
1

First ACM/NIST Role Based Access Control Workshop, Gaithersburg, USA, Dec. 1995

A POLICY BASED ROLE FRAMEWORK
FOR ACCESS CONTROL

Emil C. Lupu, Damian A. Marriott, Morris S. Sloman and Nicholas Yialelis

Department of Computing, Imperial College, 180 Queen’s Gate London SW7 2BZ, UK
email: {e.c.lupu, d.marriott, m.sloman, n.yialelis}@doc.ic.ac.uk

Abstract

We outline a framework for specifying management roles which defines both authorisation and
obligation policies for a particular management position. The policies define a relationship
between a subject (manager) domain and a target domain in terms of activities permitted or
forbidden, which must be or must not be performed. Policies grouped within a role refer to the
same subject domain and propagate to the managers assigned to the roles. We cater for both
human and automated managers and include interactions and concurrency constraints to specify
aspects of the inter-role relationships in our framework. The paper presents the role based
management framework and explains the concepts of policy based roles, then briefly describes
the implementation of access control based on domain membership.

1 Introduction

Role theory identifies concepts such as roles and positions for enterprise modelling in order to
specify organisational structure and activities for individuals in the organisation. In [Biddle 79]
a Role is defined as “a collection of rights and duties” and a Position describes a status
within the organisation. The role specifies management actions which represents the behaviour
or dynamic aspects of the position which is essentially a static concept. A role thus identifies
the authority, responsibility, functions and interactions, associated with a position such as vice
president, board director, security administrator, operator responsible for reactor number three
etc. We model rights as authorisation policies which specify what activities a subject is
permitted (or forbidden) to perform on a set of target objects. Duties are modelled as
obligation policies which specify what activities a subject1 must or must not perform on a
set of target objects. A role is the set of authorisation and obligation policies which have a
particular manager position as a subject [Sloman 94]. The advantage of using a position as the
subject of the policies is that individuals can be assigned to or withdrawn from their positions
without having to respecify policies. Although our role framework is aimed at supporting
generalised management of distributed systems, the authorisation aspect of our roles
corresponds to Role Based Access Control (RBAC). Our framework can therefore be
used as the basis for specifying and implementing RBAC.

As mentioned above, our main motivation for implementing roles in the management system
was to simplify the specification of policies so that they do not have to be changed when
managers are assigned to new positions. The responsibility for assignment of individuals to
roles can be clearly separated from the responsibility for specification of the roles. In addition a
role provides a clear grouping of the policies for a position which simplifies the analysis of the
permissions and responsibilities assigned to that position. In a conventional access control
approach, based on access control lists, determining the permissions assigned to a subject may
require an in-depth search of all target objects in the system. The people assigned to roles do
not work in isolation but interact and cooperate with other roles. We have therefore extended
our role framework to permit the specification of interactions between roles reflecting the
relationships between different roles which occur in an organisation. The overall motivation for

1 We use the term “subject” to refer to an object representing a user, human manager or an automated agent
which can initiate activites within the system

2

implementing roles in a computer system, which supports people, is thus to simplify the
specification of the system as well as to provide a clearly defined specification of the rights and
duties related to the organisational structure.

In section 2 of the paper we discuss the components of our role framework. Section 3 gives a
brief description of the access control mechanisms needed to enforce the authorisation policies.
Section 4 presents our conclusions and further work.

2 Components of a Management Role Framework

2 . 1 Domains

We use domains to group objects to which a common policy applies, to partition management
responsibility or for the convenience of human managers [Moffett 93]. Objects may be
members of multiple domains, e.g. a user may be a member of two different departments in an
organisation or a workstation may be member of a security maintenance domain to reflect
different management responsibilities. A subdomain is a domain object which is a member of a
parent domain. Policies applying to a domain will, by default, propagate to sub-domains and
to the objects within them, although this propagation can optionally be disabled. Our concept
of a domain is very similar to that of a directory in a typical hierarchical file system, and
performs a similar function to that of a group in access control but domains can be used to
group targets as well as subjects, as there is a need to specify policies with respect to both
subject and target groups in large distributed systems.

