

## Exchanging OWL 2 QL Knowledge Bases

Marcelo Arenas Elena Botoeva, Diego Calvanese, and Vladislav Ryzhikov Free University of Bozen-Bolzano, Italy PUC Chile marenas@ing.puc.cl lastname@inf.unibz.it



48b17c



• TA  $\mathbb{A}_{fin}$  accepts trees with a finite prefix labeled with G.

Let  $\mathcal{T}_{12} = \{ R \sqsubseteq R', S \sqsubseteq R' \}, \mathcal{T}_1 = \{ \exists S^- \sqsubseteq \exists S \} \text{ and } \mathcal{A}_1 = \{ R(a, a), \exists S(a) \}.$  $\mathbb{A}^{mod}_{\mathcal{K}}$  $\mathbb{B} = \pi(\mathbb{A}_{\mathcal{K}}^{can}) \cap \pi(\mathbb{A}_{\mathcal{K}}^{mod}) \cap \mathbb{A}_{fin}$ 



 $\mathcal{A}_1 = \{ \exists R(a), \exists S(a) \}, \text{ and } \mathcal{A}_2 = \{ R'(a, a), R'(a, b), Q'(b, b) \}.$ 

The game graph G



 $\mathcal{U}_{\langle T_1 \cup T_{12}, \mathcal{A}_1 \rangle}$   $a_{\mathcal{A}_1}$ 

There exists a homomorphism from  $\mathcal{U}_{\langle \mathcal{T}_1 \cup \mathcal{T}_{12}, \mathcal{A}_1 \rangle}$  to  $\mathcal{U}_{\mathcal{A}_2}$  iff Duplicator has a strategy in  $\mathcal{G}$  from  $a, a, \mathfrak{s}$  against Spoiler to avoid F.



There exists a universal solution for  $\mathcal{K}_1 = \langle \mathcal{T}_1, \mathcal{A}_1 \rangle$  under  $\mathcal{M} = (\Sigma_1, \Sigma_2, \mathcal{T}_{12})$  iff the language of the automaton  $\mathbb{B} = \pi(\mathbb{A}_{\mathcal{K}}^{can}) \cap \pi(\mathbb{A}_{\mathcal{K}}^{mod}) \cap \mathbb{A}_{fin}$  is non-empty, for  $\mathcal{K} = \langle \mathcal{T}_1 \cup \mathcal{T}_{12}, \mathcal{A}_1 \rangle$ .



We provide a number of conditions on  $T_1$ ,  $\mathcal{M} = (\Sigma_1, \Sigma_2, T_{12})$ , and  $T_2$ .

```
Consider \mathcal{T}_{12} = \{A \sqsubseteq A', R \sqsubseteq R', S \sqsubseteq S', \exists S^- \sqsubseteq C'\},\
```

We provide a set of conditions on  $\mathcal{T}_1$  and  $\mathcal{M} = (\Sigma_1, \Sigma_2, \mathcal{T}_{12})$ 





In particular, these conditions are satisfied:

 $\begin{array}{ll} \mathcal{T}_{1} \cup \mathcal{T}_{12} \models A \sqsubseteq \exists R' & \Leftrightarrow \mathcal{T}_{12} \cup \mathcal{T}_{2} \models A \sqsubseteq \exists R' \\ \mathcal{T}_{1} \cup \mathcal{T}_{12} \models \exists S^{-} \sqsubseteq C' & \Leftrightarrow \mathcal{T}_{12} \cup \mathcal{T}_{2} \models \exists S^{-} \sqsubseteq C' \\ \mathcal{T}_{1} \cup \mathcal{T}_{12} \models A \neq \emptyset \rightarrow C' \neq \emptyset & \Rightarrow \mathcal{T}_{12} \cup \mathcal{T}_{2} \models A \neq \emptyset \rightarrow C' \neq \emptyset \end{array}$  $\mathcal{T}_1 \models A \sqsubseteq \exists R \text{ and } \mathcal{T}_{12} \models R \sqsubseteq R' \leftarrow \mathcal{T}_{12} \cup \mathcal{T}_2 \models A \sqsubseteq \exists R' \text{ and } \mathcal{T}_2 \models \exists R'^- \sqsubseteq \exists S'$ 

Hence  $T_2$  is a UCQ-representation for  $T_1$  under  $\mathcal{M}$ .

| We provide a set of conditions on $2\gamma$ and $\mathcal{M} = (\mathbf{Z}_1, \mathbf{Z}_2, 2\gamma_2)$ . |                                                                                                |                                                                   |                                                                  |                                                                                                               |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                                                                           | Let $\mathcal{T}_1 = \{A \sqsubseteq B\}, B \sqsubseteq B' \in \mathcal{T}_{12}, \text{ and }$ |                                                                   |                                                                  |                                                                                                               |
|                                                                                                           | $A \sqsubseteq A' \in T_{12}$                                                                  | or $A \sqsubseteq A' \in \mathcal{T}_{12}$ or $A \sqsubseteq A''$ | or $A \sqsubseteq A' \in \mathcal{T}_{12}$ or $C \sqsubseteq A'$ | $\begin{array}{l} A \sqsubseteq A' \in \mathcal{T}_{12} \\ A \sqsubseteq A'' \\ C \sqsubseteq A' \end{array}$ |
|                                                                                                           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                          | $ \begin{array}{c} B \\ A \\ A'' \end{array} $                    | $B \longrightarrow B'$ $A \longrightarrow A'$ $C$                | $ \begin{array}{c} B \\ A \\ A'' \\ C \end{array} $                                                           |
|                                                                                                           | $D' \rightarrow A'$                                                                            | $D' \to A'$ or $A''$                                              | $D' \to \emptyset$                                               | $D' \rightarrow A''$                                                                                          |

There exists a UCQ-representation of  $\mathcal{T}_1$  under  $\mathcal{M}$  iff there exists  $D' \in \Sigma_2$  s.t.  $A \sqsubseteq D' \in \mathcal{T}_{12}$ , and for every  $D: \mathcal{T}_1 \cup \mathcal{T}_{12} \models D \sqsubseteq D'$  implies  $\mathcal{T}_1 \cup \mathcal{T}_{12} \models D \sqsubseteq B'$ .