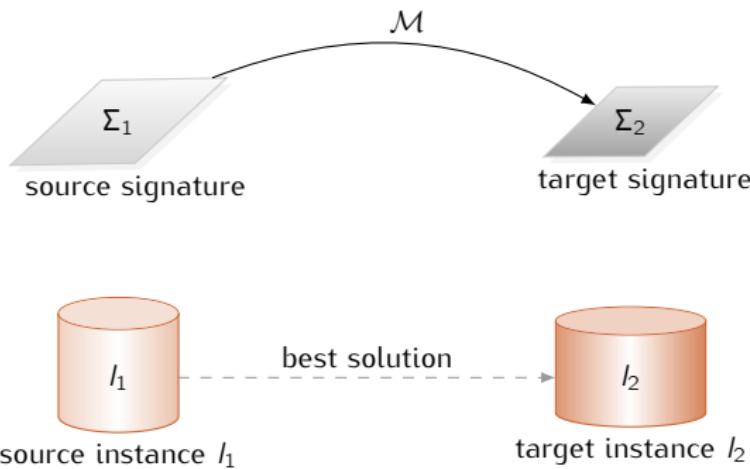


Description Logic Knowledge Base Exchange

Elena Botoeva
supervised by Diego Calvanese

KRDB Research Centre, Free University of Bozen-Bolzano, Italy
lastname@inf.unibz.it


Reasoning Web and Rules Doctoral Consortium
10 September 2012, Vienna

Data Exchange

Problem

given a mapping \mathcal{M} and a source instance l_1 ,
compute a target instance l_2 that is a *solution* for l_1 under \mathcal{M} .

Data Exchange Example

$$\mathcal{M} : \quad \forall a, t. (\quad AuthorOf(a, t) \quad \rightarrow \quad \exists g. BookInfo(t, a, g) \quad)$$

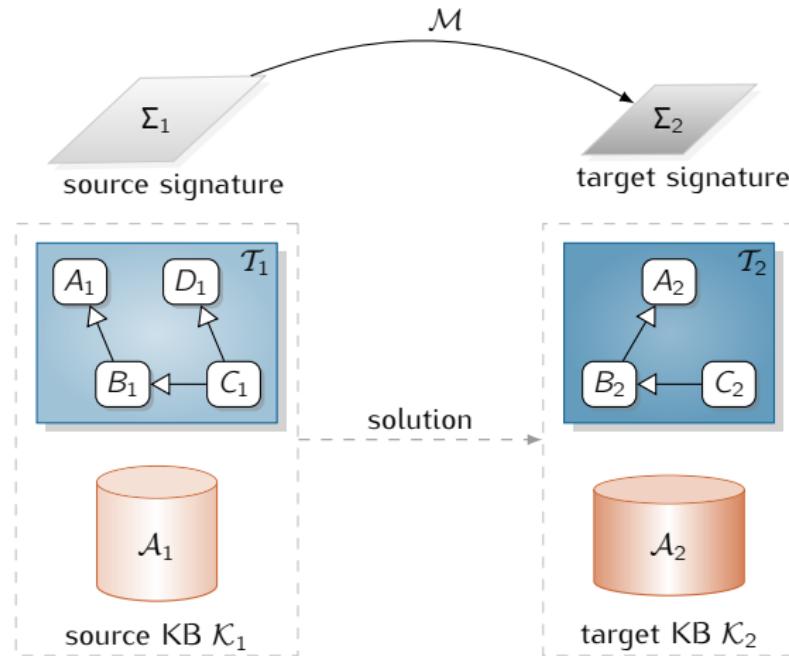
$I_1 :$

<i>AuthorOf</i>	
nabokov	lolita
tolkien	lotr

Data Exchange Example

$$\mathcal{M} : \forall a, t. (\quad AuthorOf(a, t) \quad \rightarrow \quad \exists g. BookInfo(t, a, g) \quad)$$

$I_1 :$	$AuthorOf$	$BookInfo$
	nabokov tolkien	lolita lotr


I_2 is a **universal** solution for I_1 under \mathcal{M} .

Knowledge Base Exchange

Problem

given a mapping \mathcal{M} and a source knowledge base (KB) \mathcal{K}_1 ,
compute a target KB \mathcal{K}_2 that is a *solution* for \mathcal{K}_1 under \mathcal{M} .

