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We introduce quantified interpreted systems, a semantics to reason about knowledge in
multi-agent systems in a first-order setting. Quantified interpreted systems may be used to
interpret a variety of first-order modal epistemic languages with global and local terms,
quantifiers, and individual and distributed knowledge operators for the agents in the
system. We define first-order modal axiomatisations for different settings, and show that
they are sound and complete with respect to the corresponding semantical classes.
The expressibility potential of the formalism is explored by analysing two MAS scenarios:
an infinite version of the muddy children problem, a typical epistemic puzzle, and a version
of the battlefield game. Furthermore, we apply the theoretical results here presented to
the analysis of message passing systems [R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning
about Knowledge, MIT Press, 1995; L. Lamport, Time, clocks, and the ordering of events in
a distributed system, Communication of the ACM 21 (7) (1978) 558–565], and compare
the results obtained to their propositional counterparts. By doing so we find that key
known meta-theorems of the propositional case can be expressed as validities on the
corresponding class of quantified interpreted systems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Modal logics for reasoning about knowledge, or modal epistemic logics, have been widely studied in the artificial intel-
ligence community for several years. The interest in this area is directed both towards fundamental theoretical research,
covering topics such as axiomatisability, completeness, decidability, and complexity of these formalisms [3–5], as well as to
the application of modal epistemic languages to the specification and verification of multi-agent systems [20,53,64].

The typical epistemic language extends propositional logic by adding n modalities Ki representing the knowledge of
agent i in a group A = {1, . . . ,n} of agents. The use of these formalisms as specification languages is nowadays so main-
stream as to require little justification: these are rather expressive languages, well-understood from a theoretical point of
view [14,49].

For expressiveness purposes epistemic logic has been extended in several directions. In one line of research modalities for
distributed and common knowledge have been added to the basic formalism [14,15]. In another one, the epistemic language
has been enriched with temporal operators under the assumption of a given model of time, e.g., linear or branching, discrete
or continuous [29,48,70]. In yet another direction, epistemic logic has been studied at the predicate level [36,43,51], thus
allowing for richer specifications.
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This paper takes inspiration from this last line of research, and is intended to contribute to the subject of first-order
epistemic logic for the specification of multi-agent systems (MAS). Specifically, we provide first-order epistemic languages
with a computationally grounded semantics [65] given in terms of quantified interpreted systems (QIS). We believe that QIS
are a natural extension to first-order of interpreted systems, the typical semantical framework for epistemic logics in MAS
[14,53]. Further, we analyse from an epistemic perspective the theoretical implications of different first-order extensions:
quantification domains indexed to agents and to computational states, domains of intensional objects, etc. One of the main
results of this paper consists in showing that all the semantical classes introduced are finitely axiomatisable. This is ob-
tained by adapting standard techniques in quantified modal logic [1,16,19,30] to the epistemic frameworks here analysed.
We also show that the techniques in [15] for proving completeness of epistemic languages with distributed knowledge can
be extended to first-order. Finally, the formalisms presented allow to study in a first-order setting message passing sys-
tems, a typical framework in distributed systems [38,52], revealing that meta-theorems on message passing systems can be
expressed as validities in the corresponding class of quantified interpreted systems.

1.1. First-order epistemic logic in knowledge representation

Although quantified modal logic (QML) has a reputation for being a source of incompleteness [10,19,57], quantification
is an expressive feature that has often been considered in the literature on knowledge representation and AI. For instance,
when specifying the behaviour of MAS, quantification is so natural and convenient that one feels compelled to bring it
explicitly into the syntax. As it is maintained in [39]:

“the power of FOL [first-order logic] is used not so much to deal with infinities but to deal with incomplete knowledge.” ([39], p. 81)

Moreover, in knowledge representation the power of first-order logic is welcome every time agents reason about:

• relational statements, as in “agent i knows that message μ was sent by agent a to agent b”, or formally,

KiSent(a,b,μ)

• functional dependencies and identity, as in “agent i knows that message μ is the encryption of message μ′ with key k”,
or formally,

Ki(μ = enc(k,μ′))

• infinite domains of individuals, or finite domains whose cardinality cannot be bounded in advance: “agent i has to read any
e-mail before deleting it”,

∀μ(Delete(i,μ) → Read(i,μ))

• quantification on agents: “the child of any process knows who launched it”

∀iKchild(i)Launched(i, child(i))

Furthermore, in the context of logics for knowledge it is well known that epistemic modalities can be combined with
quantifiers to formalise de re/de dicto knowledge [16,30], expressing concepts not expressible at the propositional level. For
instance, agent i might know that every computation produces an output, thus having the de dicto knowledge expressed in
the following specification:

∀comp Ki ∃y Output(comp, y)

but he might not know the actual output of every computation. Therefore, the following de re specification would not be
satisfied:

∀comp ∃y Ki Output(comp, y)

However, the use of first-order modal logic in MAS specifications is sometimes frowned upon: why should we use an
undecidable language when a decidable one does the job reasonably well already? Is the price that quantification brings in
justified? While these objections are certainly sensible, we believe that their strength has been increasingly weakened by
recent progress in MAS verification by model checking [13,18,44,54] and advances in the theory of QML.

In the model checking approach [6,31,47] the decision problem is tackled not by checking validity, but simply by con-
sidering model satisfaction. In other words, we do not check whether a formula representing a specification is satisfiable in
some model, but whether it is true on the model representing all possible evolutions of a given system. While the former
problem is undecidable for QML, the latter might be decidable at least for many interesting fragments, further investigations
being required.

In addition, recent contributions on axiomatisability [58,63] and decidability [25,27,62] of quantified modal logic, includ-
ing both positive [11,23,24,56] and negative results [12,26,59,61] have shown that useful QML fragments are axiomatisable
and even decidable, raising hopes that some quantified MAS logic may also be axiomatisable and decidable.
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Our motivation for the present contribution comes from an interest in reasoning about multi-agent systems, whose high-
level properties may usefully be modelled by epistemic formalisms suitably extended to predicate logic. Before turning to
the formal machinery, we review the main approaches to first-order epistemic formalisms in knowledge representation and
artificial intelligence.

1.2. State of the art

The study of epistemic logic in a first-order setting has a long and established tradition in AI. Among the early con-
tributions we highlight [17,22], where some semantical and philosophical issues about identity in epistemic contexts are
explored. More recent works focus on the computational and planning abilities of agents [39,50], where first-order epis-
temic logic (FOEL) is used as a specification language for agents. In [51] a theory of action is presented, which takes into
account the knowledge prerequisites to action and the effects of action on knowledge.

First-order logic has also been extensively applied to the deductive machinery of knowledge bases. In [36,37] a logic of
belief on a decidable form of first-order entailment is presented, and in [41,42] these investigations are further pursued by
considering restricted forms of first-order doxastic logic. FOEL is also briefly discussed in classic textbooks [14,49], along
with its Kripke semantics and some significant validities, even though there is no attempt to extend interpreted systems
to first-order, nor completeness issues are tackled. Also, [32,33] introduces applications of FOEL to game theory, while [2,7]
discusses epistemic formalisms in the context of security protocol. In an orthogonal dimension to the above, [21] presents
an analysis of common knowledge in multi-agent systems with infinitely many agents.

First-order epistemic logics for MAS specification are used in [67–69], where they are studied mostly in relation to the
MAPLE programming language for agents. In [67] the quantified epistemic temporal logic QUETL is presented in order to
develop a verification methodology for multi-agent systems. First-order logic appears as the base of a number of other agent
theories, such as BDI logics [55], the KQML framework [8], and the L O R A framework [66], together with modalities for
mental attitudes (knowledge, belief, intention, desire), as well as temporal and dynamic operators. However, most of the
current literature on agent theories have so far fallen short of a systematic analysis of the formal machinery underlying
these frameworks. Often the theoretical properties (axiomatisability, decidability, complexity) of these MAS formalisms are
not the main focus of these investigations. Indeed, certain frameworks are so rich that it is extremely unlikely to devise any
finite axiomatisation. Still, these references are relevant for the present investigations as they are among the few to have
explicitly addressed the subject of first-order modal languages in a MAS setting.