User Representation
Domain

Manager Position Domain

Role
Policies

Target Managed
Objects

Target Managers

Manager
Adapter

Role

Human Manager
Assigned to Role

Figure 1 Position Domains and Roles

The role framework caters for both human and automated managers, as the underlying system
deals in the same way with an automated agent and an object representing a human. A User
Representation Domain (URD) is a persistent representation of the human within the
system. When a person logs in, an adapter object (c.f. login shell) is created within the URD
to act as the interface process between the person and the computer system. A role manager
position is represented by a Manager Position Domain. Assigning a manager to a position
merely implies including the manager’s URD in the position domain; role policies will
propagate and apply to the adapter (see Fig. 1) created within the URD. Multiple URDs may
be included in a position domain to represent the sharing of a position by a number of
managers and a URD can be included in several position domains if the manager performs
multiple roles [Sloman 94]. The policies of the role relate to target objects or to target
managers, reflecting that a manager may be responsible for managing subordinate managers.

2 . 2 Management Policies

Policies define a relationship between a subject and a target domain. This relationship expresses
either an authorisation – what activities the managers are permitted or forbidden to perform,
or an obligation – what activities the managers must or must not perform on the managed
objects. The mode of the policy distinguishes between positive authorisation (permitted: A+),
negative authorisation (forbidden: A-), positive obligation (must: O+) and negative obligation

3

(must not: O-). We permit the specification of high-level negative authorisation policies but our
current system does not implement them in order to avoid conflicts (see section 2.3).
Obligation policies are triggered by events while authorisations are considered to be valid until
revocation. Constraints limit the applicability of the policy e.g. between the hours of 09.00 and
17.00 and implement the concept of context based restrictions since they relate to particular
attributes of the subjects and targets or to the state of the system. The general format of the
policies is given below with optional arguments within brackets:

policy_id mode [trigger] subject { action } target [when constraint] ;

where ‘Subject’ and ‘Target’ denote sets of managers and target objects specified by domain
scope expressions. The policy format and use is described in [Marriott 95]. Example policies
are:

/* anonymous users are authorised to browse the Presentation Agent */
p_purchase_1 A+ u:users { browse() } Presentation_AG
 when u.type == anonymous ;

/* on a connection request event, the security
 manager has to authenticate the user */
p_access_1 O+ on connection_request security_manager

{ authenticate() } u:users ;

/* anonymous users are forbidden to purchase */
p_purchase_2 A- anonusers { purchase() } Presentation_AG

Many negative authorisation policies can be refined into positive authorisations with
constraints. For example the above negative authorisation policy can be converted into a
positive authorisation applying to users of type not anonymous, as indicated below.

/* non anonymous users are authorised to purchase */
p_purchase_3 A+ u:users { purchase() } Presentation_AG
 when u.type != anonymous ;

Policies can specify actions at different levels of abstraction. A refinement hierarchy can
therefore be built from the more abstract policies to the enactable leaf level policies (rules)
[Marriott 95]. Abstract policies can only be interpreted by humans while leaf level policies are
interpreted by automated components. The management policies, grouped in a role, scope the
responsibilities relating to that role in terms of the activities to be performed, the target objects
to which the activities relate but also in terms of the abstraction of the tasks to be performed.
Policies can be changed, enabled or disabled dynamically to change the behaviour of the
management system. Obligation policies are translated into a TCL script which is downloaded
to the automated managers determined from the subject domain. Authorisation policies are
given to access control components on nodes containing target objects, for enforcement as
described in section 3.

An authorisation policy corresponds to “permission” in security terminology. Assigning a
permission to a user is equivalent to including the user in the policy’s subject domain.
Similarly the policy can be made to apply to a new object or domain by including it within the
policy’s target domain. Authorisation policies could be implemented as either capabilities or as
access control entries – we have chosen the latter. Policies are represented as objects and the
policies pertaining to a role can be grouped into a domain. An authorisation policy can then
specify which managers can modify or update the role policies. Another authorisation policy
can specify the managers permitted to include or remove URD’s from the role manager position
domain, so it is easy to separately control the specification or updating of roles as well as the
assignment of users to roles.

The domain service maintains information on the policies applying to a domain, so the access
rights of a role can be determined from the authorisation policies applying to the role position

4

domain. Similarly it is possible to determine who has access to a target object or domain from
the policies applying to it, so either subject or target audits of the system can be achieved.

2 . 3 Extensions to the Role Framework

Large systems may have many roles which exhibit relationships such as client-server,
supervisory-subordinate, contractual, collaborative peer-to-peer etc. Obligation and
authorisation policies are insufficient to fully specify all aspects of role relationships and
interactions. There is a need for an interaction protocol to define permitted interaction
messages or invocation sequences which may be one-to-one or multi-party. There is also a
need to specify concurrency constraints between the activities relating to one or more
roles, i.e. sequencing and synchronisation of the activities, e.g. activity A must be performed
before B; activities C, D & E can be performed in parallel but must all be completed before F is
started. We provide a high level concurrency notation which is translated into compound events
understood and enacted by a monitoring service [Mansouri-Samani 95].