Knowledge Base Exchange: Example

$$\mathcal{M} : \begin{array}{ccc} \exists AuthorOf^- & \sqsubseteq & \exists BookGenre \\ AuthorOf^- & \sqsubseteq & WrittenBy \\ TaxNumber & \sqsubseteq & SSN \end{array}$$

$$\mathcal{T}_1 : \begin{array}{l} \exists AuthorOf \sqsubseteq Author \\ Author \sqsubseteq \exists TaxNumber \end{array}$$

$\mathcal{A}_1 :$

<i>AuthorOf</i>	
nabokov	lolita
tolkien	lotr

Knowledge Base Exchange: Example

$\mathcal{M} :$

$$\begin{array}{lcl} \exists \text{AuthorOf}^- & \sqsubseteq & \exists \text{BookGenre} \\ \text{AuthorOf}^- & \sqsubseteq & \text{WrittenBy} \\ \text{TaxNumber} & \sqsubseteq & \text{SSN} \end{array}$$

$T_1 :$

$$\begin{array}{l} \exists \text{AuthorOf} \sqsubseteq \text{Author} \\ \text{Author} \sqsubseteq \exists \text{TaxNumber} \end{array}$$

$\mathcal{A}_1 :$

AuthorOf	
nabokov	lolita
tolkien	lotr

\mathcal{A}_2 is a **universal** solution for $\langle T_1, \mathcal{A}_1 \rangle$ under \mathcal{M} .

$\mathcal{A}_2 :$

WrittenBy	
lolita	nabokov
lotr	tolkien

SSN	
nabokov	m_1
tolkien	m_2

BookGenre	
lolita	m_3
lotr	m_4

Knowledge Base Exchange: Example

$$\mathcal{M} : \begin{array}{ccc} \exists \text{AuthorOf}^- & \sqsubseteq & \exists \text{BookGenre} \\ \text{AuthorOf}^- & \sqsubseteq & \text{WrittenBy} \\ \text{TaxNumber} & \sqsubseteq & \text{SSN} \end{array}$$

$$\mathcal{T}_1 : \begin{array}{l} \exists \text{AuthorOf} \sqsubseteq \text{Author} \\ \text{Author} \sqsubseteq \exists \text{TaxNumber} \end{array}$$

$$\mathcal{A}_1 : \begin{array}{|c|c|} \hline \text{AuthorOf} & \\ \hline \text{nabokov} & \text{lolita} \\ \text{tolkien} & \text{lotr} \\ \hline \end{array}$$

Knowledge Base Exchange: Example

$$\mathcal{M} : \begin{array}{c} \exists AuthorOf^- \\ AuthorOf^- \\ TaxNumber \end{array} \sqsubseteq \begin{array}{c} \exists BookGenre \\ WrittenBy \\ SSN \end{array}$$

$$T_1 : \begin{array}{c} \exists AuthorOf \sqsubseteq Author \\ Author \sqsubseteq \exists TaxNumber \end{array}$$

$$T_2 : \begin{array}{c} \exists WrittenBy^- \sqsubseteq \exists SSN \\ \exists WrittenBy \sqsubseteq \exists BookGenre \end{array}$$

$$\mathcal{A}_1 : \begin{array}{|c|c|} \hline & AuthorOf \\ \hline nabokov & lolita \\ tolkien & lotr \\ \hline \end{array}$$
$$\mathcal{A}_2 : \begin{array}{|c|c|} \hline & WrittenBy \\ \hline lolita & nabokov \\ lotr & tolkien \\ \hline \end{array}$$

$\langle T_2, \mathcal{A}_2 \rangle$ is a universal-UCQ solution for $\langle T_1, \mathcal{A}_1 \rangle$ under \mathcal{M} .

Reasoning Problems

We are interested in

- computing universal solutions

Does the **core** exist?