From a purely theoretical perspective, quantified modal logic has received much attention with a wealth of contributions
on axiomatisability [11,58,63], decidability [12,25,62], and complexity [24,27] of fragments of QML. In [62] the monodic
fragment of quantified modal logic, where at most one free variable appears in the scope of modal operators, is introduced,
and decidability of various subfragments is proved. In [23,25] similar results are obtained for monodic fragments of first-
order temporal logic, while the complexity of some of these formalisms is analysed in [24,27]. Further, [63] provides a
complete axiomatisation of monodic first-order validities on the natural numbers. Also the monodic fragment of FOEL has
been explored. In [61] monodic fist-order epistemic logic with common knowledge is proved to be decidable, and in [58,59]
this fragment is axiomatised.

The lines of work above constitute the theoretical and applied background against which this research is set.

1.3. The present contribution

This paper extends the current state of the art in first-order epistemic logic by introducing a family of provably complete
first-order epistemic logics with global and local terms. While the denotation of the former is rigid, i.e., it is the same
in every computational state, the latter’s depends on the state in which these expressions are interpreted. The quantified
epistemic languages here introduced are non-trivial extensions of the propositional modal languages in [16,30]. The use
of flexible terms is inspired by [19], which also presents a completeness proof for such languages. The relevance of the
distinction between global and local terms has since long been recognised, see, e.g., [16,46].

From a semantical viewpoint the key contribution of the paper is the extension of interpreted systems to first-order,
obtained by endowing these structures with quantification domains. In quantified interpreted systems we allow each agent
to reason about a possibly different set of objects. This choice is motivated by the fact that, as agents are autonomous, they
may be aware of only a subset of all existing individuals, possibly different from those of other agents. We do not aim
to provide a theory of awareness about agents’ knowledge, but simply observe that most universally quantified statements
referring to an agent i, such as “all boxes are red”, are really universal only if i is assumed to consider a proper subset of
the domain of all possible individuals: the set of boxes considered by i. Interpreted systems are the typical formalism for
epistemic logic in MAS [20,53], but to our knowledge there has been no attempt to extend these structures to first-order,
even in references such as [14] where FOEL and interpreted systems are explicitly considered. We deem this extension
potentially of note as these structures represent a computationally grounded semantics in the sense of [65], suitable for the
definition of protocols and programs for agents, and for the development of model checking techniques.

Furthermore, provably sound and complete axiomatisations are presented for all classes of QIS here considered. The com-
pleteness proofs make use of standard techniques in QML [9,60] suitably extended to deal with the semantical framework
of quantified interpreted systems and a richer language with local terms, indexed quantifiers, and distributed knowledge.
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The completeness proof for FOEL with distributed knowledge extends to first-order the techniques in [15]. Note that an
independent completeness proof for these propositional languages appeared in [28].

Finally, we apply the formal machinery to the analysis of MAS scenarios. The muddy children puzzle and message passing
systems belong to the folklore of AI and distributed systems [14,38], but their first-order formalisations here provided are
original.

Scheme of the paper. In Section 2 we present two classes of first-order structures: systems of global states and Kripke
frames, as well as several subclasses of these. In Section 3 we introduce a group of first-order modal languages, which
are interpreted on quantified interpreted systems, a valued version of systems of global states. In Section 4 we introduce
a class of first-order modal axiomatisations, and prove their soundness and completeness with respect to the structures in
Section 2. In Section 5 we exemplify the use of the syntax and semantics by describing some formal models for multi-agent
systems and discuss some specification patterns. Section 6 is devoted to the analysis of message passing systems. Finally,
Section 7 presents related work and draws some conclusions.

2. Systems of global states and Kripke frames

In this section we introduce systems of global states and Kripke frames in a first-order setting. While the first ones are
used in computer science to model the behaviour of MAS [14,20,49,53], Kripke frames are typically employed to acquire a
deeper understanding of the formal properties of these systems [3–5].

Technically, we extend the corresponding propositional structures to first-order by considering a distinct domain of quan-
tification for each agent. This choice is motivated by the fact that, as agents are autonomous, they might consider distinct
domains of individuals. Then we define two maps between these classes of structures, and prove that the composition of
these maps is an isomorphism. These results will be used for translating the completeness results from Kripke semantics to
systems of global states. In what follows we assume a set of agents A = {1, . . . ,n}.

2.1. Systems of global states

This paper is primarily concerned with the representation of knowledge in MAS, not their temporal evolution. Given this,
we adopt the “static” perspective on the systems of global states [45], rather than their “dynamic” version [14]. So, while
we assume that the states of the system result from the evolution given by protocols and transitions, we do not consider
these explicitly. More formally, consider a set Li of local states li, l′i, . . . , for each agent i ∈ A, and a set Le containing the
local states of the environment le, l′e, . . . . We define a system of global states as follows:

Definition 1 (Systems of global states). A system of global states, or SGS, is a tuple S = 〈S, D, {Di}i∈A, F , {Fi}i∈A〉 such that
S ⊆ Le × L1 × · · · × Ln is a non-empty set of global states; D is a non-empty set of individuals, and for i ∈ A, Di is a subset
of D; F ⊆ { f | f : S → D} is a non-empty set of functions from S to D , and for i ∈ A, Fi is a subset of F .

We denote the class of all systems of global states as S G S .

Intuitively, S is the set of possible configurations of the system corresponding to the set of reachable states obtained by
considering the temporal evolution of the system. Given that we do not consider the temporal dimension, we simply take
S as a subset of the set of all possible states.

The domain D contains the individuals for interpreting global terms, and F is the interpretation domain for local terms.
We assign a fixed meaning to global terms like “π ” by including the corresponding real number in the domain D of
individuals. On the contrary, expressions such as “the value stored in the register”, which identifies possibly different values
a and a′ at different global states s and s′ respectively, will be modelled as a function f ∈ F , also called intensional object,
such that f (s) = a and f (s′) = a′ .

In systems of global states we have possibly different quantification domains Di and Fi for each agent i ∈ A. This
feature is motivated by the fact that, as each agent i is autonomous and may have only a partial view of the surrounding
environment, she could have access only to subsets Di and Fi of the domains D and F of individuals, possibly different
from the domains D j and F j of another agent j.

Note that in general Di and Fi are independent from global states, i.e., for s, s′ ∈ S , the domains Di and Fi of agent i in s
are the same as the domains Di and Fi in s′ . This means that individuals neither appear nor disappear during the evolution
of the system. We deem this assumption consistent with the external account of knowledge usually adopted in the framework
of epistemic logic. In this line of research knowledge is ascribed to agents by an external observer (in our case the system
specifier), rather than explicitly possessed by them. This means that a formula like Ki∀i yφ does not express that agent i
explicitly knows that all y are φ, i.e., that ∀i yφ is the case. Instead, it suffices that for every y, i knows that φ is the case,
i.e., ∀i yKiφ. In other words, agent i needs not to be aware of all the individuals in his domain of quantification. In this
respect the individuals in Di and Fi can be thought of as persisting in the various global states from the viewpoint of the
external observer.

In the next section we consider various classes of systems of global states.
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2.2. Further systems of global states

We remarked that in systems of global states individuals neither appear nor disappear. A different scenario we may wish
to consider consists of quantification domains changing at run-time. For this purpose we introduce varying systems of global
states:

Definition 2 (Varying SGS). A varying system of global states, or varying SGS, is a tuple S = 〈S, D, {Di}i∈A, F , {Fi}i∈A〉 such
that S , D , and F are defined as in Definition 1, and for each i ∈ A, Di is a function from S to the power set ℘(D) = {D ′ |
D ′ ⊆ D}, and Fi is a function from S to the power set ℘(F ) = {F ′ | F ′ ⊆ F }.

We denote the class of all varying systems of global states as S G S var .

In a varying SGS the domains of quantification depend not only on the agent, but also on her computational state, that
is, for s �= s′ , the quantification domain Di(s) (respectively Fi(s)) can possibly be different from Di(s′) (respectively Fi(s′)).
Therefore, varying SGS are useful to model systems in which individuals might appear and disappear during the system
runs.

Observe that the domains Di(s) and Fi(s) do not contribute to the definition of the local state of agent i in a state s. This
implies that there can be states s and s′ such that li(s) = li(s′), and yet Di(s) �= Di(s′) or Fi(s) �= Fi(s′). The quantification
domains of i depend also on the local states of the other agents. While it is instructive to look at this general setting, it
is also of interest to consider the case where the same quantification domain is available to one agent when she is in the
same local state. Thus, we introduce regular systems of global states:

Definition 3 (Regular SGS). A regular system of global states, or regular SGS, is a varying SGS such that:

for all s, s′ ∈ S, li(s) = li(s′) implies Di(s) = Di(s′) and Fi(s) = Fi(s′) (1)

We denote the class of all regular systems of global states as S G S reg .

