Query-Based Entailment and Inseparability for \mathcal{ALC} Ontologies

Elena Botoeva

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

joint work with Carsten Lutz, Vladislav Ryzhikov, Frank Wolter and Michael Zakharyaschev

Elena Botoeva(FUB)

Query-Based Entailment and Inseparability for \mathcal{ALC} Ontologies

Query Inseparability for Ontologies

By an **ontology** \mathcal{O} we mean

- a knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, or
- a **TBox** \mathcal{T} .

Query answering over ontologies is an important reasoning task.

Query Inseparability for Ontologies

By an **ontology** \mathcal{O} we mean

- a knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, or
- a **TBox** \mathcal{T} .

Query answering over ontologies is an important reasoning task.

Ontologies \mathcal{O}_1 and \mathcal{O}_2 are **query-inseparable** when we **cannot distinguish** between them by means of queries.

Query Inseparability for Ontologies

By an **ontology** \mathcal{O} we mean

- a knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, or
- a **TBox** \mathcal{T} .

Query answering over ontologies is an important reasoning task.

Ontologies \mathcal{O}_1 and \mathcal{O}_2 are **query-inseparable** when we **cannot distinguish** between them by means of queries.

Applications

- extracting modules
- comparing **versions** of an ontology
- forgetting some symbols from an ontology
- exchanging knowledge

Query Inseparability for Knowledge Bases

Consider a class of queries $Q \in \{CQ, UCQ\}$, and a signature Σ of concept and role names.

KBs $\mathcal{K}_1 = (\mathcal{T}_1, \mathcal{A}_1)$ and $\mathcal{K}_2 = (\mathcal{T}_2, \mathcal{A}_2)$ are $\Sigma - \mathcal{Q}$ inseparable, $\mathcal{K}_1 \equiv_{\Sigma}^{\mathcal{Q}} \mathcal{K}_2$, if

 $\mathcal{K}_1 \models \mathbf{q}(\boldsymbol{a}) \quad \iff \quad \mathcal{K}_2 \models \mathbf{q}(\boldsymbol{a})$

for all Σ -queries $\mathbf{q} \in \mathcal{Q}$ and all individuals \boldsymbol{a} in \mathcal{K}_1 and \mathcal{K}_2 .

Query Inseparability for Knowledge Bases

Consider a class of queries $Q \in \{CQ, UCQ\}$, and a signature Σ of concept and role names.

KBs $\mathcal{K}_1 = (\mathcal{T}_1, \mathcal{A}_1)$ and $\mathcal{K}_2 = (\mathcal{T}_2, \mathcal{A}_2)$ are $\Sigma - \mathcal{Q}$ inseparable, $\mathcal{K}_1 \equiv_{\Sigma}^{\mathcal{Q}} \mathcal{K}_2$, if

 $\mathcal{K}_1 \models \mathbf{q}(\boldsymbol{a}) \quad \iff \quad \mathcal{K}_2 \models \mathbf{q}(\boldsymbol{a})$

for all Σ -queries $\mathbf{q} \in \mathcal{Q}$ and all individuals \boldsymbol{a} in \mathcal{K}_1 and \mathcal{K}_2 .

Query inseparability is different from logical equivalence:

 $\mathcal{K}_1 = (\{A \sqsubseteq B\}, \{A(a)\}) \text{ and } \mathcal{K}_2 = (\emptyset, \{A(a), B(a)\})$

 $\mathcal{K}_1 \not\equiv \mathcal{K}_2$ but $\mathcal{K}_1 \equiv_{\{A,B\}}^{(U)CQ} \mathcal{K}_2$

Query inseparability is different from logical equivalence:

 $\mathcal{K}_1 = (\{A \sqsubseteq B\}, \{A(a)\}\}) \text{ and } \mathcal{K}_2 = (\emptyset, \{A(a), B(a)\})$

 $\mathcal{K}_1 \not\equiv \mathcal{K}_2$ but $\mathcal{K}_1 \equiv_{\{A,B\}}^{(U)CQ} \mathcal{K}_2$