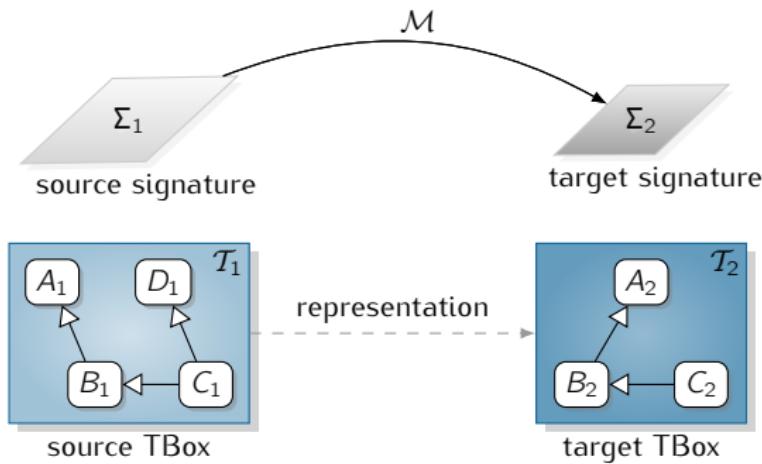
(Is there a **finite subset** of $chase_{T_1 \cup M, \Sigma_2}(\mathcal{A}_1)$ homomorphically equivalent to $chase_{T_1 \cup M, \Sigma_2}(\mathcal{A}_1)$)

- ▶ PSPACE-hard
- ▶ in EXPTIME

- computing universal-UCQ solutions

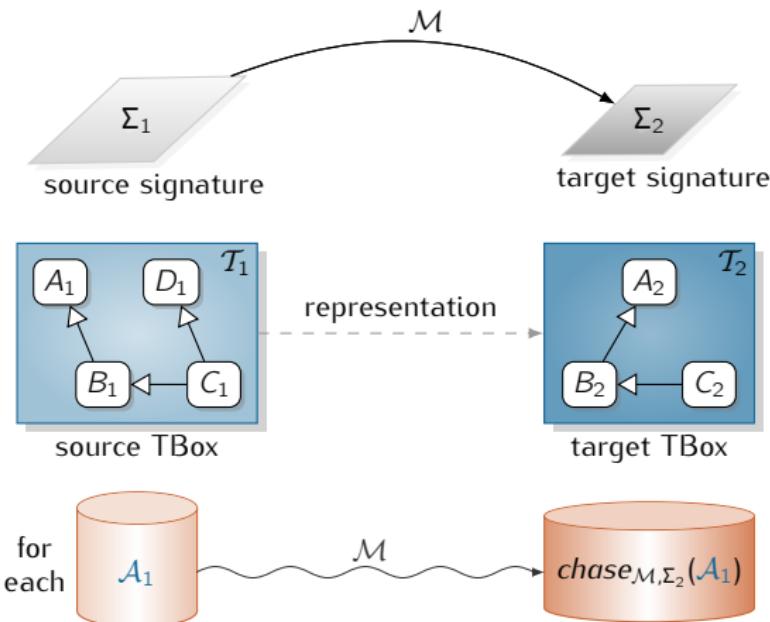
Is $chase_{T_2}(\mathcal{A}_2)$ homomorphically equivalent to $chase_{T_1 \cup M, \Sigma_2}(\mathcal{A}_1)$?

- maximizing the implicit knowledge in the target


Universal solutions vs. Universal-UCQ solutions

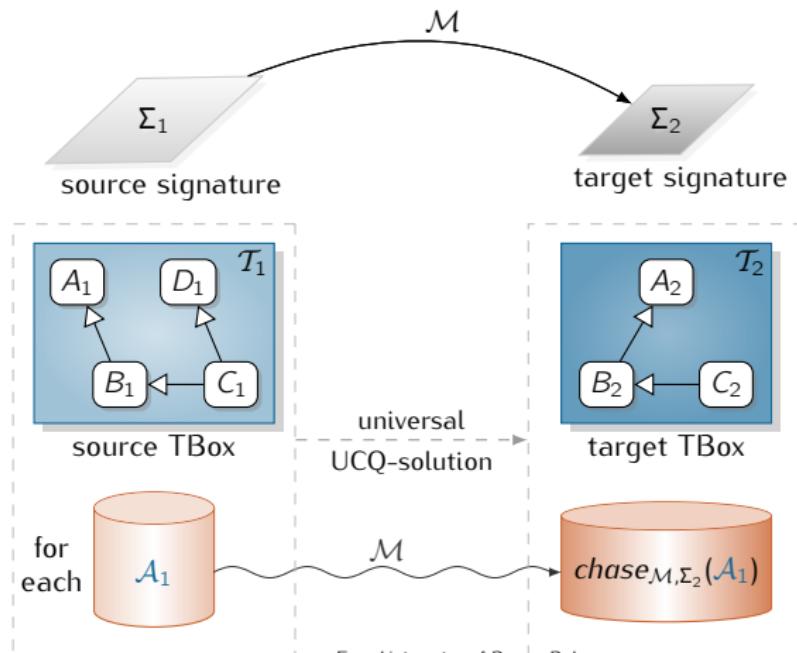
Representability Problem

Problem


given a mapping \mathcal{M} and a source TBox \mathcal{T}_1 ,
compute (if exists) a target TBox \mathcal{T}_2 such that for each source ABox \mathcal{A}_1 ,
 $\langle \mathcal{T}_2, \text{chase}_{\mathcal{M}, \Sigma_2}(\mathcal{A}_1) \rangle$ is a universal UCQ-solution for $\langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ under \mathcal{M} .

