Computing Solutions in OWL 2 QL Knowledge Base Exchange

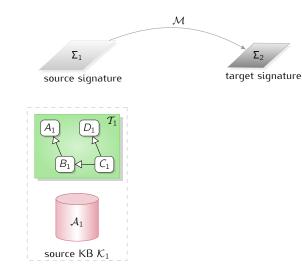
Marcelo Arenas¹ <u>Elena Botoeva</u>² Diego Calvanese² Vladislav Ryzhikov²

> ¹ Dept. of Computer Science, PUC Chile marenas@ing.puc.cl

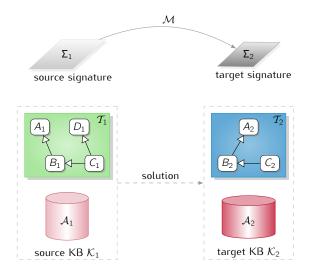
² KRDB Research Centre, Free Univ. of Bozen-Bolzano, Italy lastname@inf.unibz.it

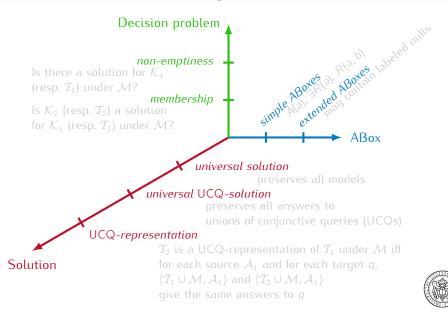
> Description Logics July 2013, Ulm

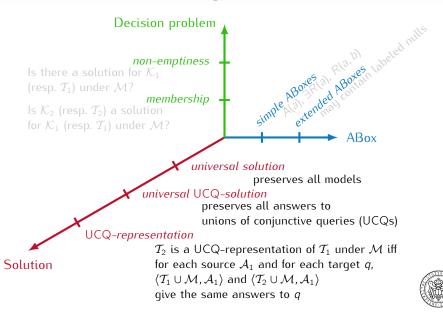
Knowledge Base Exchange Framework

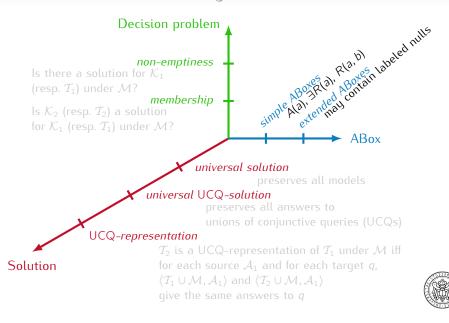


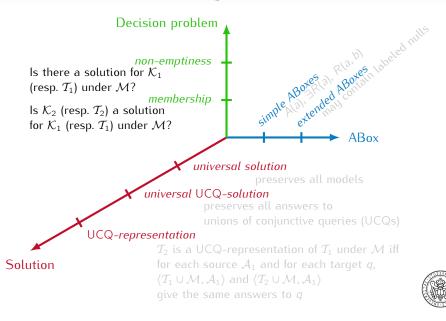
Knowledge Base Exchange Framework











Knowledge Base Exchange: Universal Solution

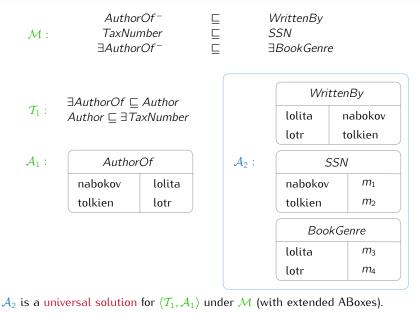
	AuthorOf-		WrittenBy
\mathcal{M} :	TaxNumber	\subseteq	SSN
	$\exists AuthorOf^{-}$	\Box	∃BookGenre

 \mathcal{T}_1 :