As represented in Fig. 2 our framework identifies for a role position: (i) the authorisation and
obligation policies related to target objects which may be other managers or shared resources,
(ii) the relationships between roles which reflect the organisational structure, and (iii) both
intra- and inter-role concurrency constraints. This framework is aimed at general purpose
management but can be used to specify RBAC which forms a subset of its full functionality.

Interaction
Protocol
Specification

Intra-role
Concurrency
Constraints
Specifications

Obligation &
Authorisation
Policies

Concurrency
 Constraints
Specification

For Each Related Role
For Target

Managed Objects

Manager
Position
Domain

Obligation &
Authorisation
Policies

Figure 2 General purpose management roles

Conflicts can occur between management policies and an appropriate conflict detection tool is
needed to check the policies within a role or between related roles [Moffett 94]. Modality
conflicts potentially can arise from overlapping domains or if an obligation policy does not have
a relevant authorisation policy to permit the activity (see Fig. 3). It is not practical nor desirable
to prevent such conflicts at the specification level in all cases as the only way to realise it would
be by preventing domains from overlapping. When such conflicts are allowed, criteria to
establish the policy precedence have to be established. We have been experimenting with
criteria based on domain nesting.

Subjects Targets

Activities

A+

A-

Figure 3 Conflicting Authorisation Policies

5

There are some application specific conflicts often arising from the principle of separation of
duties e.g. the person permitted to authorise payment for an invoice is not permitted to sign
cheques. There is a need for specifying a meta-policy i.e. policies about policies, which can
help in the conflict detection and resolution regarding application specific conflicts. The meta-
policies specify a logical predicate (we have experimented using Prolog for the implementation)
and a domain of policies as the scope for the evaluation of the predicate. In terms of roles the
meta-policies are constraints on the role structure describing acceptable role configurations
[Sandhu 96]. The above mentioned example of the invoice payment can be written as:

any(P1,P2) belonging (domain_scope_expression)

false <- intersect (P1.managers, P2.managers)

&& belongs(‘authorise’, P1.activities)

&& belongs(‘sign’, P2.activities)

&& belongs(‘cheque’, intersect(P1.targets, P2.targets))

where P1 and P2 are the policies allowing a manager to authorise the payment of an invoice and
to sign a payment cheque.

2 . 4 Role classes and inheritance

There has been considerable emphasis on the use of object oriented techniques for specifying
roles [Sandhu 96, Hu 94, Nyanchama 94] but the use of inheritance to model the hierarchical
structure of an organisation and the use of inheritance for reuse of role specification are
sometimes confused. For example, a project supervisor may have responsibility over a test
engineer and a programmer but this does not necessarily imply that the project supervisor role
should inherit the capabilities of the other two roles. However in other cases it may be useful
to define a new role class by inheritance from other role classes e.g. a specialist physician has
all the capabilities of a junior doctor plus additional ones. Object-orientation also permits the
reuse of a role class specification by being able to create multiple role instances from it. For
example in a hospital there may be many nurses with a similar set of duties and permissions.
Specifying a role class for nurses or doctors permits multiple instances of these roles to be
created, but it must be possible to associate each role instance with a particular set of target
objects reflecting the specific patients or resources for which the each nurse or doctor has
responsibility.

In our approach, creating multiple instances from a role class results in a position and target
domains for each role instance, but with the same policies between position and target domains.
These domains can then be populated with the relevant target objects to represent specific
responsibility and a URD can be included in the position domain when a user is assigned to the
role. It is also possible to define a policy class from which policy instances can be created.
These concepts of class are analogous to contract templates where the contractual parties and
the representative from the organisation enforcing the contract are not specified in the template
but after instantiation.

3 Authorisation Policy Implementation

A security architecture is being developed which aims at enforcing authorisation policies and
allowing the development of secure distributed applications on existing operating systems that
do not support distributed security. A high degree of authentication and access control
transparency is achieved by employing security agents on a per-host basis. These agents are
trusted to act on behalf of the application objects on their hosts. Specifically, an
Authentication Agent (AA) executes the authentication protocols on behalf of the
application objects on the host. In addition, an Access Control Agent (ACA) holds copies
of the authorisation policies applying to the objects on its host and determines whether a policy
exists to permit a subject to access a target on its host. The Access Control List paradigm is
combined with pseudo-capabilities which are used as hints to improve the time-efficiency of the
access control decision mechanism. When a subject (which may act on behalf of a user) intends
to invoke operations on a remote target, a secure channel is established between these two

6

objects. The channel is identified by a unique channel identifier (chid) and is associated with
cryptographic information (session key and cryptosystem used for secure communication), as
well as access control information. The ACA on the subject host sends to the ACA on the target
host the domain membership certificates and the pseudo capabilities (list of policies applying to
the manager invoking the operation) which are used as hints to search the space of policies
applying to the target object (Fig. 4).

