Knowledge Base Exchange

Marcelo Arenas¹ <u>Elena Botoeva</u>² Diego Calvanese²

¹ Dept. of Computer Science, PUC Chile marenas@ing.puc.cl

² KRDB Research Centre, Free Univ. of Bozen-Bolzano, Italy *lastname@inf.unibz.it*

> Description Logics Workshop 14 July 2011, Barcelona

2 Techniques for Deciding Knowledge Base Exchange

Arenas, Botoeva, Calvanese

Knowledge Base Exchange

Conclusions

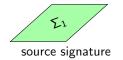
Outline

Knowledge Base Exchange

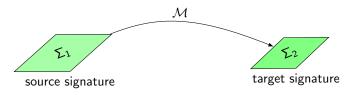
2 Techniques for Deciding Knowledge Base Exchange

3 Conclusions

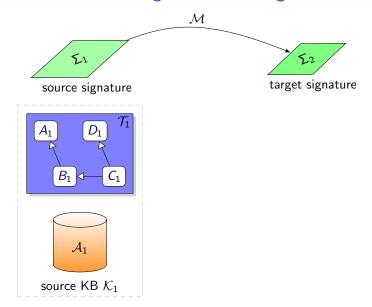
Knowledge Base Exchange



Knowledge Base Exchange

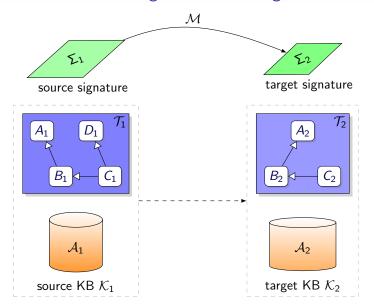


Knowledge Base Exchange



Arenas, Botoeva, Calvanese

Knowledge Base Exchange



Arenas, Botoeva, Calvanese

Knowledge Base Exchange

Mapping

A mapping specifies how a source KB should be translated into a target KB.

A mapping specifies how a source KB should be translated into a target KB.

• A mapping is a tuple $\mathcal{M}=(\Sigma_1,\Sigma_2,\mathcal{T}_{12})$, where

- Σ_1 , Σ_2 are disjoint signatures and
- \mathcal{T}_{12} is a TBox with assertions of the form
 - C₁ ⊆ C₂, where C₁ is a concept over Σ₁, C₂ is a concept over Σ₂,
 - R₁ ⊆ R₂, where R₁ is a role over Σ₁, R₂ is a role over Σ₂.

A mapping specifies how a source KB should be translated into a target KB.

• A mapping is a tuple $\mathcal{M}=(\Sigma_1,\Sigma_2,\mathcal{T}_{12})$, where

- Σ_1 , Σ_2 are disjoint signatures and
- \mathcal{T}_{12} is a TBox with assertions of the form
 - C₁ ⊆ C₂, where C₁ is a concept over Σ₁, C₂ is a concept over Σ₂,
 - R₁ ⊆ R₂, where R₁ is a role over Σ₁, R₂ is a role over Σ₂.
- Let \mathcal{I} be an interpretation of Σ_1 and \mathcal{J} an interpretation of Σ_2 . Then $(\mathcal{I}, \mathcal{J})$ satisfies \mathcal{M} , denoted $(\mathcal{I}, \mathcal{J}) \models \mathcal{M}$ if

A mapping specifies how a source KB should be translated into a target KB.

• A mapping is a tuple $\mathcal{M}=(\Sigma_1,\Sigma_2,\mathcal{T}_{12}),$ where

- Σ_1 , Σ_2 are disjoint signatures and
- \mathcal{T}_{12} is a TBox with assertions of the form
 - C₁ ⊆ C₂, where C₁ is a concept over Σ₁, C₂ is a concept over Σ₂,
 - R₁ ⊆ R₂, where R₁ is a role over Σ₁, R₂ is a role over Σ₂.
- Let \mathcal{I} be an interpretation of Σ_1 and \mathcal{J} an interpretation of Σ_2 . Then $(\mathcal{I}, \mathcal{J})$ satisfies \mathcal{M} , denoted $(\mathcal{I}, \mathcal{J}) \models \mathcal{M}$ if
 - $C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{J}}$, for each $C_1 \sqsubseteq C_2 \in \mathcal{M}$, and

A mapping specifies how a source KB should be translated into a target KB.

• A mapping is a tuple $\mathcal{M} = (\Sigma_1, \Sigma_2, \mathcal{T}_{12})$, where

- Σ_1 , Σ_2 are disjoint signatures and
- \mathcal{T}_{12} is a TBox with assertions of the form
 - C₁ ⊆ C₂, where C₁ is a concept over Σ₁, C₂ is a concept over Σ₂,
 - R₁ ⊆ R₂, where R₁ is a role over Σ₁, R₂ is a role over Σ₂.
- Let \mathcal{I} be an interpretation of Σ_1 and \mathcal{J} an interpretation of Σ_2 . Then $(\mathcal{I}, \mathcal{J})$ satisfies \mathcal{M} , denoted $(\mathcal{I}, \mathcal{J}) \models \mathcal{M}$ if

•
$$C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{J}}$$
, for each $C_1 \sqsubseteq C_2 \in \mathcal{M}$, and

• $R_1^{\mathcal{I}} \subseteq R_2^{\mathcal{J}}$, for each $R_1 \sqsubseteq R_2 \in \mathcal{M}$.