 \exists AuthorOf \sqsubseteq Author Author $\sqsubset \exists$ TaxNumber

\mathcal{A}_1 :	AuthorOf		
	nabokov	lolita	
	tolkien	lotr	

Knowledge Base Exchange: Universal Solution



Knowledge Base Exchange: Universal UCQ-Solution

	AuthorOf-		WrittenBy
\mathcal{M} :	TaxNumber		SSN
	$\exists Author Of^-$	\Box	∃BookGenre

 \mathcal{T}_1 :

 \exists AuthorOf \sqsubseteq Author Author $\sqsubset \exists$ TaxNumber

\mathcal{A}_1 :	AuthorOf		
	nabokov	lolita	
	tolkien	lotr	

Knowledge Base Exchange: Universal UCQ-Solution

\mathcal{M} :	Authoi Ta×Nui ∃Authoi	mber			WrittenBy SSN ∃BookGenr	ę	
\mathcal{T}_1 :	$\exists AuthorOf \sqsubseteq Author$ Author $\sqsubseteq \exists TaxNumber$			\mathcal{T}_2 :		By [−] ⊑ ∃SSN By ⊑ ∃BookGer	nre
\mathcal{A}_1 :	Author	Of		\mathcal{A}_2 :	Wri	ttenBy	
	nabokov	lolita			lolita	nabokov	
	tolkien	lotr			lotr	tolkien	
			(

 $\begin{array}{ll} q(b) \leftarrow \exists g.BookGenre(b,g): & cert(q, \langle T_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle) = \{lolita, lotr\} = cert(q, \langle T_2, \mathcal{A}_2 \rangle) \\ q(b,g) \leftarrow \exists b, g.BookGenre(b,g): & cert(q, \langle T_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle) = \{\} = cert(q, \langle T_2, \mathcal{A}_2 \rangle) \end{array}$

 $\langle \mathcal{T}_2, \mathcal{A}_2 \rangle$ is a universal-UCQ solution for $\langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ under \mathcal{M} (with simple ABoxes).

Knowledge Base Exchange: UCQ-Representation

	AuthorOf-		WrittenBy
\mathcal{M} :	TaxNumber		SSN
	$\exists AuthorOf^{-}$	\Box	∃BookGenre

$$\mathcal{T}_1: \qquad \begin{array}{c} \exists AuthorOf \sqsubseteq \\ \exists TaxNumber \end{array}$$

Knowledge Base Exchange: UCQ-Representation

	AuthorOf ⁻	WrittenBy
\mathcal{M} :	TaxNumber	SSN
	$\exists Author Of^-$	∃BookGenre

$$\mathcal{T}_1$$
 :

 $\exists AuthorOf \sqsubseteq$ $\exists TaxNumber$ $\mathcal{T}_{2}: \quad \begin{array}{l} \exists WrittenBy^{-} \sqsubseteq \exists SSN \\ \exists WrittenBy \sqsubseteq \exists BookGenre \end{array}$

\mathcal{T}_2 is a UCQ-representation of \mathcal{T}_1 under \mathcal{M} .

Elena Botoeva(FUB)

Knowledge Base Exchange: UCQ-Representation

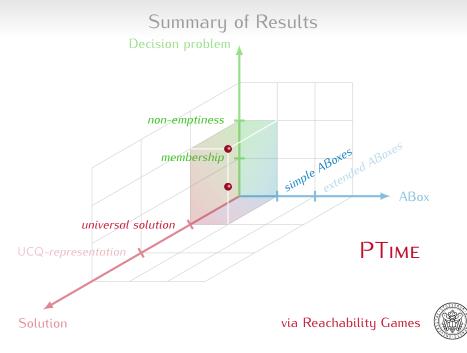
	AuthorOf ⁻	WrittenBy
\mathcal{M} :	TaxNumber	SSN
	$\exists AuthorOf^{-}$	∃BookGenre