In other words, in regular SGS the quantification domains of agent i are part of her local state.
Further, note that in a system of global states the individuals in D can be seen as constant functions from S to D itself,

i.e., for every a ∈ D consider the function a : S → D returning a for every s ∈ S . Hence, we can take D itself as the domain
F of intensional objects, thus obtaining a peculiar class of systems of global states:

Definition 4 (Objectual SGS). An objectual system of global states, or objectual SGS, is an SGS S = 〈S, D, {Di}i∈A, F , {Fi}i∈A〉
such that D = F , and for i ∈ A, Di = Fi .

We denote the class of all objectual SGS as S G S obj .

Objectual SGS, which can be seen as triples S = 〈S, D, {Di}i∈A〉, are particular instances of SGS, easier to handle and yet
suitable for modelling useful applications, as we will show in Section 5. In fact, objectual SGS are sufficient for interpreting
first-order epistemic languages with global terms only, the typical formalism for quantified modal logic [16,19,30]. Thus, the
present semantical framework encompasses many of the formal accounts available in the literature on QML.

For the present investigations it is of particular interest to explore the relationship among individuals in the various Di
and Fi , for i ∈ A. In general system of global states the domain Fi can be any set of function from S to D , but we may find
convenient to define some constraints on the functions in Fi .

In the rest of the paper we will consider the following constraints:

for all s, s′ ∈ S, li(s) = li(s′) and f (s) ∈ Di implies f (s′) ∈ Di (2)

for all s, s′ ∈ S, f ∈ Fi, li(s) = li(s′) and f (s) ∈ Di implies f (s′) ∈ Di (3)

for all s ∈ S, f ∈ Fi, f (s) ∈ Di (4)

for all s, s′ ∈ S, f ∈ Fi and li(s) = li(s′) implies f (s) = f (s′) (5)

for all s, s′ ∈ S, f ∈ Fi and li(s) = li(s′) implies f (s) = f (s′) ∈ Di (6)

Intuitively, formula (2) expresses the fact that if the intensional object f chooses an existing individual at global state s,
then agent i knows this fact. Formula (3) restricts formula (2) to the intensional objects in the domain Fi , while formula
(4) is a strengthening of (3) urging that Fi is a set of functions with domain S and codomain Di ⊆ D . Further, by formula
(5) the functions in Fi have as domain the set Li of agent i’s local state, while formula (6) is the conjunction of (4) and (5),
and it implies that the functions in Fi have domain Li and codomain Di .

Given the above, we introduce five further classes of systems of global states.

Definition 5. For every k, 2 � k � 6, S G S k ⊆ S G S is the class of the system of global states satisfying formula (k).
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In Section 4 we will prove that the results available for the systems of global states in S G S , notably the soundness and
completeness theorems, also apply to the other classes of SGS with minor changes. The following table summarises the
classes of SGS we will analyse in the rest of the paper, for 2 � k � 6.

Systems of global states

S G S all
S G S var varying
S G S obj objectual
S G S reg regular
S G S k SGS in S G S satisfying formula (k)

Finally, note that we allow for the possibility that A ⊆ D . This implies that agents can reason about themselves, their prop-
erties, and relationships: some examples of the expressiveness possibilities of the present formalism are given in Section 3.2.

2.3. Kripke frames

While Kripke frames are less intuitive than interpreted systems to model MAS, they are more convenient for the pur-
pose of formal analysis, notably completeness investigations. As customarily in epistemic logic, we work with frames with
equivalence relations ∼i , that is, for a non-empty set W ,

for every w in W , w ∼i w reflexivity
for every w , w ′ in W , w ∼i w ′ implies w ′ ∼i w symmetry
for every w , w ′, w ′′ in W , w ∼i w ′ and w ′ ∼i w ′′ implies w ∼i w ′′ transitivity

so we take the following definition:

Definition 6 (Frames). A Kripke frame, or frame, is a tuple F = 〈W , {∼i}i∈A, D, {Di}i∈A, F , {Fi}i∈A〉 such that W is a non-
empty set; for i ∈ A, ∼i is an equivalence relation on W ; D is a non-empty set of individuals, and for i ∈ A, Di is a subset
of D; F ⊆ { f | f : W → D} is a non-empty set of functions from W to D , and for i ∈ A, Fi is a subset of F .

The class of all Kripke frames is denoted by K.

In the model theory of modal logic W is usually referred to as the set of possible worlds, while each ∼i is the accessi-
bility relation between worlds [34]. The intuitive meaning of the elements D and F in a Kripke frame is similar to that in a
system of global states: they represent the domains of interpretation for global and local terms respectively.

In contrast with interpreted systems, Kripke frames are static structures with no obvious relation to the temporal evo-
lution of a system. However, given that also our approach to QIS is static and we will focus on purely epistemic languages,
the present definition of Kripke frames is adequate with our purposes of theoretical investigations.

In the next section we consider some specialisations of the notion of frame.

2.4. Further Kripke frames

In order to investigate varying, regular and objectual SGS, we introduce varying, regular and objectual Kripke frames as
follows:

Definition 7 (Varying frames). A varying frame is a tuple F = 〈W , {∼i}i∈A, D, {Di}i∈A, F , {Fi}i∈A〉 such that W , ∼i , D , and F
are defined as in Definition 6, and for each i ∈ A, Di is a function from W to the power set ℘(D), and Fi is a function from
W to the power set ℘(F ).

We denote the class of all varying Kripke frames as Kvar .

In analogy with regular SGS we have also regular Kripke frames.

Definition 8 (Regular frames). A regular frame is a varying frame such that:

for all w, w ′ ∈ W , w ∼i w ′ implies Di(w) = Di(w ′) and Fi(w) = Fi(w ′) (7)

We denote the class of all regular frames as Kreg .

We now introduce the objectual frames.

Definition 9 (Objectual frames). An objectual frame is a frame F = 〈W , {∼i}i∈A, D, {Di}i∈A, F , {Fi}i∈A〉 such that D = F , and
for i ∈ A, Di = Fi .

We denote the class of all objectual frames as Kobj .
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Objectual frames can be seen as tuples F = 〈W , {∼i}i∈A, D, {Di}i∈A〉.
Finally, for 2 � k � 6 we introduce the class Kk of Kripke frames corresponding to S G S k in a sense which will be made

precise in the following section. First, consider the following constraints on Kripke frames.

for all w, w ′ ∈ W , w ∼i w ′ and f (w) ∈ Di implies f (w ′) ∈ Di (8)

for all w, w ′ ∈ W , f ∈ Fi, w ∼i w ′ and f (w) ∈ Di implies f (w ′) ∈ Di (9)

for all w ∈ W , f ∈ Fi, f (w) ∈ Di (10)

for all w, w ′ ∈ W , f ∈ Fi and w ∼i w ′ implies f (w) = f (w ′) (11)

for all w, w ′ ∈ W , f ∈ Fi and w ∼i w ′ implies f (w) = f (w ′) ∈ Di (12)

The meaning of formulas (8)–(12) is similar to that of formulas (2)–(6). We now introduce 5 more classes of Kripke frames.

Definition 10. For every k, 2 � k � 6, Kk ⊆ K is the class of the system of global states satisfying formula (k + 6).

All the classes of Kripke frames introduced so far are summarised in the following table, for 2 � k � 6.

Kripke frames

K all
Kvar varying
Kobj objectual
Kreg regular
Kk frames in K satisfying formula (k + 6)

We will use SGS to model concrete systems and protocols, but we rely on Kripke frames for technical results, notably the
completeness proofs.

2.5. Maps between systems of global states and Kripke frames

We explore the relationship between systems of global states and Kripke frames by means of the maps f : S G S → K
and g : K → S G S . By Lemma 14 below and Theorem 41 we will show that the axiomatisation of Kripke frames
in Section 4 is sound and complete for the class of all SGS. Specifically, Lemma 14 states that every frame F =
〈W , {∼i}i∈A, D, {Di}i∈A, F , {Fi}i∈A〉 is isomorphic to f (g(F )) = 〈W ′, {∼′

i}i∈A, D ′, {D ′
i}i∈A, F ′, {F ′

i }i∈A〉, that is, there are bijec-
tions between W and W ′ , D and D ′ , F and F ′ , the corresponding Di and D ′

i , and the corresponding Fi and F ′
i . In addition,

we can show that w ∼i w ′ iff ( f ◦ g)(w) ∼′
i ( f ◦ g)(w ′). As a consequence, every sound and complete axiomatisation of

Kripke frames is also an axiomatisation of the systems of global states.
In order to prove this result we start by introducing the map f : S G S → K.