Solutions for Knowledge Base Exchange

Given an interpretation ${\mathcal I}$ of Σ_1 and a set ${\mathcal X}$ of interpretations of $\Sigma_1,$ let

$$\begin{array}{rcl} \operatorname{Sat}_{\mathcal{M}}(\mathcal{I}) &=& \{\mathcal{J} \mid (\mathcal{I}, \mathcal{J}) \models \mathcal{M}\}, \\ \operatorname{Sat}_{\mathcal{M}}(\mathcal{X}) &=& \bigcup_{\mathcal{I} \in \mathcal{X}} \operatorname{Sat}_{\mathcal{M}}(\mathcal{I}). \end{array}$$

Solutions for Knowledge Base Exchange

Given an interpretation ${\mathcal I}$ of Σ_1 and a set ${\mathcal X}$ of interpretations of $\Sigma_1,$ let

$$\begin{array}{lll} \operatorname{SAT}_{\mathcal{M}}(\mathcal{I}) &=& \{\mathcal{J} \mid (\mathcal{I}, \mathcal{J}) \models \mathcal{M}\}, \\ \operatorname{SAT}_{\mathcal{M}}(\mathcal{X}) &=& \bigcup_{\mathcal{I} \in \mathcal{X}} \operatorname{SAT}_{\mathcal{M}}(\mathcal{I}). \end{array}$$

Definition

Let $\mathcal M$ be a mapping, $\mathcal K_1$ a KB over $\Sigma_1,$ and $\mathcal K_2$ a KB over $\Sigma_2.$

• \mathcal{K}_2 is a *solution* for \mathcal{K}_1 under \mathcal{M} if:

 $\operatorname{Mod}(\mathcal{K}_2) \subseteq \operatorname{Sat}_{\mathcal{M}}(\operatorname{Mod}(\mathcal{K}_1)).$

Solutions for Knowledge Base Exchange

Given an interpretation ${\mathcal I}$ of Σ_1 and a set ${\mathcal X}$ of interpretations of $\Sigma_1,$ let

$$\begin{aligned} \operatorname{Sat}_{\mathcal{M}}(\mathcal{I}) &= \{\mathcal{J} \mid (\mathcal{I}, \mathcal{J}) \models \mathcal{M}\}, \\ \operatorname{Sat}_{\mathcal{M}}(\mathcal{X}) &= \bigcup_{\mathcal{I} \in \mathcal{X}} \operatorname{Sat}_{\mathcal{M}}(\mathcal{I}). \end{aligned}$$

Definition

Let $\mathcal M$ be a mapping, $\mathcal K_1$ a KB over $\Sigma_1,$ and $\mathcal K_2$ a KB over $\Sigma_2.$

• \mathcal{K}_2 is a *solution* for \mathcal{K}_1 under \mathcal{M} if:

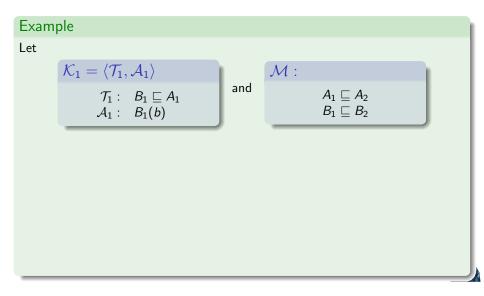
 $\operatorname{Mod}(\mathcal{K}_2) \subseteq \operatorname{Sat}_{\mathcal{M}}(\operatorname{Mod}(\mathcal{K}_1)).$

• \mathcal{K}_2 is a *universal solution* for \mathcal{K}_1 under \mathcal{M} if:

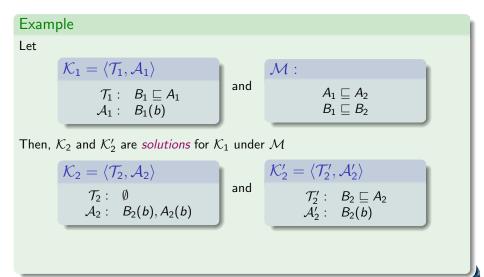
 $MOD(\mathcal{K}_2) = SAT_{\mathcal{M}}(MOD(\mathcal{K}_1)).$

Arenas, Botoeva, Calvanese

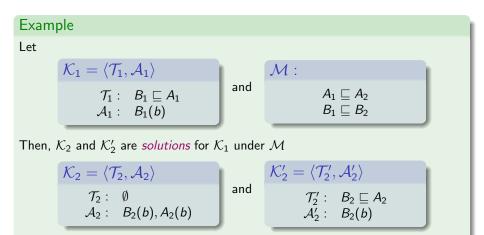
Solutions for Knowledge Base Exchange: Example



Solutions for Knowledge Base Exchange: Example



Solutions for Knowledge Base Exchange: Example



Moreover, \mathcal{K}_2 is a *universal solution* for \mathcal{K}_1 under \mathcal{M} , while \mathcal{K}'_2 is not.