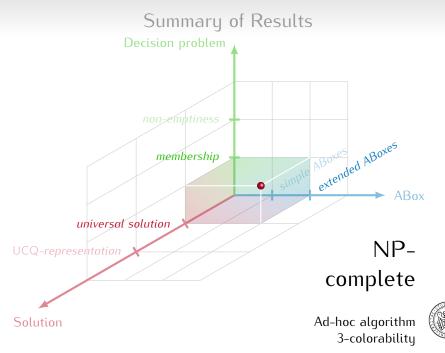
$$\mathcal{T}_1$$
 :

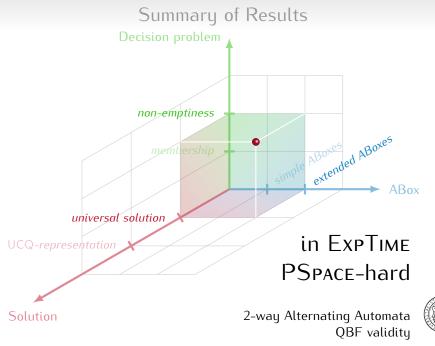
∃AuthorOf ⊑ ∃TaxNumber $\mathcal{T}_{2}: \quad \begin{array}{l} \exists WrittenBy^{-} \sqsubseteq \exists SSN \\ \exists WrittenBy \sqsubseteq \exists BookGenre \end{array}$

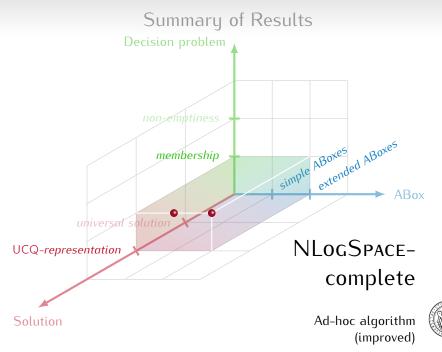
for each source A_1 and for each target q, $\langle T_1 \cup \mathcal{M}, A_1 \rangle$ and $\langle T_2 \cup \mathcal{M}, A_1 \rangle$ give the same answers to q

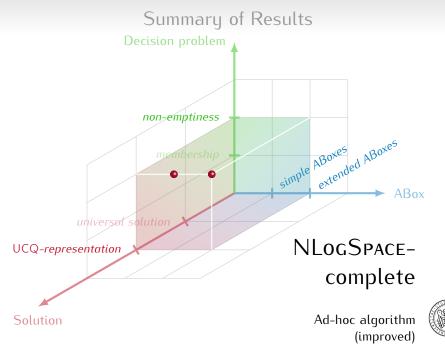
\mathcal{T}_2 is a UCQ-representation of \mathcal{T}_1 under \mathcal{M} .











 \mathcal{A}_2 is a universal solution for $\mathcal{K}_1 = \langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ under \mathcal{M} iff¹ there exist

- a homomorphism from $\mathcal{U}_{\mathcal{A}_2}$ to $\mathcal{U}_{\langle \mathcal{T}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$,
- a homomorphism from $\mathcal{U}_{\langle \mathcal{T}_1\cup\mathcal{M},\mathcal{A}_1\rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$

on the target symbols.

 1 when \mathcal{T}_{1} and \mathcal{M} are positive, otherwise one more condition has to be added Elena Botoeva(FUB) Computing Solutions in OWL 2 QL Knowledge Base Exchange

EASY

 \mathcal{A}_2 is a universal solution for $\mathcal{K}_1 = \langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ under \mathcal{M} iff¹ there exist

- a homomorphism from $\mathcal{U}_{\mathcal{A}_2}$ to $\mathcal{U}_{\langle \mathcal{T}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$,
- a homomorphism from $\mathcal{U}_{\langle \mathcal{T}_1\cup\mathcal{M},\mathcal{A}_1\rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$

on the target symbols.