Definition 11. Let S = 〈S, D, {Di}i∈A, F , {Fi}i∈A〉 be a system of global states, define f (S) as the tuple 〈S, {∼i}i∈A, D, {Di}i∈A,

F , {Fi}i∈A〉 where for i ∈ A, each relation ∼i on S is defined by 〈le, l1, . . . , ln〉 ∼i 〈l′e, l′1, . . . , l′n〉 iff li = l′i .

It is easy to check that ∼i is an equivalence relation and that f (S) is a frame.
To define the converse map g : K → S G S , let F = 〈W , {∼i}i∈A, D, {Di}i∈A, F , {Fi}i∈A〉 be a frame. For every equivalence

relation ∼i , for w ∈ W , we define the equivalence class [w]∼i = {w ′ | w ∼i w ′} to be a local state for agent i, and w the
local state for the environment.

Definition 12. Given a frame F = 〈W , {∼i}i∈A, D, {Di}i∈A, F , {Fi}i∈A〉, let g(F ) be the tuple 〈S, D, {Di}i∈A, F ′, {F ′
i }i∈A〉 where

S contains all the n + 1-tuples 〈w, [w]∼1 , . . . , [w]∼n 〉; F ′ is the set of functions f ′ such that f ′(〈w, [w]∼1 , . . . , [w]∼n 〉) =
f (w), for f ∈ F ; and for i ∈ A, Fi = { f ′ | f ′(〈w, [w]∼1 , . . . , [w]∼n 〉) = f (w), for f ∈ Fi}.

By construction the structure g(F ) is a system of global states.
We now prove that the compositions f ◦ g and g ◦ f are isomorphisms on the respective structures. Only Lemma 14

below is actually needed to prove completeness with respect to SGS (see Section 4), but we also present Lemma 13 to state
precisely the correspondence between systems of global states and Kripke frames. In what follows πi(〈a1, . . . ,am〉) = ai , for
i � m.

Lemma 13. Every system of global states S is isomorphic to g( f (S)).

Proof. If S = 〈S, D, {Di}i∈A, F , {Fi}i∈A〉 is an SGS, then g( f (S)) = 〈S ′, D, {Di}i∈A, F ′, {F ′
i }i∈A〉 is an SGS as well such that

S ′ is the set of n + 1-tuples 〈s, [s]∼1 , . . . , [s]∼n 〉, for s ∈ S . The function h(s) = 〈s, [s]∼1 , . . . , [s]∼n 〉 is a bijection between
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S and S ′: it is one-to-one as if s, s′ ∈ S ′ and s = s′ , then in particular π1(s) = π1(s′). It is onto as for s ∈ S ′ , π1(s) ∈ S is
such that h(π1(s)) = s. Identity is trivially a bijection on D , and for f ∈ F , f ′ ∈ F ′ , the function h′ such that h′( f ) = f ′ iff
f (s) = f ′(〈s, [s]∼1 , . . . , [s]∼n 〉), for s ∈ S , is a bijection between F and F ′ . �
Lemma 14. Every Kripke frame F is isomorphic to f (g(F )).

Proof. If F = 〈W , {∼i}i∈A, D, {Di}i∈A, F , {Fi}i∈A〉 is a Kripke frame, then f (g(F )) = 〈W ′, {∼′
i}i∈A, D, {Di}i∈A, F ′, {F ′

i }i∈A〉 is
such that W ′ is the set of n + 1-tuples 〈w, [w]∼1 , . . . , [w]∼n 〉, for w ∈ W . The function h(w) = 〈w, [w]∼1 , . . . , [w]∼n 〉 is a
bijection between W and W ′: it is one-to-one as if w, w ′ ∈ W ′ and w = w ′ , then in particular π1(w) = π1(w ′). It is onto
as for w ∈ W ′ , π1(w) ∈ W is such that h(π1(w)) = w . Also in this case the identity on D is a bijection, and for f ∈ F ,
f ′ ∈ F ′ , the function h′ such that h′( f ) = f ′ iff f (w) = f ′(〈w, [w]∼1 , . . . , [w]∼n 〉), for w ∈ W , is a bijection between F and
F ′ . Moreover, w ∼i w ′ iff [w]∼i = [w ′]∼i iff 〈w, [w]∼1 , . . . , [w]∼n 〉 ∼′

i 〈w ′, [w ′]∼1 , . . . , [w ′]∼n 〉. �
By Lemma 14 and Theorem 41 we will show that the axiomatisation of Kripke frames presented in Section 4 is adequate

also for the systems of global states.

2.6. Further maps

It is straightforward to extend the maps f and g to deal also with the other classes of SGS and Kripke frames. As regards
varying SGS and frames, define map f var : S G S var → Kvar as f , and define map gvar : Kvar → S G S var to be the same as g
except that for s = 〈w, [w]∼1 , . . . , [w]∼n 〉 ∈ gvar(F ), D ′

i(s) is defined as Di(w) and F ′
i (s) is defined as { f ′ | f ′(s′) = f (w ′),

for f ∈ Fi(w), w ′ = π1(s′)}.
We state the following isomorphism result, the proof follows those in Lemmas 13 and 14 with little modifications.

Corollary 15. Every varying SGS S is isomorphic to gvar( f var(S)).
Every varying frame F is isomorphic to f var(gvar(F )).

Further, it can be shown that f var(S) is a regular frame, whenever S is a regular SGS. Also, gvar(F ) is a regular SGS,
whenever F is a regular frame. Therefore, we have the following:

Corollary 16. Every regular SGS S is isomorphic to gvar( f var(S)).
Every regular frame F is isomorphic to f var(gvar(F )).

The map f obj : S G S obj → Kobj from objectual systems of global states to Kripke frames is defined as the restric-
tion of f to 〈S, D, {Di}i∈A〉; while the map gobj : Kobj → S G S obj is similarly defined as the restrictions of g to 〈W ,

{∼i}i∈A, D, {Di}i∈A〉. By considerations similar to those for Lemmas 13 and 14 it is easy to show the following:

Corollary 17. Every objectual SGS S is isomorphic to gobj( f obj(S)).
Every objectual frame F is isomorphic to f obj(gobj(F )).

Finally, for 2 � k � 6, we can show that the frame f (S) satisfies the formula (k + 6) whenever S satisfies (k). Also, the
SGS g(F ) satisfies the formula (k) whenever F satisfies (k + 6). Therefore, the following holds:

Corollary 18. Let 2 � k � 6. Every SGS S ∈ S G S k is isomorphic to g( f (S)).
Every frame F ∈ Kk is isomorphic to f (g(F )).

In the following table we summarise the correspondences between systems of global states and Kripke frames, for
2 � k � 6.

Systems of global states Kripke frames

S G S K
S G S var Kvar

S G S obj Kobj

S G S reg Kreg

S G S k Kk

In Section 4, Corollaries 15–18 will be used for proving completeness with respect to all classes of systems of global states,
once obtained completeness for the corresponding class of Kripke frames.
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3. Syntax and semantics

In this section we introduce a family of first-order epistemic languages containing local and global terms, quantifiers,
epistemic operators, as well as the identity symbol. These languages are interpreted on models based on Kripke frames.
Finally, we present quantified interpreted systems, a valued version of the systems of global states.

3.1. Syntax

The first-order epistemic language Ln contains global variables x1, x2, . . . , local variables z1, z2, . . . , global constants
c1, c2, . . . , and local constants d1,d2, . . . . Moreover, we have n + 1-ary function symbols f n+1

1 , f n+1
2 , . . . , and n-ary pred-

icative constants Pn
1, Pn

2, . . . , for n ∈ N, the identity symbol =, the boolean connectives ¬ and →, and for every i ∈ A, the
indexed quantifier ∀i , the epistemic operator Ki , and the unary predicative constant Admi .