Arenas, Botoeva, Calvanese

CQ-Solutions for Knowledge Base Exchange

We might want to relax the condition on solutions.

If the main reasoning task performed over target KBs is CQ answering, then we can resort to a weaker notion of solution.

CQ-Solutions for Knowledge Base Exchange

We might want to relax the condition on solutions.

If the main reasoning task performed over target KBs is CQ answering, then we can resort to a weaker notion of solution.

Definition

Let \mathcal{M} be a mapping, $\mathcal{K}_1 = \langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ a KB over Σ_1 , and \mathcal{K}_2 a KB over Σ_2 .

 K₂ is a *CQ-solution* for K₁ under M if for each CQ q over Σ₂,

 $cert(q, \langle \mathcal{T}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle) \subseteq cert(q, \mathcal{K}_2).$

CQ-Solutions for Knowledge Base Exchange

We might want to relax the condition on solutions.

If the main reasoning task performed over target KBs is CQ answering, then we can resort to a weaker notion of solution.

Definition

Let \mathcal{M} be a mapping, $\mathcal{K}_1 = \langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ a KB over Σ_1 , and \mathcal{K}_2 a KB over Σ_2 .

 K₂ is a *CQ-solution* for K₁ under M if for each CQ q over Σ₂,

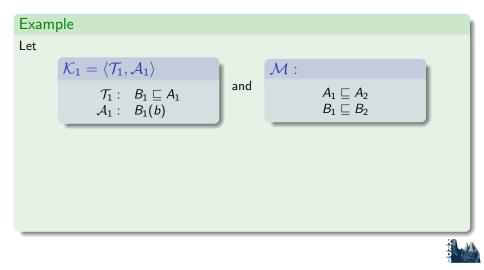
 $cert(q, \langle \mathcal{T}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle) \subseteq cert(q, \mathcal{K}_2).$

 K₂ is a *universal CQ-solution* for K₁ under M if for each CQ q over Σ₂,

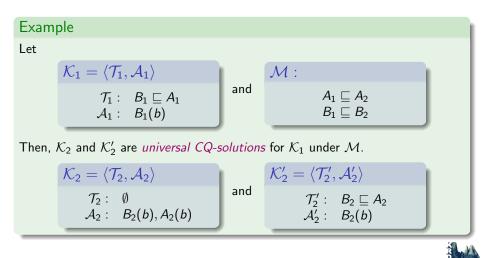
$$\operatorname{cert}(q, \langle \mathcal{T}_1 \cup \mathcal{M}, \mathcal{A}_1 \rangle) = \operatorname{cert}(q, \mathcal{K}_2).$$

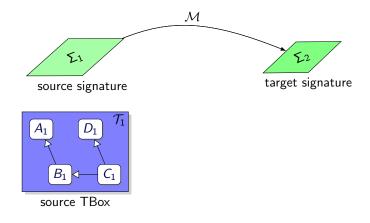
Arenas, Botoeva, Calvanese

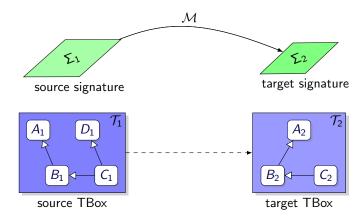
CQ-Solutions for Knowledge Base Exchange: Example