 1 when \mathcal{T}_{1} and \mathcal{M} are positive, otherwise one more condition has to be added Elena Botoeva(FUB) Computing Solutions in OWL 2 QL Knowledge Base Exchange

 \mathcal{A}_2 is a universal solution for $\mathcal{K}_1 = \langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ under \mathcal{M} iff¹ there exist

- a homomorphism from $\mathcal{U}_{\mathcal{A}_2}$ to $\mathcal{U}_{\langle \mathcal{T}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$,
- a homomorphism from $\mathcal{U}_{(\mathcal{I}_1\cup\mathcal{M},\mathcal{A}_1)}$ to $\mathcal{U}_{\mathcal{A}_2}$ via Reachability Games on graphs

EASY

on the target symbols.

 1 when \mathcal{T}_{1} and \mathcal{M} are positive, otherwise one more condition has to be added Elena Botoeva(FUB) Computing Solutions in OWL 2 QL Knowledge Base Exchange

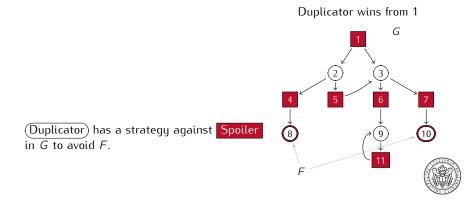
• a homomorphism from $\mathcal{U}_{\langle \mathcal{T}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$ via Reachability Games on graphs on the target symbols.

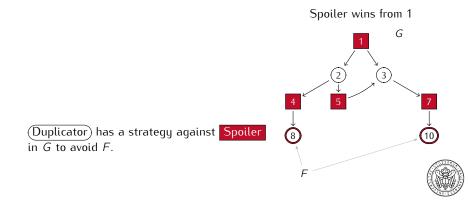
We construct a reachability game $\mathcal{G} = (G, F)$ such that

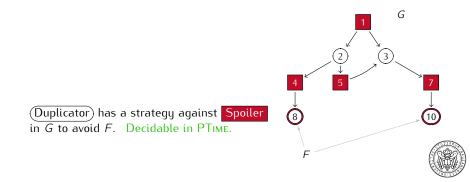
there exists a homomorphism from $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$

iff

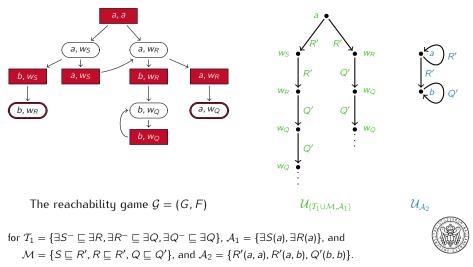
(Duplicator) has a strategy against Spoiler in *G* to avoid *F*.



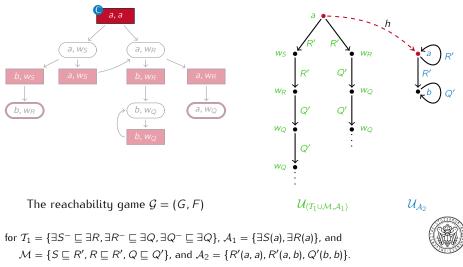




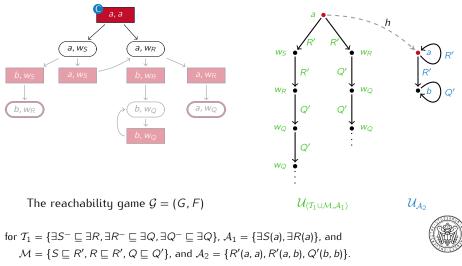
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



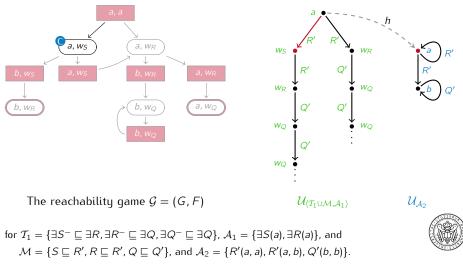
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