Definition 19 (Ln). Terms and formulas in Ln are defined as follows:

t ::= x | z | c | d | f k(t1, . . . , tk)

φ ::= Pk(t1, . . . , tk) | t = t′ | Admi(t) | ¬φ | φ → φ′ | Kiφ | ∀i xφ | ∀i zφ

The operator Ki , for i ∈ A, is the standard epistemic modality [14]. The formula Kiφ intuitively means that “agent i knows
that φ is the case”. The formula ∀i xφ (respectively ∀i zφ) states that “φ is the case for all individuals in Di ” (respectively
Fi ); whereas Admi(t) means that the individual denoted by term t is among the admissible individuals considered by agent
i, that is, the individuals in Di and Fi . The symbols ⊥, ∧, ∨, ↔, ∃i are defined from the other logical constants as standard,
while metavariables y, y′, . . . refer to the (local and global) variables in Ln .

A global term s is defined as:

s ::= x | c | f k(s1, . . . , sk)

A term not complying with the above is said to be local. The metavariables s, s′, . . . and u, u′, . . . refer to global and local
terms respectively; while v, v ′, . . . and r, r′, . . . refer to closed global and local terms, where no variable appears. The symbol
“s” may represent either a state or a global term, the context will disambiguate.

Moreover, t[�y] (resp. φ[�y]) means that �y = y1, . . . , yn are all the (local and global) free variables in t (resp. φ); while
t[�y/�t] (resp. φ[�y/�t]) denotes the term (resp. formula) obtained by substituting simultaneously some, possibly all, the free
occurrences of y1, . . . , yn in t (resp. φ) with t1, . . . , tn , renaming bounded variables if necessary. We assume that local
variables are to be substituted by local terms only, the same holds for global variables and terms.

We write GVar, LVar, GCon and LCon to denote the sets of global and local variables, and the sets of global and local
constants in Ln respectively.

In this paper we consider two further languages, Lobj
n and L D

n , for describing the objectual structures introduced in
Section 2.

Definition 20 (Lobj
n ). The language Lobj

n is the restriction of Ln to global terms. Terms and formulas in Lobj
n are defined as

follows:

t ::= x | c | f k(t1, . . . , tk)

φ ::= Pk(t1, . . . , tk) | t = t′ | Admi(t) | ¬φ | φ → φ′ | Kiφ | ∀i xφ

Definition 21 (L D
n ). The language L D

n extends Lobj
n by adding the distributed knowledge operator DG , for every non-empty

subset G of A. Terms and formulas in L D
n are defined as follows:

t ::= x | c | f k(t1, . . . , tk)

φ ::= Pk(t1, . . . , tk) | t = t′ | Admi(t) | ¬φ | φ → φ′ | Kiφ | DGφ | ∀i xφ

The formula DGφ intuitively means that “φ is distributed knowledge among the agents in the subset G of A” (see [15]
for details). We will show that the language Lobj

n is expressive enough for the specification of objectual SGS, while L D
n is

useful for the application to distributed systems in Section 5. The notions defined in this subsection for language Ln can be
extended to L D

n and Lobj
n with the obvious changes. In this paper we do not consider extensions to common knowledge.
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3.2. Expressiveness

This section provides some examples of the expressiveness of the first-order epistemic languages introduced in Sec-
tion 3.1. First of all, in Ln we can express the agents’ knowledge regarding properties and relationships among individuals.
For instance, consider the following specifications:

(1) Agent i knows that for every process x, agent j knows that there exists a precondition x′ considered by i, which has to
be fulfilled in order for x to be executed.

(2) Agent i knows that among the inputs considered by agent j there exists an x for which agent j does not know that
every computation x′ on input x fails.

(3) Every successful transmission x returns a code z, but agent i does not know this code (maybe because the return code
is encrypted).

These statements can be intuitively formalised as follows:

(1) Ki∀i x(Process(x) → K j∃i x′(Precond(x′) ∧ (Executed(x) → Fulfil(x′))))
(2) Ki∃ j x(Input(x) ∧ ¬K j∀ j x′(Comp(x′) → Fails(x, x′)))
(3) ∀i x∃i z(z = return-code(x) ∧ ¬Ki(z = return-code(x))

We note the rich expressiveness of the language obtained by combining epistemic modalities with quantifiers, and the
interplay between local and global terms in the third specification (but see also Section 5.1 below).

Also, observe that in this framework we can model the knowledge agents have about themselves, as pointed out in the
introduction. In addition, and not discussed above, we obviously retain all the expressive power of propositional epistemic
logic.

Further, in the framework of first-order epistemic logic we can express the de re/de dicto distinction, i.e., the difference
between knowing of something as being so-and-so, and knowing that something is so-and-so. For instance, when we use
an informal specification to say that,

as far as the security controller is concerned, every user is authorised to access the site,

one could interpret this (hence implement it!) as either de dicto, i.e., descriptively:

(1) the security controller knows that every user is authorised to access the site,

or de re, i.e., prescriptively:

(2) for every user, the security controller knows that he is authorised to access the site.

These two readings express different concepts. While these cannot be easily separated by means of a propositional language,
in Ln this is promptly done as follows:

(1) KSecCon∀SecConx(Authorised(x) → Access(x))
(2) ∀SecConx(Authorised(x) → KSecConAccess(x))

The difference in meaning between the two specifications is clear. For instance, the security controller not granting access
to an authorised user a is a violation of (2), but not of (1), if he does not regard a as an authorised user.

3.3. Kripke models and quantified interpreted systems

We now proceed to interpret our first-order epistemic languages on the classes of Kripke frames defined in Section 2.
Then we introduce quantified interpreted systems, a valued version of the systems of global states.

Definition 22 (Kripke model). A Kripke model based on a frame F , or model, is a pair M = 〈F , I〉 where the interpretation
I is such that:

• if c is a global constant, then I(c) ∈ D;
• if d is a local constant, then I(d) ∈ F ;
• if f k is a k-ary function symbol, then I( f k) is a k-ary function from F k to F such that for �g ∈ F k , we have

(I( f k)(�g))(w) = I( f k)(g1(w), . . . , gk(w));
• for w ∈ W , I(Pk, w) is a k-ary relation on D , I(Admi, w) = Di ∪ Fi , and I(=, w) is the equality relation on D .
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In a Kripke model global constants are interpreted rigidly, while local constants are not, so it can be the case that I(d)(w)

is different from I(d)(w ′), for w �= w ′ . In particular, it can be the case that I(d)(w) ∈ Di but I(d)(w ′) /∈ Di . This case models
the scenario in which agent i does not know whether the denotation of term d is among the individuals in her domain of
quantification. Shortly we will see how to deal with this situation.

Each I( f k) is a function from F k to F , but if the arguments are constant functions, i.e., elements in D , then I( f k) is a
function from Dk to D . The condition on I( f k) guarantees that identical terms can be substituted, that is, if the denotations
of terms t′ and t′′ are identical, then the denotation of substituted term t[y/t′] is identical to t[y/t′′].

Finally, we remark that Admi is an intensional predicate, i.e., its interpretation is Di ∪ Fi , not just a subset of D; this is
because we consider domains of intensional objects as well as domains of individuals.

We will consider also varying, regular, and objectual models, based on varying, regular, and objectual frames.
Now let σ be an assignment, i.e., any function from GVar to D and from LVar to F .

Definition 23 (Valuation). The valuation Iσ (t, w) ∈ D of a term t at a world w is inductively defined as follows:

Iσ (x, w) = Iσ (x) = σ(x)

Iσ (z, w) = Iσ (z)(w) = σ(z)(w)

Iσ (c, w) = Iσ (c) = I(c)

Iσ (d, w) = Iσ (d)(w) = I(d)(w)

Iσ ( f k(t1, . . . , tk), w) = I( f k)(Iσ (t1, w), . . . , Iσ (tk, w))

= (I( f k)(Iσ (t1), . . . , Iσ (tk)))(w), by the constraint on I( f k)

The definition of Iσ (t) ∈ D ∪ F can be derived from Definition 23. Note that if t is a global term, then Iσ (t) = Iσ (t, w),
for every w ∈ W . On the other hand, if t is a local term, then Iσ (t) is an intensional object belonging to F . The valuation
of terms in Lobj

n is restricted to global terms.
The variant σ

(x
a

)
of an assignment σ assigns a ∈ D to x ∈ GVar and coincides with σ on all the other variables; the

variant σ
( z

f

)
for f ∈ F , z ∈ LVar is similarly defined.