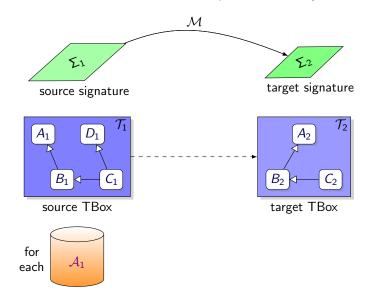


CQ-Solutions for Knowledge Base Exchange: Example

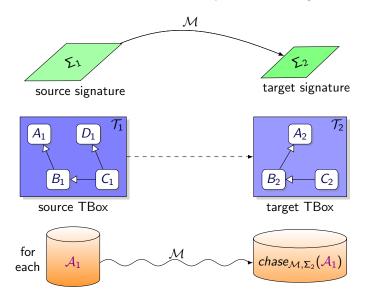


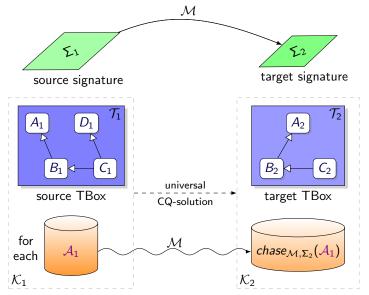






Arenas, Botoeva, Calvanese



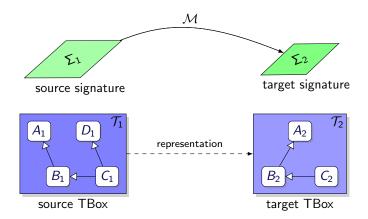


Arenas, Botoeva, Calvanese

Knowledge Base Exchange

10/27

A New Problem: Representability contd

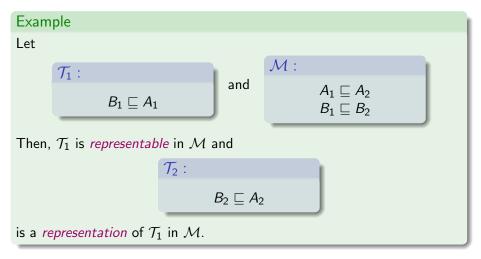


If such a \mathcal{T}_2 exists, we say that \mathcal{T}_1 is *representable* in \mathcal{M} . \mathcal{T}_2 is called a *representation* of \mathcal{T}_1 in \mathcal{M} .

Arenas, Botoeva, Calvanese

Knowledge Base Exchange

Representability: Example

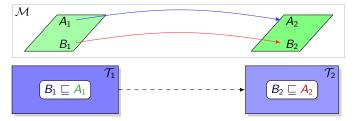


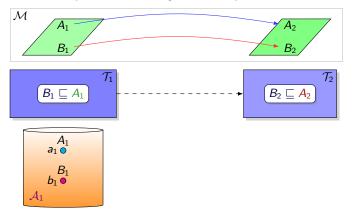
In this example (and later for the *DL-Lite* setting) we exploit that certain answers are characterised in terms of chase.

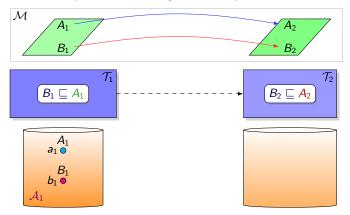
Arenas, Botoeva, Calvanese

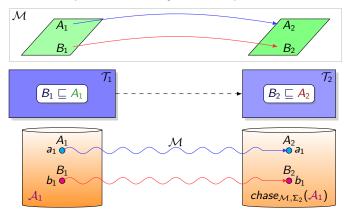
Knowledge Base Exchange

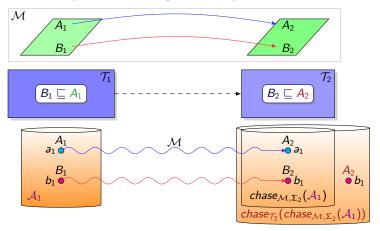
12/27

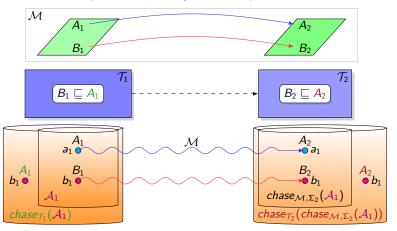




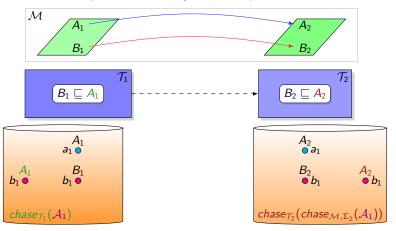




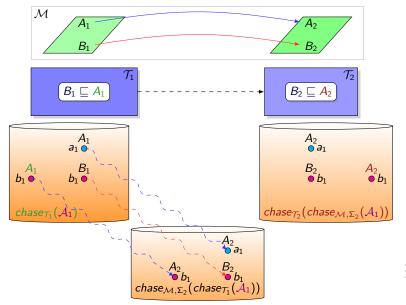




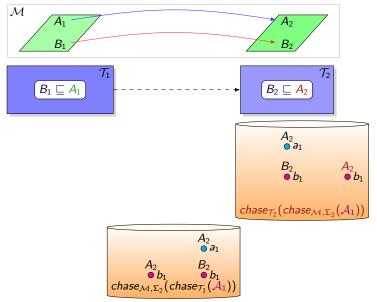
Representability: Example contd



Representability: Example contd



Representability: Example contd



Arenas, Botoeva, Calvanese

Knowledge Base Exchange

In this paper we tackle the problems for definite inclusions.

- A *DL-Lite*_R inclusion is called *definite* if its right-hand side is an atomic concept or an atomic role.
- A *DL-Lite*_{\mathcal{R}} TBox is said to be *definite* if it consists of definite inclusions.

In this paper we tackle the problems for definite inclusions.

- A *DL-Lite*_R inclusion is called *definite* if its right-hand side is an atomic concept or an atomic role.
- A *DL-Lite*_{\mathcal{R}} TBox is said to be *definite* if it consists of definite inclusions.