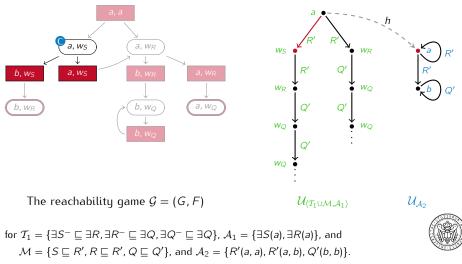
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



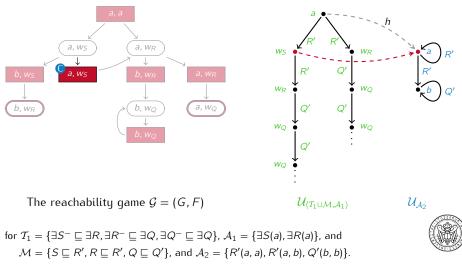
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



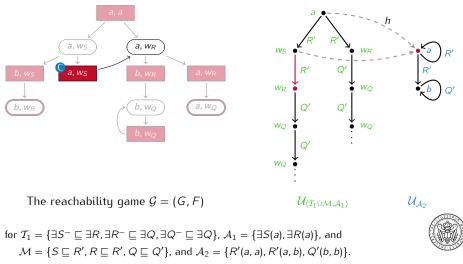
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



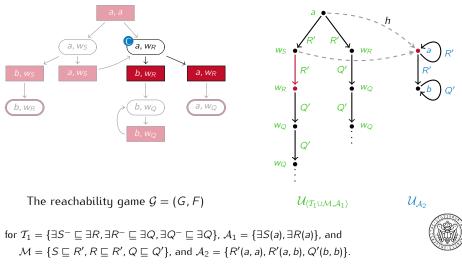
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



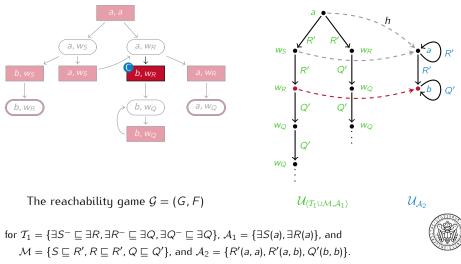
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



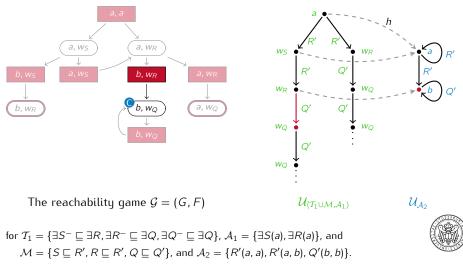
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



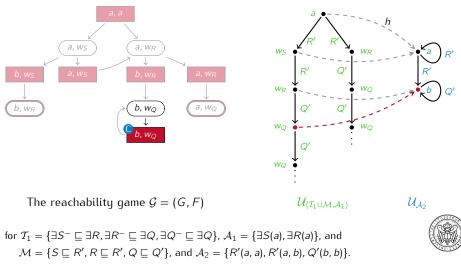
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



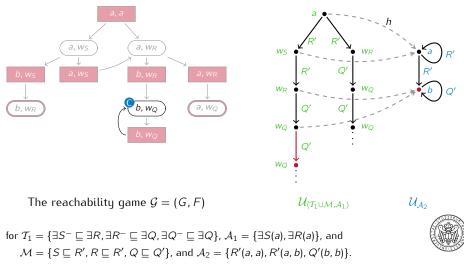
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



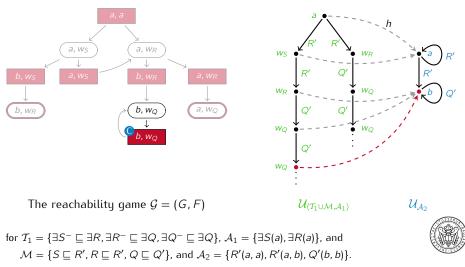
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