Definition 24 (Satisfaction). The satisfaction relation |� for φ ∈ Ln , w ∈ W , and an assignment σ is inductively defined as
follows:

(Mσ , w) |� Pk(t1, . . . , tk) iff 〈Iσ (t1, w), . . . , Iσ (tk, w)〉 ∈ I(Pk, w)

(Mσ , w) |� t = t′ iff Iσ (t, w) = Iσ (t′, w)

(Mσ , w) |� Admi(t) iff Iσ (t) ∈ Di ∪ Fi

(Mσ , w) |� ¬ψ iff (Mσ , w) �|� ψ

(Mσ , w) |� ψ → ψ ′ iff (Mσ , w) �|� ψ or (Mσ , w) |� ψ ′

(Mσ , w) |� Kiψ iff for all w ′ ∈ W , w ∼i w ′ implies (Mσ , w ′) |� ψ

(Mσ , w) |� ∀i xψ iff for all a ∈ Di, (Mσ(x
a), w) |� ψ

(Mσ , w) |� ∀i zψ iff for all f ∈ Fi, (Mσ( z
f ), w) |� ψ

The truth conditions for formulas containing ⊥,∧, ∨, ↔, ∃i can be defined from those above. The formula Admi(t)
means that the individual Iσ (t) ∈ Di ∪ Fi is among those admissible for agent i. In particular, if t is a global term then
Iσ (t) = Iσ (t, w) ∈ Di . On the other hand, if t is a local term then Iσ (t) is an intensional object in Fi .

If we consider varying models, the definition of satisfaction is as above but for the following clauses:

Definition 25. The satisfaction relation |� for φ ∈ Ln , w ∈ W , and an assignment σ is inductively defined as follows:

(Mσ , w) |� Admi(t) iff Iσ (t) ∈ Di(w) ∪ Fi(w)

(Mσ , w) |� ∀i xψ iff for all a ∈ Di(w), (Mσ(x
a), w) |� ψ

(Mσ , w) |� ∀i zψ iff for all f ∈ Fi(w), (Mσ( z
f ), w) |� ψ

The meaning of a formula φ ∈ Lobj
n in an objectual model M is defined by restricting Definition 24 to global terms.

Further, the truth conditions for DGφ ∈ L D
n in objectual models are specified as follows:

(Mσ , w) |� DGψ iff for w ′ ∈ W , (w, w ′) ∈
⋂

∼i implies (Mσ , w ′) |� ψ
i∈G
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As customary, we say that a formula φ is true at a world w iff it is satisfied at w by every assignment σ ; φ is valid on a
model M iff it is true at every world in M; φ is valid on a frame F iff it is valid on every model based on F ; φ is valid on a
class C of frames iff it is valid on every frame in C .

Let � be a set of formulas, M is a model for �, or M |� �, iff every formula in � is valid on M, and F is a frame
for �, or F |� �, iff every model based on F is a model for �. A frame F for � will also be called �-frame, by �-K we
denote the class of �-frames.

We have now the formal machinery to introduce quantified interpreted systems as follows.

Definition 26 (Quantified interpreted systems). Given an SGS S , a quantified interpreted systems (QIS) is a pair P = 〈S, I〉
such that I is an interpretation of Ln in f (S).

The notions of satisfaction, truth and validity on QIS can be defined as above. Let P f = 〈 f (S), I〉 be the Kripke model
associated with the quantified interpreted system P = 〈S, I〉, then

(P σ , s) |� φ iff (P σ
f , s) |� φ

In particular, we can show that the truth conditions for epistemic modalities in interpreted systems are preserved, that is,
the definition above via Kripke models boils down to the usual truth conditions in interpreted systems:

(P σ , s) |� Kiψ iff for s′ ∈ S, li(s) = li(s′) implies (P σ , s′) |� ψ

(P σ , s) |� DGψ iff for s′ ∈ S, if for all i ∈ G, li(s) = li(s′), then (P σ , s′) |� ψ

We say that a formula φ ∈ Ln is valid on a quantified interpreted systems P iff φ is valid on P f .
Definition 26 applies also to the other classes of SGS.

Definition 27.

(varying QIS) Given a varying SGS S , a varying QIS is a pair P = 〈S, I〉 such that I is an interpretation of Ln in f var(S).

(regular QIS) Given a regular SGS S , a regular QIS is a pair P = 〈S, I〉 such that I is an interpretation of Ln in f var(S).

(objectual QIS) Given an objectual SGS S , an objectual QIS is a pair P = 〈S, I〉 such that I is an interpretation of Lobj
n

in f obj(S).

(QISk) Let 2 � k � 6. Given an SGS S ∈ S G S k , a QISk is a pair P = 〈S, I〉 such that I is an interpretation of Ln in f (S).

Quantified interpreted systems will be used in Sections 5 and 6 to model various instances of multi-agent systems. But
first we discuss some important validities in these structures.

3.4. Validities

In Section 2 we remarked that in systems of global states the domains of quantification Di and Fi are independent from
global states. Therefore, both the Barcan formula and its converse [16] are valid in their indexed form on the class of all
SGS:

S G S |� ∀i yK jφ → K j∀i yφ BFi− j

S G S |� K j∀i yφ → ∀i yK jφ CBFi− j

These validities state that each agent knows which are the individuals she and the other agents reason about. By BFi− j in
all agent j’s epistemic alternatives there are no more individuals in agent i’s domains than j presently considers, so agent
j can generalise her knowledge. Similarly, by CBFi− j in all agent j’s epistemic alternatives there are no fewer individuals
in agent i’s domains, so agent j can particularise her knowledge. When an agent can generalise and particularise her
knowledge on a domain of objects, we say that she has knowledge of that domain, at least implicitly.

For the same reasons we have also that:

S G S |� Adm j(t) → KiAdm j(t) NecAdm

S G S |� ¬Adm j(t) → Ki¬Adm j(t) Nec¬Adm

By these validities every agent knows whether any individual belongs to the domain of admissible individuals of any other
agent. In the language L D

n the Barcan formulas hold also for the distributed knowledge operator DG :
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S G S |� ∀i yDGφ → DG∀i yφ S G S |� Adm j(t) → DG Adm j(t)

S G S |� DG∀i yφ → ∀i yDGφ S G S |� ¬Adm j(t) → DG¬Adm j(t)

These principles are rather strong even for an external account of knowledge, in which knowledge is not explicitly possessed
by agents, but rather attributed to them by an external observer. After all, we introduced different domains of quantification
for expressing that each agent has only a limited access to the totality of individuals. If they know all other agents’ domains
as well as theirs, the whole construction seems questionable. Given this, we could turn to varying SGS, where all formulas
above are not valid, as quantification domains change according to global states. But this would undermine the agents’
knowledge of their own domains, something equally unwelcomed.

Our solution consists in admitting BFi− j and CBFi− j only for i = j. In fact, these formulas hold on the class of regular
SGS:

S G S reg |� ∀i yKiφ → Ki∀i yφ BFi−i

S G S reg |� Ki∀i yφ → ∀i yKiφ CBFi−i

In this way we solve the problem of having quantification domains Di(s) and Fi(s), for i ∈ A, depending also on the local
states of agents other than i: in regular SGS quantification domains can be considered part of each agent’s local state. By
restricting our attention to regular SGS satisfying the restricted versions BFi−i and CBFi−i of the Barcan formulas, we model
the scenario in which agents know their respective domains of quantification, but not necessarily the other agents’.

Finally, we remark that in the present semantical framework we admit possibilia, i.e., objects in D and F which do
not appear in quantification domains Di or Fi , for some agent i ∈ A. Moreover, agents may have knowledge about these
possible entities, that is, there are models in which Ki P (t) is true at some world w , for some Iσ (t, w) belonging to D , but
Iσ (t, w) /∈ Di . The existence of something like possible objects is a rather debated topic in the philosophy of modal logic,
see [40] and [35] for a review of classic possibilist and actualist accounts. However, in AI the introduction of possibilia can be
useful to model specific scenarios. For instance, an agent i may know that no horse flies, i.e., ∀i xKi¬(Horse(x) ∧ Fly(x)), and
yet she studied the Greek classics and knows that Pegasus is a flying horse, i.e., Ki(Horse(Pegasus)∧ Fly(Pegasus)). A solution
to this puzzle consists in considering Pegasus a possible object in D \ Di .

