.

http://dx.doi.org/10.1006/inco.1997.2624

146 B I B L I O G R A P H Y

[86] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative extensions in ex-
pressive description logics. In Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2007), pages 453–458, 2007.

[87] René Mazala. Infinite games. In Automata, Logics, and Infinite Games, pages
23–42, 2001.

[88] John McCarthy. Notes on formalizing context. In Proc. of the 13th Int. Joint Conf.
on Artifical Intelligence - Volume 1 (IJCAI’93), pages 555–560, San Francisco,
CA, USA, 1993. Morgan Kaufmann Publishers Inc. URL http://dl.acm.
org/citation.cfm?id=1624025.1624103.

[89] Robert McNaughton. Finite-state infinite games. Technical report, Project MAC,
Massachusetts Institute of Technology, USA, 1965.

[90] Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and
Applied Logic, 65(2):149–184, 1993.

[91] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue,
and Carsten Lutz. OWL 2 Web Ontology Language profiles (second edition).
W3C Recommendation, World Wide Web Consortium, December 2012. http:
//www.w3.org/TR/owl2-profiles/.

[92] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

[93] David E. Muller and Paul E. Schupp. The theory of ends, pushdown automata,
and second-order logic. Theoretical Computer Science, 37:51–75, 1985.

[94] Natalya F. Noy and Mark A. Musen. The prompt suite: Interactive tools for
ontology merging and mapping. Int. J. of Human-Computer Studies, 59(6):983–
1024, December 2003. ISSN 1071-5819. doi: 10.1016/j.ijhcs.2003.08.002. URL
http://dx.doi.org/10.1016/j.ijhcs.2003.08.002.

[95] Christos H. Papadimitriou. Computational Complexity. Addison Wesley Publ.
Co., 1994.

[96] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Riccardo Rosati. Linking data to ontologies. J. on Data
Semantics, X:133–173, 2008.

[97] Stefan Schulz, Kornel Marko, and Boontawee Suntisrivaraporn. Formal repre-
sentation of complex SNOMED CT expressions. BMC Medical Informatics
and Decision Making, 8(1), 2008. doi: 10.1186/1472-6947-8-S1-S9. URL
http://www.biomedcentral.com/1472-6947/8/S1/S9.

[98] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y. Lum. Express: a data
extraction, processing, and restructuring system. ACM Trans. Database Syst., 2:
134–174, June 1977. ISSN 0362-5915. doi: http://doi.acm.org/10.1145/320544.
320549. URL http://doi.acm.org/10.1145/320544.320549.

http://dl.acm.org/citation.cfm?id=1624025.1624103
http://dl.acm.org/citation.cfm?id=1624025.1624103
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://dx.doi.org/10.1016/j.ijhcs.2003.08.002
http://www.biomedcentral.com/1472-6947/8/S1/S9
http://doi.acm.org/10.1145/320544.320549

B I B L I O G R A P H Y 147

[99] Pavel Shvaiko and Jérôme Euzenat. Ontology matching: State of the art and
future challenges. IEEE Trans. on Knowledge and Data Engineering, 25(1):158–
176, 2013.

[100] Robert S. Streett. Propositional Dynamic Logic of looping and converse is ele-
mentarily decidable. Information and Control, 54:121–141, 1982.

[101] Heiner Stuckenschmidt, Christine Parent, and Stefano Spaccapietra, editors. Mod-
ular Ontologies: Concepts, Theories and Techniques for Knowledge Modulariza-
tion, volume 5445 of Lecture Notes in Computer Science. Springer, 2009. ISBN
978-3-642-01906-7.

[102] Moshe Y. Vardi. Reasoning about the past with two-way automata. In Proc. of the
25th Int. Coll. on Automata, Languages and Programming (ICALP’98), volume
1443 of Lecture Notes in Computer Science, pages 628–641. Springer, 1998.

[103] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal
logics of programs. J. of Computer and System Sciences, 32:183–221, 1986.

[104] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach.
Springer, 1999.

[105] Igor Walukiewicz. Pushdown processes: Games and model-checking. Informa-
tion and Computation, 164(2):234–263, 2001.

	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	Main Body
	1 Introduction
	1.1 Motivation
	1.1.1 Knowledge Translation
	1.1.2 Data Exchange
	1.1.3 Data Exchange with Incomplete Information
	1.1.4 Description Logics as Ontology Language

	1.2 Contribution
	1.3 Structure of the Thesis

	2 Preliminaries
	2.1 Description Logics
	2.1.1 The Description Logic DL-LiteR and Its Sublogics
	2.1.2 The Canonical Model Property

	2.2 Queries and certain answers
	2.3 Complexity Measures and Complexity Classes

	3 Knowledge Base Exchange Framework
	3.1 Knowledge Exchange Framework
	3.1.1 Universal Solutions
	3.1.2 Universal UCQ-Solutions
	3.1.3 UCQ-Representations

	3.2 The Space of Reasoning Problems

	4 The Shape of Solutions
	4.1 Universal solutions
	4.2 Universal UCQ-Solutions
	4.3 UCQ-representations

	5 Reasoning About Universal Solutions
	5.1 Characterization of Universal Solutions
	5.1.1 Characterization of the membership problem
	5.1.2 Characterization of the non-emptiness problem

	5.2 Simple Universal Solutions
	5.2.1 The non-emptiness problem
	5.2.2 The membership problem

	5.3 Extended Universal solutions
	5.3.1 The membership problem
	5.3.2 The non-emptiness problem

	5.4 Universal Solutions in DL-LiteRDFS

	6 Reasoning About Universal UCQ-Solutions
	6.1 Characterization of Universal UCQ-solutions
	6.2 Universal UCQ-solutions with Simple ABoxes
	6.2.1 The membership problem
	6.2.2 The non-emptiness problem

	6.3 Universal UCQ-Solutions with Extended ABoxes
	6.3.1 The membership problem
	6.3.2 The non-emptiness problem

	6.4 Universal UCQ-Solutions in DL-LiteRDFS

	7 Reasoning About UCQ-Representations
	7.1 The Membership Problem
	7.2 The Non-emptiness Problem
	7.2.1 Computing UCQ-representations

	7.3 Weak UCQ-Representability

	8 Related Work
	8.1 Data Exchange
	8.1.1 Data Exchange with Complete Data
	8.1.2 Data Exchange with Incomplete Data

	8.2 Ontology Modularity and Conservative Extensions
	8.3 Ontology Alignment

	9 Discussion
	9.1 Conclusions
	9.2 What Is a Preferred Solution?
	9.3 Open Problems

	Appendix
	A Appendix
	A.1 The Theory of Automata, Logic, and Infinite Games
	A.1.1 Two-way Alternating Tree Automata
	A.1.2 Reachability games on graphs

	Bibliography