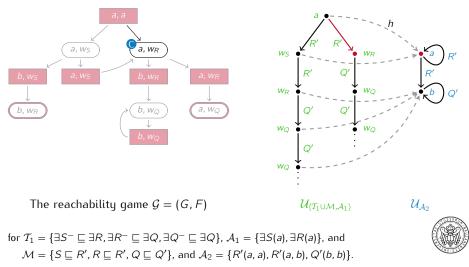
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



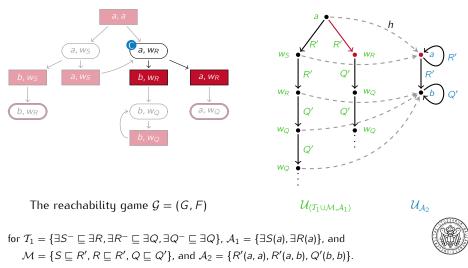
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



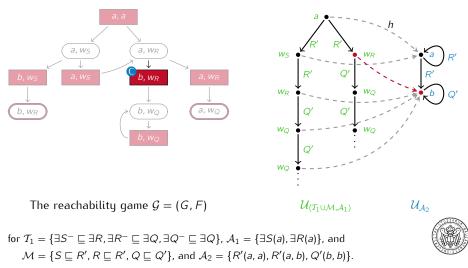
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



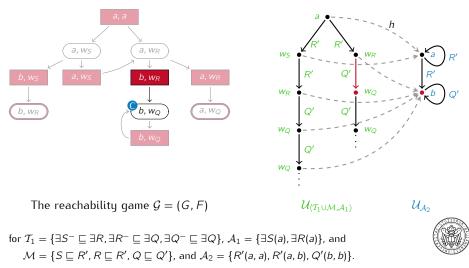
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



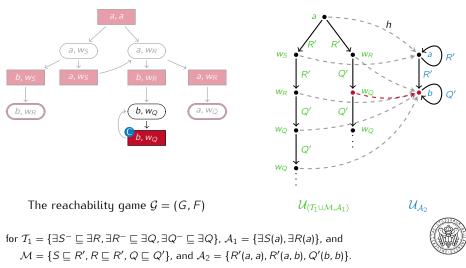
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



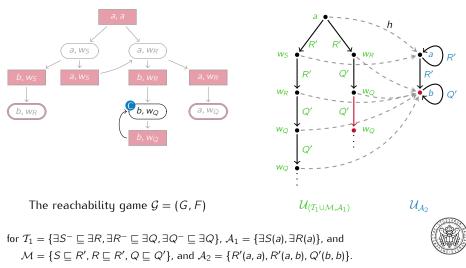
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



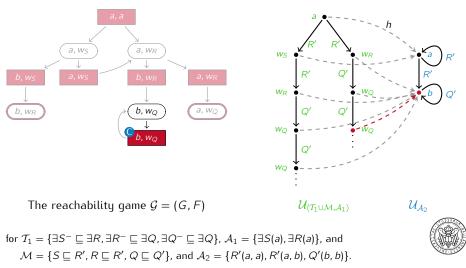
Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



Each play starting from ^{*a*,*a*} defines a homomorphism (on the target symbols) from a path in $\mathcal{U}_{\langle \mathcal{I}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle}$ to $\mathcal{U}_{\mathcal{A}_2}$.