Specifically, we consider

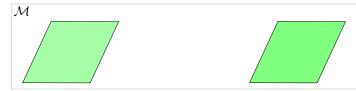
definite mappings

In this paper we tackle the problems for definite inclusions.

- A *DL-Lite*_R inclusion is called *definite* if its right-hand side is an atomic concept or an atomic role.
- A *DL-Lite*_{\mathcal{R}} TBox is said to be *definite* if it consists of definite inclusions.

Specifically, we consider

- definite mappings
 - A mapping \mathcal{M} is said to be *definite* if it is a definite TBox.



In this paper we tackle the problems for definite inclusions.

- A *DL-Lite*_R inclusion is called *definite* if its right-hand side is an atomic concept or an atomic role.
- A *DL-Lite*_{\mathcal{R}} TBox is said to be *definite* if it consists of definite inclusions.

Specifically, we consider

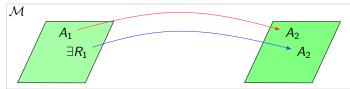
- definite mappings
 - A mapping \mathcal{M} is said to be *definite* if it is a definite TBox.

In this paper we tackle the problems for definite inclusions.

- A *DL-Lite*_R inclusion is called *definite* if its right-hand side is an atomic concept or an atomic role.
- A *DL-Lite*_{\mathcal{R}} TBox is said to be *definite* if it consists of definite inclusions.

Specifically, we consider

- definite mappings
 - A mapping \mathcal{M} is said to be *definite* if it is a definite TBox.

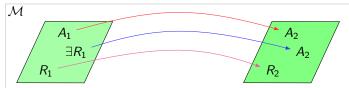


In this paper we tackle the problems for definite inclusions.

- A *DL-Lite*_R inclusion is called *definite* if its right-hand side is an atomic concept or an atomic role.
- A *DL-Lite*_{\mathcal{R}} TBox is said to be *definite* if it consists of definite inclusions.

Specifically, we consider

- definite mappings
 - A mapping \mathcal{M} is said to be *definite* if it is a definite TBox.

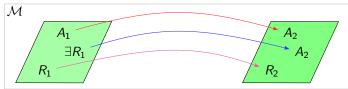


In this paper we tackle the problems for definite inclusions.

- A *DL-Lite*_R inclusion is called *definite* if its right-hand side is an atomic concept or an atomic role.
- A DL-Lite_R TBox is said to be *definite* if it consists of definite inclusions.

Specifically, we consider

- definite mappings
 - A mapping \mathcal{M} is said to be *definite* if it is a definite TBox.



- and *DL-Lite_{RDFS}* KBs.
 - ▶ We call *DL-Lite_{RDFS}* the fragment of *DL-Lite_R* obtained by considering only definite *DL-Lite_R* TBoxes.

Arenas, Botoeva, Calvanese

Knowledge Base Exchange

Knowledge Base Exchange

Conclusions

Outline

Knowledge Base Exchange

2 Techniques for Deciding Knowledge Base Exchange

3 Conclusions

Computing (Universal) (CQ-)Solutions

Proposition

Let \mathcal{M} be a definite mapping and $\mathcal{K}_1 = \langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ a $DL\text{-Lite}_{RDFS}$ KB over Σ_1 . Then $\langle \emptyset, chase_{\mathcal{M}, \Sigma_2}(chase_{\mathcal{T}_1}(\mathcal{A}_1)) \rangle$ is a universal solution for \mathcal{K}_1 under \mathcal{M} .

Computing (Universal) (CQ-)Solutions

Proposition

Let \mathcal{M} be a definite mapping and $\mathcal{K}_1 = \langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ a $DL\text{-Lite}_{RDFS}$ KB over Σ_1 . Then $\langle \emptyset, chase_{\mathcal{M}, \Sigma_2}(chase_{\mathcal{T}_1}(\mathcal{A}_1)) \rangle$ is a universal solution for \mathcal{K}_1 under \mathcal{M} .

Note: in *DL-Lite_{RDFS}*, the chase is always finite.

Computing (Universal) (CQ-)Solutions

Proposition

Let \mathcal{M} be a definite mapping and $\mathcal{K}_1 = \langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ a $DL\text{-Lite}_{RDFS}$ KB over Σ_1 . Then $\langle \emptyset, chase_{\mathcal{M}, \Sigma_2}(chase_{\mathcal{T}_1}(\mathcal{A}_1)) \rangle$ is a universal solution for \mathcal{K}_1 under \mathcal{M} .

Note: in *DL-Lite_{RDFS}*, the chase is always finite.

Theorem

For definite mappings and DL-Lite_{RDFS} KBs, the problems of computing (universal) (CQ-)solutions can be solved in polynomial time.

Let us consider the checking problem associated with representability.