3.5. Individual terms and identity

As regards identity, observe that the following formulas hold for global terms on every system of global states:

S G S |� (s = s′) → (φ[x/s] → φ[x/s′]) Subst

S G S |� (s = s′) → Ki(s = s′) KiId

S G S |� (s �= s′) → Ki(s �= s′) KiDif

but not for local terms:

S G S �|� (u = u′) → (φ[z/u] → φ[z/u′])
S G S �|� (u = u′) → Ki(u = u′)

S G S �|� (u �= u′) → Ki(u �= u′)

These (in)validities motivate the names of flexible and rigid terms given in [46]. Identical global terms can be substituted in
any formula, in particular in epistemic contexts; whereas for local terms we have only:

S G S |� (u = u′) → (φ[z/u] → φ[z/u′]), for atomic φ

but φ has to be different from Admi(u):

S G S �|� (u = u′) → (Admi(u) → Admi(u′))

as Admi is an intensional predicate and it can be that the individuals Iσ (u, w), Iσ (u′, w) ∈ D are identical, the intensional
object Iσ (u) belongs to Fi but Iσ (u′) /∈ Fi .

The relationship between local and global terms is particularly relevant for the present investigations. We remarked that
it can be the case that agent i cannot distinguish between states s and s′ , and yet we may have that Iσ (u)(s) ∈ Di and
Iσ (u)(s′) /∈ Di , for some local term u. This means that in state s agent i is aware of the object being denoted by u, but she
does not know that she is. This feature of the semantics can be considered unsatisfactory, but one should note that agents
do not always explicitly know their domains of quantification, as it is the case in varying QIS. However, it is possible to
address the point above by assuming formula (2): for every i ∈ A, for f ∈ F , if li(s) = li(s′) and f (s) ∈ Di , then f (s′) ∈ Di .
We can capture this constraint by means of the following formula:

∃i x(d = x) → Ki∃i x(d = x) (13)
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We can easily check that the following correspondence holds:

S |� ∃i x(d = x) → Ki∃i x(d = x) iff S satisfies formula (2)

Further, we can restrict this principle to only the intensional objects contained in each Fi . According to formula (3), an agent
i knows the denotation of only the intensional objects in his domain of quantification. Similarly to the above, this formula
can by captured by means of a formula in Ln:

∀i z(∃i x(z = x) → Ki∃i x(z = x)) (14)

The following correspondence can be promptly proved:

S |� ∀i z(∃i x(z = x) → Ki∃i x(z = x)) iff S satisfies formula (3)

Finally, we strengthen formula (14) by requiring that the denotation of every local term in the domain of agent i is un-
conditionally an individual belonging to agent i’s domain of individuals, that is, formula (4) holds. Also in this case we can
provide a formal counterpart to this formula in Ln ,

∀i zKi∃i x(z = x) (15)

by noting that the following correspondence holds:

S |� ∀i zKi∃i x(z = x) iff S satisfies formula (4)

Moreover, we can require that each agent i knows at least the denotation of the local terms in her domain of quantifi-
cation. This is tantamount to formula (5), which can be captured by the following formula in Ln:

∀i z((z = u) → Ki(z = u)) (16)

similarly to the above, we can prove that the following correspondence holds:

S |� ∀i z((z = u) → Ki(z = u)) iff S satisfies formula (5)

We can combine formulas (16) and (15) in order to express formula (6), i.e., the fact each agent i knows the denotation
of local terms, which is an individual in her domain of quantification. We express formula (6) by means of the following
formula in Ln:

∀i z∃i xKi(z = x) (17)

and the respective correspondence holds:

S |� ∀i z∃i xKi(z = x) iff S satisfies formula (6)

Note that formula (17) is the de re version of (15). According to (17) for every local term u, there is exactly one individual
which is known by agent i to be the denotation of u.

In the next section we will consider formulas (13)–(17) and we will prove completeness of the semantical classes intro-
duced with respect to the relevant axiomatisations. As a summary, in the next lemma we list formulas and corresponding
classes of systems of global states and Kripke frames.

Lemma 28. In the table below, for every row, the formula in the first column is valid on all and only the SGS in the second column, and
it is valid in all and only frames in the third column.

Formulas SGS Frames

∀i yKiφ ↔ Ki∀i yφ S G S reg Kreg

(13) ∃i x(d = x) → Ki∃i x(d = x) S G S 2 K2

(14) ∀i z(∃i x(z = x) → Ki∃i x(z = x)) S G S 3 K3

(15) ∀i zKi∃i x(z = x) S G S 4 K4

(16) ∀i z((z = u) → Ki(z = u)) S G S 5 K5

(17) ∀i z∃i xKi(z = x) S G S 6 K6

Proof. We do not provide the details of the proof, but just note that the validity of formulas on the corresponding classes of
SGS follows by the remarks earlier in this section, while the validity on Kripke frames follows by corollaries (15)–(18). �

We remark that classes S G S 6 of systems of global states and K6 of Kripke frames are tantamount to the intersections
S G S 4 ∩ S G S 5 and K4 ∩ K5 respectively.
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4. Axiomatisations

In this section we introduce sound and complete axiomatisations for all the classes of SGS presented in Sections 2 and 3.
We start by considering the first-order epistemic system Q .S5n , then we tune this calculus to cover also varying, objectual,
and regular SGS, as well as the structures satisfying formulas (2)–(12). While resolution and natural deduction calculi are
more suitable when dealing with automated reasoning, for the purpose of the completeness proof Hilbert-style systems are
easier to handle.

4.1. System Q .S5n

The system Q .S5n on the language Ln is a first-order multi-modal version of the propositional system S5. Hereafter we
list the axioms and inference rules. We use ⇒ to denote the inference relation between formulas.

Definition 29 (Q .S5n). The system Q .S5n on Ln contains the following schemes of axioms and inference rules:

Taut every instance of classic propositional tautologies
K Ki(φ → ψ) → (Kiφ → Kiψ)

T Kiφ → φ

4 Kiφ → Ki Kiφ

5 ¬Kiφ → Ki¬Kiφ

MP φ → ψ,φ ⇒ ψ

Nec φ ⇒ Kiφ

Ex ∀i yφ → (Admi(t) → φ[y/t])
Gen φ → (Admi(t) → ψ[y/t]) ⇒ φ → ∀i yψ , for y not free in φ

BFi− j ∀i yK jφ → K j∀i yφ

CBFi− j K j∀i yφ → ∀i yK jφ

Id t = t
Func t = t′ → (t′′[y/t] = t′′[y/t′])
Subst t = t′ → (φ[y/t] → φ[y/t′]), for atomic φ

Ki Id s = s′ → Ki(s = s′)
Ki Dif s �= s′ → Ki(s �= s′)

The first group of postulates axiomatises the multi-modal system S5n . Following this, we have the free logic postulates
for quantification for both global and local terms. The Barcan formulas guarantee that the domains of admissible individuals
are independent from global states, as shown below. Finally, we have axioms Id, Func and Subst for all terms, while KiId
and KiDif hold only for global terms. We note without proof that the axioms Subst and KiId are sufficient for deriving the
substitution of identical global terms in any first-order modal formula φ.

We define proofs and theorems as standard: �Q .S5n φ means that φ ∈ Ln is a theorem in Q .S5n . Moreover, we say that
φ ∈ Ln is derivable in Q .S5n from the set � of formulas in Ln , and write � �Q .S5n φ, iff there are φ1, . . . , φm ∈ � such that
�Q .S5n φ1 ∧ · · · ∧ φm → φ.

Lemma 30. Among the theorems of Q .S5n we have:

NecAdm �Q .S5n Admi(t) → K j Admi(t) Knowledge of Admissibility
Nec¬Adm �Q .S5n ¬Admi(t) → K j¬Admi(t) Knowledge of Inadmissibility

Proof. The proof for NecAdm goes as follows:

a. �Q .S5n Admi(t) → Admi(t) propositional tautology

b. �Q .S5n ∀i yAdmi(y) from a by Gen

c. �Q .S5n K j∀i yAdmi(y) from b by Nec

d. �Q .S5n ∀i yK jAdmi(y) → (Admi(t) → K jAdmi(t)) axiom Ex

e. �Q .S5n K j∀i yAdmi(y) → (Admi(t) → K jAdmi(t)) from d by CBFi− j

f. �Q .S5n Admi(t) → K jAdmi(t) from c, e by MP

The proof for Nec¬Adm can be obtained similarly. �
4.2. Further systems

By suitably tuning the systems Q .S5n we can obtain provably sound and complete axiomatisations for all classes of
SGS in Sections 2 and 3. For instance, by dropping BFi− j and CBFi− j , and by restricting these postulates to i = j, we can
axiomatise varying and regular SGS respectively. Further, we can axiomatise objectual SGS by restricting Q .S5n to formulas



F. Belardinelli, A. Lomuscio / Artificial Intelligence 173 (2009) 982–1013 997
where only global terms appear. Finally, we add the axioms for distributed knowledge to Q .S5n in order to axiomatise the
set of validities on the language L D

n . Hereafter we list the relevant systems.