Query inseparability is different from logical equivalence:

$$\mathcal{K}_1 = (\{ A \sqsubseteq B \}, \{ A(a) \}) \text{ and } \mathcal{K}_2 = (\emptyset, \{ A(a), B(a) \})$$

$$\mathcal{K}_1 \not\equiv \mathcal{K}_2$$
 but $\mathcal{K}_1 \equiv_{\{A,B\}}^{(U)CQ} \mathcal{K}_2$

UCQ-inseparability and CQ-inseparability are distinct:

$$\mathcal{K}_1 = (\{A \sqsubseteq B \sqcup C\}, \{A(a)\}) \text{ and } \mathcal{K}_2 = (\emptyset, \{A(a)\})$$

Query inseparability is different from logical equivalence:

$$\mathcal{K}_1 = (\{A \sqsubseteq B\}, \{A(\alpha)\}\}) \text{ and } \mathcal{K}_2 = (\emptyset, \{A(\alpha), B(\alpha)\}\})$$
$$\mathcal{K}_1 \not\equiv \mathcal{K}_2 \text{ but } \mathcal{K}_1 \equiv_{\{A, B\}}^{(U)CQ} \mathcal{K}_2$$

UCQ-inseparability and CQ-inseparability are distinct:

$$\mathcal{K}_{1} = (\{ A \sqsubseteq B \sqcup C \}, \{ A(\alpha) \}) \text{ and } \mathcal{K}_{2} = (\emptyset, \{ A(\alpha) \})$$
$$\mathcal{K}_{1} \neq_{\{A,B,C\}}^{UCQ} \mathcal{K}_{2} \text{ but } \mathcal{K}_{1} \equiv_{\{A,B,C\}}^{CQ} \mathcal{K}_{2}$$

Query inseparability is different from logical equivalence:

$$\mathcal{K}_1 = (\{A \sqsubseteq B\}, \{A(a)\}\}) \text{ and } \mathcal{K}_2 = (\emptyset, \{A(a), B(a)\})$$
$$\mathcal{K}_1 \not\equiv \mathcal{K}_2 \text{ but } \mathcal{K}_1 \equiv_{(A, B)}^{(U)CQ} \mathcal{K}_2$$

UCQ-inseparability and CQ-inseparability are distinct:

$$\mathcal{K}_{1} = (\{ A \sqsubseteq B \sqcup C \}, \{ A(a) \}) \text{ and } \mathcal{K}_{2} = (\emptyset, \{ A(a) \})$$
$$\mathcal{K}_{1} \not\equiv_{\{A,B,C\}}^{UCQ} \mathcal{K}_{2} \text{ but } \mathcal{K}_{1} \equiv_{\{A,B,C\}}^{CQ} \mathcal{K}_{2}$$

Signature makes a difference:

$$\mathcal{K}_1 \equiv^{\mathsf{UCQ}}_{\{A\}} \mathcal{K}_2$$

Query Inseparability for TBoxes

Consider signatures: Σ_1 for ABoxes and Σ_2 for queries.

The Boxes \mathcal{T}_1 and \mathcal{T}_2 are (Σ_1, Σ_2) -(U)CQ inseparable, $\mathcal{T}_1 \equiv_{(\Sigma_1, \Sigma_2)}^{(U)CQ} \mathcal{T}_2$, if

$$(\mathcal{T}_1, \mathcal{A}) \equiv_{\Sigma_2}^{(U)CQ} (\mathcal{T}_2, \mathcal{A})$$

for all Σ_1 -ABoxes \mathcal{A} .

Main Results

KBs:

- (rooted) CQ-inseparability **undecidable** for *ALC*.
- (rooted) UCQ-inseparability **2ExpTime-complete**.

TBoxes:

- (rooted) CQ-inseparability **undecidable** for *ALC*.
- CQ/UCQ-inseparability **2ExpTime-complete** for Horn-ALC.
- rooted CQ/UCQ-inseparability ExpTime-complete for Horn-ALC.

See you at the poster!