Let us consider the checking problem associated with representability.

```
Checking Representation

Input: a definite mapping \mathcal{M},

a DL-Lite<sub>RDFS</sub> TBox \mathcal{T}_1 over \Sigma_1,

a DL-Lite<sub>RDFS</sub> TBox \mathcal{T}_2 over \Sigma_2.

Output: Yes, if \mathcal{T}_2 is a representation of \mathcal{T}_1 in \mathcal{M},
```

NO, otherwise.

Let us consider the checking problem associated with representability.

```
Checking Representation

Input: a definite mapping \mathcal{M},

a DL-Lite<sub>RDFS</sub> TBox \mathcal{T}_1 over \Sigma_1,

a DL-Lite<sub>RDFS</sub> TBox \mathcal{T}_2 over \Sigma_2.

Output: Yes, if \mathcal{T}_2 is a representation of \mathcal{T}_1 in \mathcal{M},

i.e., for each \mathcal{A}_1, \langle \mathcal{T}_2, chase_{\mathcal{M}, \Sigma_2}(\mathcal{A}_1) \rangle is a universal

CQ-solution for \langle \mathcal{T}_1, \mathcal{A}_1 \rangle under \mathcal{M}.

NO, otherwise.
```


Let us consider the checking problem associated with representability.

```
Checking Representation

Input: a definite mapping \mathcal{M},

a DL-Lite<sub>RDFS</sub> TBox \mathcal{T}_1 over \Sigma_1,

a DL-Lite<sub>RDFS</sub> TBox \mathcal{T}_2 over \Sigma_2.

Output: Yes, if \mathcal{T}_2 is a representation of \mathcal{T}_1 in \mathcal{M},

i.e., for each \mathcal{A}_1, \langle \mathcal{T}_2, chase_{\mathcal{M}, \Sigma_2}(\mathcal{A}_1) \rangle is a universal

CQ-solution for \langle \mathcal{T}_1, \mathcal{A}_1 \rangle under \mathcal{M}.

NO, otherwise.
```

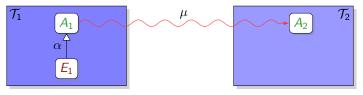
We base our technique on the notion of the *translation set* M(α, μ).

Let α be a *DL-Lite_{RDFS}* inclusion over Σ_1 , and $\mu \in \mathcal{M}$.

α	μ	ν	β
$E_1 \sqsubseteq A_1$	$A_1 \sqsubseteq A_2$	$E_1 \sqsubseteq E_2$	$E_2 \sqsubseteq A_2$
$\exists R_1 \sqsubseteq A_1$	$A_1 \sqsubseteq A_2$	$\exists R_1 \sqsubseteq E_2$	$E_2 \sqsubseteq A_2$
		$R_1 \sqsubseteq R_2$	$\exists R_2 \sqsubseteq A_2$
$R_1 \sqsubseteq S_1$	$S_1 \sqsubseteq S_2$	$R_1 \sqsubseteq R_2$	$R_2 \sqsubseteq S_2$
	$\exists S_1 \sqsubseteq A_2$	$\exists R_1 \sqsubseteq E_2$	$E_2 \sqsubseteq A_2$
		$R_1 \sqsubseteq R_2$	$\exists R_2 \sqsubseteq A_2$
	$\exists S_1^- \sqsubseteq A_2$	$\exists R_1^- \sqsubseteq E_2$	$E_2 \sqsubseteq A_2$
		$R_1 \sqsubseteq R_2$	$\exists R_2^- \sqsubseteq A_2$

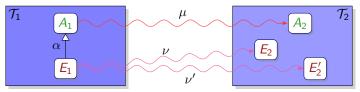
Let α be a *DL-Lite_{RDFS}* inclusion over Σ_1 , and $\mu \in \mathcal{M}$.

Then $M(\alpha, \mu)$, is the set of DL-Lite_{RDFS} inclusions over Σ_2 such that, if there exists an inclusion $\nu \in \mathcal{M}$ as in the table, then $\beta \in M(\alpha, \mu)$.



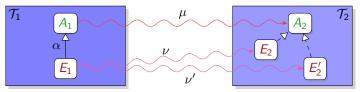
Arenas, Botoeva, Calvanese

Let α be a *DL-Lite_{RDFS}* inclusion over Σ_1 , and $\mu \in \mathcal{M}$.



Let α be a *DL-Lite_{RDFS}* inclusion over Σ_1 , and $\mu \in \mathcal{M}$.

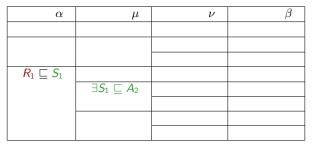
Then $M(\alpha, \mu)$, is the set of DL-Lite_{RDFS} inclusions over Σ_2 such that, if there exists an inclusion $\nu \in \mathcal{M}$ as in the table, then $\beta \in M(\alpha, \mu)$.