 $^2 \text{when}~\mathcal{T}_1$ and $\mathcal M$ are positive, otherwise one more condition has to be added

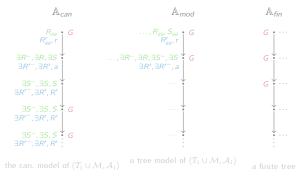
Consider $\mathcal{T}_1 = \{ \exists S^- \sqsubseteq \exists S \}$ and $\mathcal{A}_1 = \{ R(a, a), \exists S(a) \}$, and $\mathcal{M} = \{ R \sqsubseteq R', S \sqsubseteq R' \}$.

$$\mathcal{U}_{(\mathcal{T}_1 \cup \mathcal{M}, \mathcal{A}_1)}: \quad \mathcal{R}, \mathcal{R}' \xrightarrow{\mathfrak{a}} \underbrace{\operatorname{aws}}_{S, \mathcal{R}'} \underbrace{\operatorname{aws}}_{S, \mathcal{$$

Consider
$$\mathcal{T}_1 = \{ \exists S^- \sqsubseteq \exists S \}$$
 and $\mathcal{A}_1 = \{ R(a, a), \exists S(a) \}$, and $\mathcal{M} = \{ R \sqsubseteq R', S \sqsubseteq R' \}$.

$$\mathcal{U}_{(\mathcal{T}_1\cup\mathcal{M},\mathcal{A}_1)}: \quad R, R' \overset{a}{\longrightarrow} \xrightarrow{aw_S} \xrightarrow{aw_S} \xrightarrow{aw_Sw_S} \xrightarrow{aw_Sw_Sw_S} \xrightarrow{s, R'} \cdots$$

Two-way Alternating Automata. We construct three automata:

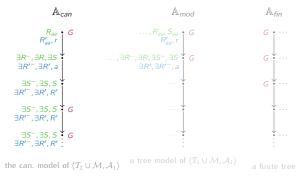


Elena Botoeva(FUB)

Consider
$$\mathcal{T}_1 = \{ \exists S^- \sqsubseteq \exists S \}$$
 and $\mathcal{A}_1 = \{ R(a, a), \exists S(a) \}$, and $\mathcal{M} = \{ R \sqsubseteq R', S \sqsubseteq R' \}$.

$$\mathcal{U}_{(\mathcal{T}_1\cup\mathcal{M},\mathcal{A}_1)}: \quad R, R' \overset{a}{\longrightarrow} \xrightarrow{aw_S} \xrightarrow{aw_S} \xrightarrow{aw_Sw_S} \xrightarrow{aw_Sw_Sw_S} \xrightarrow{s, R'} \cdots$$

Two-way Alternating Automata. We construct three automata:

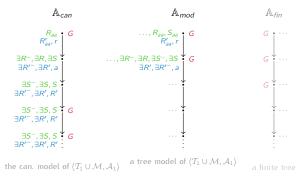


Elena Botoeva(FUB)

Consider
$$\mathcal{T}_1 = \{ \exists S^- \sqsubseteq \exists S \}$$
 and $\mathcal{A}_1 = \{ R(a, a), \exists S(a) \}$, and $\mathcal{M} = \{ R \sqsubseteq R', S \sqsubseteq R' \}$.

$$\mathcal{U}_{(\mathcal{T}_1\cup\mathcal{M},\mathcal{A}_1)}: \quad R, R' \overset{a}{\longrightarrow} \xrightarrow{aw_S} \xrightarrow{aw_S} \xrightarrow{aw_Sw_S} \xrightarrow{aw_Sw_Sw_S} \xrightarrow{s, R'} \cdots$$

Two-way Alternating Automata. We construct three automata:

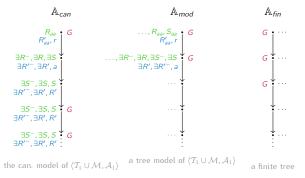


Elena Botoeva(FUB)

Consider
$$\mathcal{T}_1 = \{ \exists S^- \sqsubseteq \exists S \}$$
 and $\mathcal{A}_1 = \{ R(a, a), \exists S(a) \}$, and $\mathcal{M} = \{ R \sqsubseteq R', S \sqsubseteq R' \}$.