Policy

Operations

Subject Target

Subject Access
Control Agent

Target Access
Control agent

Determine
Pseudo
Capabilities
List

Subject Host Target Host

Pseudo Capabilities (Hints)

Domain Membership
 Certificates

Determine
Enabled
Policies
List

Propagate Policies

Figure 4 Propagation of access control policies

The target Access Control Agent selects the policies permitting the subject of the established
channel to access the target. The list of these policies is referred to as Enabled Policy List
(EPL) and it is given to the Reference Monitor (RM) located in the address space of the target
(Fig. 5).

Reference
 Monitor

Access
Control
 Agent

Authentication
 Agent

Invoke Operation

Reject

Grant

Target

Subject

EPL

 Policy
Service

Domain
Service

Authentication
 Service

Host

Figure 5 Access Control Overview

A RM makes access control decisions for target objects in its address space using the EPL that
applies to a particular subject-target pair (identified by the chid of the established secure
channel). Note that the determination of the EPL has to be done once for the lifetime of a secure
channel and is based upon the identity and domain membership of the subject. This is
authenticated by the target Authentication Agent using a trusted Authentication Service based
on symmetric cryptography. A detailed description of the authentication mechanism is given in
[Yialelis 95]. When a new secure channel has been established, the session key for that channel
is given to the cryptographic facilities in the address spaces of the subject and target objects.
So, further communication between these two objects does not involve the authentication

7

agents. A prototype of this architecture (detailed in [Yialelis 96]) is being implemented using
OrbixTM.

4 Conclusions and further work

The model presented in this paper satisfies many of the requirements of a RBAC framework.
Our domains permit grouping of both subjects and targets and help to cater for large scale
systems in that policies apply to all objects in a domain.

Our authorisation policies provide a very flexible means of specifying access control
permissions, and include constraints to limit the applicability of the policies. Because policies
explicitly identify both subjects and targets, and domains maintain information about policies
applying to them, it is easy to analyse the policies to determine those applying to a specific
subject or target.

It is clear that roles provide a useful means of modelling organisational structure. However the
inter-role duties, responsibilities and interactions need to be specified explicitly as in our role
framework. Inheritance relationships between role classes indicate reuse of role specifications
which may have nothing to do with hierarchical organisational structures e.g. an engineer may
possess access rights that a director cannot inherit as they pertain to activities requiring special
skills.

Roles should not be seen as a means of solving all access control problems. A user assigned to
a role should still have access to private resources such as diaries, email, personal files which
pertain to that individual user and have nothing to do with their role. They will also wish to
personalise their “desktop” to meet their own requirements, so it is not possible to fully define a
user environment in terms of roles. Instead the role defines the additional specific applications
and target objects accessible as part of the role. Applications can dynamically tailor themselves
to specific roles e.g. an application running on a user’s workstation is given the authorisation
policy for the user’s role and only the menus, operations and target domains available for that
role are made visible to the user. In our role framework, any policies (permissions) specified in
terms of the URD are personal to the user and are not affected by the roles to which the URD is
assigned i.e. private target domains are still accessible. Access control decisions are made in
terms of domain membership, which in the case of roles is the role manager position domain,
and in the case of individuals is the URD.

The specification of the access control is drawn from the organisational policies which are often
formulated in terms of what the users are not allowed to do, which corresponds to negative
authorisations. Allowing both positive and negative authorisations within the same model,
leads to potential inconsistent specifications which may be hard to detect and to resolve in an
automatic way. Not allowing negative authorisations within the model does not completely
solve the problem of inconsistencies. In particular conflicts related to the principle of separation
of duty (i.e. the same person cannot be assigned to two particular roles) are application
dependent and occur even if negative authorisations are banned. Our meta policies are used to
define the constraints on permitted policies and the role structure to detect or prevent such
conflicts. Another type of context dependent constraint e.g. based on time, is used to limit the
applicability of policies. The fact that there are multiple roles with managers executing activities
in parallel result in the need for specifying concurrency constraints such as: activity a1 is
authorised only if preceded by activity a2.