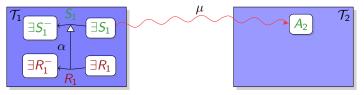


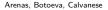
Arenas, Botoeva, Calvanese

Knowledge Base Exchange

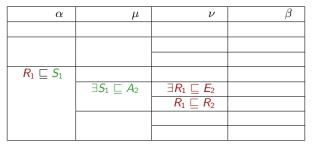
Let α be a *DL-Lite_{RDFS}* inclusion over Σ_1 , and $\mu \in \mathcal{M}$.

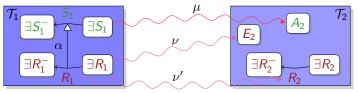




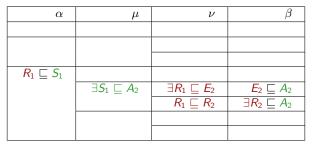


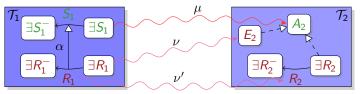
Let α be a *DL-Lite_{RDFS}* inclusion over Σ_1 , and $\mu \in \mathcal{M}$.





Let α be a *DL-Lite_{RDFS}* inclusion over Σ_1 , and $\mu \in \mathcal{M}$.





Reverse Translation Set $M^{-}(\beta, \nu)$

Let β be a *DL-Lite_{RDFS}* inclusion over Σ_2 , and $\nu \in \mathcal{M}$.

α	μ	ν	β
$E_1 \sqsubseteq A_1$	$A_1 \sqsubseteq A_2$	$E_1 \sqsubseteq E_2$	$E_2 \sqsubseteq A_2$
$\exists R_1 \sqsubseteq A_1$	$A_1 \sqsubseteq A_2$	$\exists R_1 \sqsubseteq E_2$	
$R_1 \sqsubseteq S_1$	$\exists S_1 \sqsubseteq A_2$		
$R_1 \sqsubseteq S_1$	$\exists S_1^- \sqsubseteq A_2$	$\exists R_1^- \sqsubseteq E_2$	
$\exists R_1 \sqsubseteq A_1$	$A_1 \sqsubseteq A_2$	$R_1 \sqsubseteq R_2$	$\exists R_2 \sqsubseteq A_2$
$R_1 \sqsubseteq S_1$	$\exists S_1 \sqsubseteq A_2$		
$R_1 \sqsubseteq S_1$	$\exists S_1^- \sqsubseteq A_2$	$R_1 \sqsubseteq R_2$	$\exists R_2^- \sqsubseteq A_2$
$R_1 \sqsubseteq S_1$	$S_1 \sqsubseteq S_2$	$R_1 \sqsubseteq R_2$	$R_2 \sqsubseteq S_2$

We get the following characterisation of representations.

Proposition

Let \mathcal{M} be a definite mapping, \mathcal{T}_1 a DL-Lite_{RDFS} TBox over Σ_1 , and \mathcal{T}_2 a DL-Lite_{RDFS} TBox over Σ_2 . Then \mathcal{T}_2 is a representation of \mathcal{T}_1 in \mathcal{M} if and only if

- for each inclusion α, s.t. T₁ ⊨ α, and for each inclusion μ ∈ M left-compatible with rhs(α), there exists β ∈ M(α, μ), s.t. T₂ ⊨ β, and
- for each inclusion β, s.t. T₂ ⊨ β, and for each inclusion ν ∈ M right-compatible with *lhs*(β), there exists α ∈ M⁻(β, ν), s.t. T₁ ⊨ α.

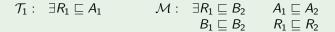
Deciding Representability

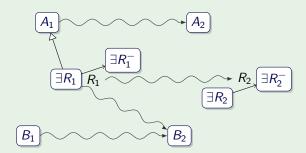
Theorem

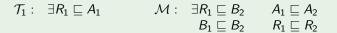
Let \mathcal{M} be a definite mapping and \mathcal{T}_1 a DL-Lite_{RDFS} TBox over Σ_1 . Then we can check whether \mathcal{T}_1 is representable in \mathcal{M} in polynomial time.

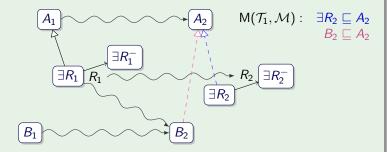
Proof.

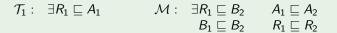
- Take $M(\mathcal{T}_1, \mathcal{M}) = \bigcup M(\alpha, \mu)$, where the union ranges over all α , s.t. $\mathcal{T}_1 \models \alpha$, and $\mu \in \mathcal{M}$ is left-compatible with $rhs(\alpha)$;
- Remove from M(T₁, M) every β s.t. there exists an inclusion ν ∈ M right-compatible with *lhs*(β) and for each α ∈ M⁻(β, ν), T₁ ⊭ α. Let the resulting TBox be denoted with T₂ = Rep(T₁, M).
- Solution Of \mathcal{T}_2 is a representation of \mathcal{T}_1 in \mathcal{M} .
 - If the check succeeds, then \mathcal{T}_1 is representable in \mathcal{M} .
 - Otherwise, \mathcal{T}_1 is not representable in \mathcal{M} .