Representability Problem

Problem


given a mapping \mathcal{M} and a source TBox \mathcal{T}_1 ,
compute (if exists) a target TBox \mathcal{T}_2 such that for each source ABox \mathcal{A}_1 ,
 $\langle \mathcal{T}_2, \text{chase}_{\mathcal{M}, \Sigma_2}(\mathcal{A}_1) \rangle$ is a universal UCQ-solution for $\langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ under \mathcal{M} .

Representability Problem

Problem

given a mapping \mathcal{M} and a source TBox \mathcal{T}_1 ,
compute (if exists) a target TBox \mathcal{T}_2 such that for each source ABox \mathcal{A}_1 ,
 $\langle \mathcal{T}_2, \text{chase}_{\mathcal{M}, \Sigma_2}(\mathcal{A}_1) \rangle$ is a universal UCQ-solution for $\langle \mathcal{T}_1, \mathcal{A}_1 \rangle$ under \mathcal{M} .

Representability: Example

$$\mathcal{M} : \begin{array}{ccc} \exists \text{AuthorOf}^- & \sqsubseteq & \exists \text{BookGenre} \\ \text{AuthorOf}^- & \sqsubseteq & \text{WrittenBy} \\ \exists \text{TaxNumber} & \sqsubseteq & \text{SSN} \end{array}$$

$$T_1 : \begin{array}{c} \exists \text{AuthorOf} \sqsubseteq \\ \exists \text{TaxNumber} \end{array}$$

$$T_2 : \begin{array}{c} \exists \text{WrittenBy}^- \sqsubseteq \exists \text{SSN} \\ \exists \text{WrittenBy} \sqsubseteq \exists \text{BookGenre} \end{array}$$

T_2 is a **representation** of T_1 under \mathcal{M} .

Representability: Example

$$\mathcal{M} : \begin{array}{lcl} \exists \text{AuthorOf}^- & \sqsubseteq & \exists \text{BookGenre} \\ \text{AuthorOf}^- & \sqsubseteq & \text{WrittenBy} \\ \text{TaxNumber} & \sqsubseteq & \text{SSN} \end{array}$$

$$\mathcal{T}_1 : \exists \text{AuthorOf} \sqsubseteq \exists \text{TaxNumber}$$

$$\mathcal{T}_2 : \begin{array}{l} \exists \text{WrittenBy}^- \sqsubseteq \exists \text{SSN} \\ \exists \text{WrittenBy} \sqsubseteq \exists \text{BookGenre} \end{array}$$

AuthorOf	
nabokov	lolita

TaxNumber	
smith	000

$chase_{\mathcal{M}, \Sigma_2}(\mathcal{T}_1) :$

WrittenBy	
lolita	nabokov

SSN	
smith	000

BookGenre	
lolita	n_1

\mathcal{T}_2 is a representation of \mathcal{T}_1 under \mathcal{M} .

Representability Problem

Theorem

Representability problem is decidable in polynomial time.

Note that given $\langle T_1, A_1 \rangle$ and \mathcal{M} , if T_1 is representable under \mathcal{M} , then we can construct a universal UCQ-solution of polynomial size.

Note also that the query inseparability problem for $DL\text{-}Lite_{\mathcal{R}}$ TBoxes is PSPACE-hard.

Open Problems and Future Work

Open problems

- the exact computational complexity of computing (universal) solutions,
- computing a universal solution in presence of disjointness assertions in the mapping,
- computing a universal UCQ-solution,

Future work:

- implementation of the representability algorithm,
- study KB exchange for more expressive/other languages, such as $DL\text{-}Lite_{\mathcal{R}}$ with $\exists R.A$, $DL\text{-}Lite_{horn}$, and \mathcal{EL} ,
- study composition and inversion of mappings.

Thank you
for your attention!