$$\mathcal{U}_{(\mathcal{T}_1\cup\mathcal{M},\mathcal{A}_1)}: \quad R, R' \overset{a}{\longrightarrow} \xrightarrow{aw_S} \xrightarrow{aw_S} \xrightarrow{aw_Sw_S} \xrightarrow{aw_Sw_Sw_S} \xrightarrow{s, R'} \cdots$$

Two-way Alternating Automata. We construct three automata:

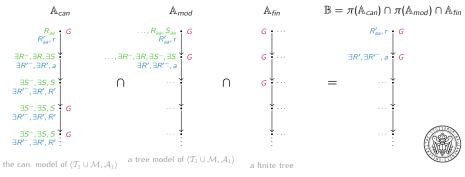


Elena Botoeva(FUB)

Consider
$$\mathcal{T}_1 = \{ \exists S^- \sqsubseteq \exists S \}$$
 and $\mathcal{A}_1 = \{ R(a, a), \exists S(a) \}$, and $\mathcal{M} = \{ R \sqsubseteq R', S \sqsubseteq R' \}$.

 $\mathcal{U}_{(\mathcal{T}_1 \cup \mathcal{M}, \mathcal{A}_1)}: \quad \mathcal{R}, \mathcal{R}' \xrightarrow{\mathfrak{a}} \xrightarrow{\mathfrak{a}} S, \mathcal{R}' \xrightarrow$

Two-way Alternating Automata. We construct three automata:

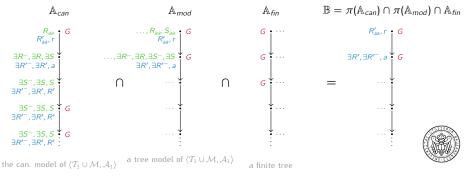


Elena Botoeva(FUB)

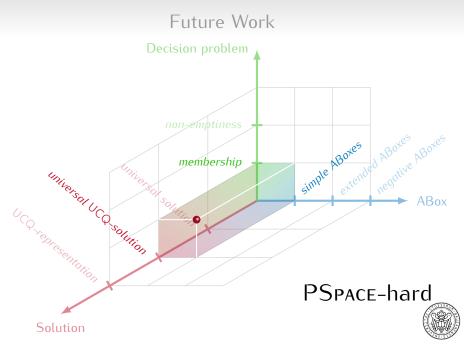
Consider
$$\mathcal{T}_1 = \{\exists S^- \sqsubseteq \exists S\}$$
 and $\mathcal{A}_1 = \{R(a, a), \exists S(a)\}$, and $\mathcal{M} = \{R \sqsubseteq R', S \sqsubseteq R'\}$.

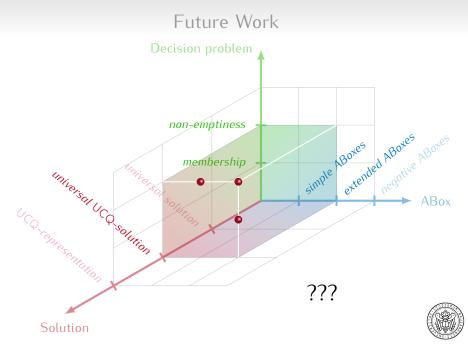
Then $\mathcal{A}_2 = \{R'(a, a)\}$ is a universal solution for \mathcal{K}_1 under \mathcal{M} .

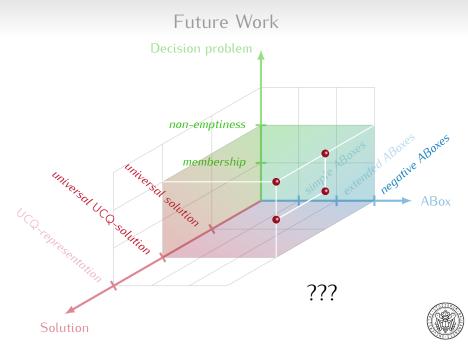
Two-way Alternating Automata. We construct three automata:



Elena Botoeva(FUB)







Thank you for your attention!