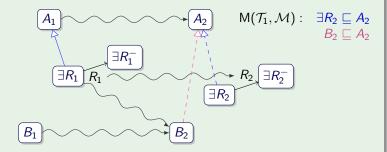


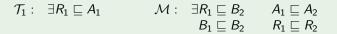


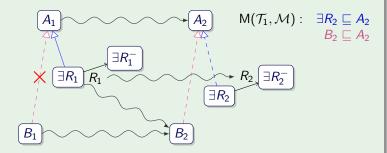


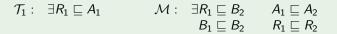


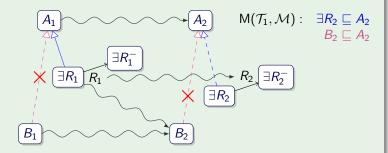


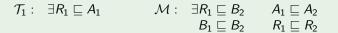


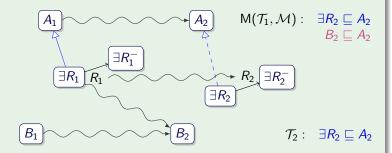




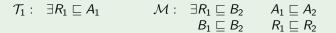


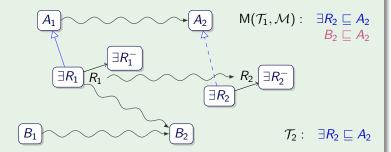






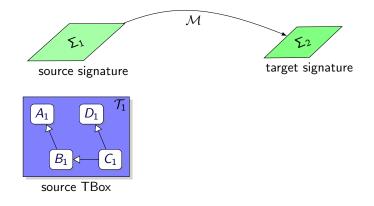
Example

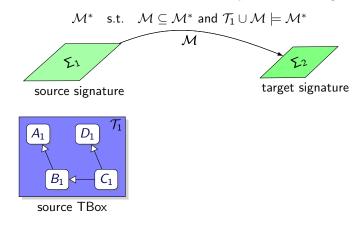


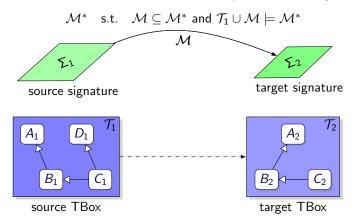


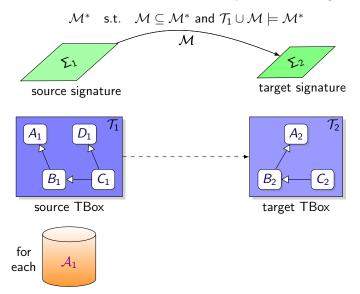
\mathcal{T}_1 is *representable* in \mathcal{M} and \mathcal{T}_2 is a representation of \mathcal{T}_1 in \mathcal{M} .

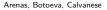
Knowledge Base Exchange

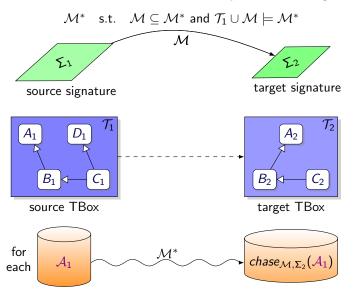


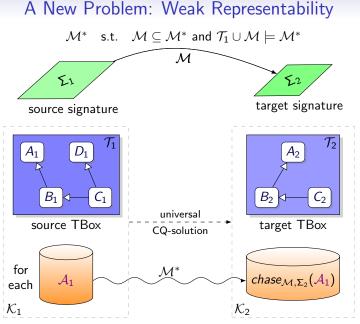












Arenas, Botoeva, Calvanese

Knowledge Base Exchange

23/27

Deciding Weak Representability

Theorem

Let \mathcal{M} be a definite mapping and \mathcal{T}_1 a DL-Lite_{RDFS} TBox over Σ_1 . Then \mathcal{T}_1 is weakly representable in \mathcal{M} .

Conclusions

Outline

Knowledge Base Exchange

2 Techniques for Deciding Knowledge Base Exchange

Conclusions and Future Work

- We have specialised the framework for KB exchange to the case of DLs.
- We have defined new reasoning tasks: representability and weak representability of a TBox in a mapping.
- We have shown the following results for definite mappings and *DL-Lite_{RDFS}* KBs:
 - the problems of computing (universal) (CQ-)solutions can be solved in polynomial time.
 - the problem of representability of a TBox in a mapping is decidable in polynomial time.
 - ▶ every *DL-Lite_{RDFS}* TBox is weakly representable in a definite mapping.
- We plan to extend the results to the case of full *DL-Lite*_R. The issues to explore:
 - labelled nulls in the chase
 - disjointness constraints

Conclusions

Thank you for your attention!

Arenas, Botoeva, Calvanese