Our framework makes it easy to define a role administrator role who can create, delete and
modify roles so the role structure is evolutionary and can be easily tailored to the needs of the
organisation [Rein 93]. Other manager roles may be permitted to assign or remove subordinate
managers but not change the specification of the roles in the system.

TM Orbix is registered Trademark of Iona Technologies Ltd. Dublin, Ireland [Iona 93] .

8

In the current model, if the URD is included in multiple position domains, it inherits all the
access rights from the various roles to which the manager is assigned. We are investigating the
possibility of establishing connections between objects in the URD and adapter objects in the
position domain. This would permit us to implement concepts such as “sessions” (see [Sandhu
96]). The current state of our work on roles is that tools exist for specifying policy hierarchies
and we are evaluating techniques for specifying interaction protocols between roles,
concurrency and meta-policies [Lupu 95].

Other issues remain to be investigated including delegation and negotiated assignments. A very
simple form of delegation of a role from Manager A to Manager B can be achieved by replacing
A’s URD in the position domain by B’s URD. In addition we are experimenting with extended
authorisation policies which define what rights, with respect to a target domain, a subject can
delegate to a delegatee to permit the delegatee to perform activities on behalf of the subject
[Yialelis 95].

Acknowledgements

We acknowledge support from the EPSRC RoleMan Project, European Commission for the
Esprit funded SysMan project (7026) and from Swiss Bank.

References

The Imperial College reports and papers are available on the Web from:

 http://www-dse.doc.ic.ac.uk or by FTP from dse.doc.ic.ac.uk

[Biddle 79] B. J. Biddle and E. J. Thomas, “Role Theory: Concepts and Research,”. New
York: Robert E. Krieger Publishing Company, 1979.

[Hu 94] M. Hu, S. Demurjian, T. Ting, “The Factors that Influence Apropos Security
Modeling and Analysis in the ADAM Object-Oriented Design Environment in J. Biskup
et. al eds. Database Security VIII, Status and Prospects, Proc. IFIP WG11.3 Conf. on
Database Security, North Holland, 1994.

[Iona 93] IONA, “OrbixTM - A Technical Overview,” IONA Technologies Ltd. Dublin,
Ireland, Technical Report PN: PR-TEC-7-5, July 1993.

[Lupu 95] E. C. Lupu and M. Sloman, “An approach to Role based management for
Distributed Systems,” Imperial College - London, Research Report DoC 95/9, July 1995.

[Mansouri-Samani 95]M. Mansouri-Samani, “GEM- A Generalised Event Monitoring
Language for Distributed Systems”, Imperial College - London, Research Report DoC
95/8, 1995.

[Moffett 93] J. Moffett and M.Sloman, User and Mechanism Views of Distributed System
Management, IEE/IOP/BCS Distributed Systems Engineering, vol. 1, no. 1, pp. 37-47,
Aug. 1993.

[Moffett 94] J. Moffett and M. Sloman, Policy Conflict Analysis in Distributed Systems
Management, Ablex Publishing Journal of Organizational Computing, Vol. 4, No. 1, pp.
1-22, 1994.

[Marriott 95] D. A. Marriott, M. Sloman, and N. Yialelis, “Management Policy Service for
Distributed Systems,” Imperial College - London Research Report DoC 95/10, Sep.
1995.

[Nyanchama 94] N. Nyanchama, S. Osborn, “Access Rights Administration in role-
based security systems, in J. Biskup et. al eds. Database Security VIII, Status and
Prospects, Proc. IFIP WG11.3 Conf. on Database Security, North Holland, 1994, pp
37-56

[Rein 93] G. L. Rein, B. Singh and J. Knutson “The Grand Challenge: Building
Evolutionary Technologies” 26th Annual Hawaii International Conference on System
Sciences, vol. 4, pp. 23-31, 1993.

9

[Sandhu 96] R. Sandhu, E. Coyne, H. Feinstein, C. Youman “Role Based Access Control
Models, To be published in IEEE Computer 1996.

[Sloman 94] M. Sloman, “Policy Driven Management for Distributed Systems,” Journal of
Network and Systems Management, vol. 2, no. 4, pp. 333-360, 1994.

[Yialelis 95] N. Yialelis and M. Sloman, “An Authentication Service Supporting Domain
Based Access Control Policies,” Imperial College - London, Research Report DoC
95/13, September 1995.

[Yialelis 96] N. Yialelis and M. Sloman, “A Security Framework Supporting Domain Based
Access Control in DistributedSystems”, IEEE Proceedings of the Internet Society
Symposium on Network and Distributed Systems Security”, San-Diego, Feb. 1996