Definition 31.

(Q.S5var
n ) The system Q .S5var

n on the language Ln is obtained from Q .S5n by eliminating the axioms BFi− j and CBFi− j .

(Q.S5reg
n ) The systems Q .S5reg

n on the language Ln is obtained from Q .S5n by restricting BFi− j and CBFi− j to i = j.

(Q.S5obj
n ) The system Q .S5obj

n is obtained by restricting Q .S5n to the language Lobj
n .

(Q.S5D
n ) The system Q .S5D

n on the language L D
n is obtained by extending Q .S5obj

n with the following postulates for
distributed knowledge:

K DG (φ → ψ) → (DGφ → DGψ)

T DGφ → φ

4 DGφ → DG DGφ

5 ¬DGφ → DG¬DGφ

D1 D{i}φ ↔ Kiφ

D2 DGφ → DG ′ , for G ⊆ G ′
Nec φ ⇒ DGφ

(Q.S5k
n) For 2 � k � 6, the system Q .S5k

n is obtained by adding formula (k + 11) to Q .S5n .

Note that formulas NecAdm and Nec¬Adm are not provable in Q .S5var
n , while for system Q .S5reg

n we have only restricted
versions of NecAdm and Nec¬Adm, for i = j.

4.3. Correspondence theory

In this section we define a correspondence theory between properties of frames and validity of formulas at first-order.
In what follows a systems S is identified with the set of its theorems.

Lemma 32. Let 2 � k � 6. In the following table, for each row, F is an S-frame, i.e., F |� S, iff F belongs to the class of frames in the
second column.

QML systems Kripke frames

Q .S5n K
Q .S5var

n Kvar

Q .S5reg
n Kreg

Q .S5obj
n Kobj

Q .S5D
n Kobj

Q .S5k
n Kk

Proof. We provide an outline of the proof by showing the right to left implications for some systems. We show that �S φ

implies F |� φ, where F belongs to the relevant class of frames. The proof is by induction on the length of the proof of φ

in S , axioms are the base case and inference rules are the inductive step.
Q.S5n. We can easily check that the axioms of Q .S5n hold on every Kripke model and the inference rules preserve

validity. We provide detailed proofs only for axioms BFi− j , and KiId. As regards BFi− j , assume that (Mσ , w) |� ∀i zK jφ.

This means that for all f ∈ Fi , for all w ′ ∈ W , w ∼ j w ′ implies (Mσ( z
f ), w ′) |� φ. Therefore, for all w ′ ∈ W , for all f ∈ Fi ,

w ∼ j w ′ implies (Mσ( z
f ), w ′) |� φ, that is, (Mσ , w) |� K j∀i zφ.

As to KiId, suppose that (Mσ , w) |� s = s′ and w ∼ j w ′ . By the first hypothesis Iσ (s, w) = Iσ (s′, w), and Iσ (s, w ′) =
Iσ (s′, w ′) because s and s′ are global terms. Therefore (Mσ , w ′) |� s = s′ and (Mσ , w) |� Ki(s = s′).

Q.S5var
n . Proving that the axioms of Q .S5var

n hold on every varying Kripke model, and that the inference rules preserve
validity can be done similarly as in the previous case.

Q.S5reg
n . We show that axiom CBFi−i holds on every regular Kripke model; the rest may be done similarly to the case

Q .S5n . Assume that (Mσ , w) |� Ki∀i xφ. This means that for any w ′ ∈ W , w ∼i w ′ implies that for a ∈ Di(w ′), we have
(Mσ(x

a), w ′) |� φ. But since Di(w) = Di(w ′), w ∼i w ′ implies (Mσ(x
a), w ′) |� φ for any a ∈ D(w ′). So, (Mσ , w) |� ∀i Ki xφ.

Q.S5obj
n . We show that axiom D2 holds in every objectual Kripke model. Assume that (Mσ , w) |� DGφ and G ⊆ G ′ .

This means that for any w, w ′ ∈ W , (w, w ′) ∈ ⋂
i∈G ∼i implies (Mσ , w ′) |� φ. But G ⊆ G ′ , so (w, w ′) ∈ ⋂

i∈G ′ ∼i implies
(Mσ , w ′) |� φ. Therefore, (Mσ , w) |� DG ′φ.
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Q.S56
n . We show that formula (17) holds in S G S 6 = S G S 4 ∩ S G S 5. Assume that f ∈ Fi , by the constraint on S G S 4 we

know that there exists an a = f (s) ∈ Di . Further, if li(s) = li(s′) then f (s) = f (s′) = a ∈ Di by the constraint on S G S 5. Thus,
∀i z∃i xKi(z = x) holds.

As regards the left to right implication, we consider the cases for Q .S51
n and Q .S53

n .
Q.S51

n . Assume that F |� ∃i x(d = x) → Ki∃i x(d = x), w ∼i w ′ and f (w) ∈ Di . Define a model M based on F such that
I(d) = f . This means that (M, w) |� ∃i x(d = x), therefore (M, w) |� Ki∃i x(d = x). Hence, (M, w ′) |� ∃i x(d = x), which is
tantamount to f (w ′) ∈ Di .

Q.S53
n . Assume that F |� ∀i zKi∃i x(z = x), w ∈ W , and f ∈ Fi . Let M be a model based on F , we have that (M, w) |�

∀i zKi∃i x(z = x), in particular (Mσ , w) |� ∃i x(z = x), for σ(z) = f . Thus, there exists a ∈ Di such that a = f (w) ∈ Di . �
We note that a result similar to Lemma 32 can be obtained also for systems of global states by means of the maps in

Section 2.5. We say that P is a QIS for a system S iff every theorem of S is valid on P , and S is an SGS for S , or S-SGS, iff
every model based on S is a model for S . We write S-S G S for denoting the class of S-SGS.

Lemma 33. Let 2 � k � 6. The following identities between classes of SGS hold:

Q .S5n-S G S = S G S
Q .S5var

n -S G S = S G S var

Q .S5reg
n -S G S = S G S reg

Q .S5obj
n -S G S = S G S obj

Q .S5D
n -S G S = S G S obj

Q .S5k
n-S G S = S G S k

Proof. The identities above follow from Lemma 32 and the maps in Section 2.5 �
4.4. Soundness

In showing that our QML systems are sound and complete axiomatisations of the corresponding classes of system of
global states we first prove soundness.

Lemma 34 (Soundness). Every QML system S is sound with respect to the class of frames for S, therefore S is sound also with respect
to the class of SGS for S.

Proof. We observe that by the right to left implication of Lemma 32 if �S φ then F |� φ, where F belongs to the class of
S-frames. By the definition of validity on systems of global states, we obtain that �S φ implies S |� φ, where S belongs to
the class of S-SGS. �

We summarise the soundness results in the following table. Let 2 � k � 6, for any row, the QML system in the first
column is sound with respect to the corresponding class of frames in the second column, and therefore it is sound for the
corresponding class of SGS in the third column.

QML systems Kripke frames Systems of global states

Q .S5n K S G S
Q .S5var

n Kvar S G S var

Q .S5reg
n Kreg S G S reg

Q .S5obj
n Kobj S G S obj

Q .S5D
n Kobj S G S obj

Q .S5k
n Kk S G S k

4.5. Completeness of Q .S5n

This section is devoted to showing completeness for the QML systems introduced above with respect to the correspond-
ing classes of Kripke frames. The completeness of Q .S5n is proved by means of standard techniques in quantified modal
logic [16,19,30] suitably extended to fit in the present framework with indexed quantifiers and modalities, local terms,
identity. Specifically, we adopt the particular version of canonical models given by Thomason in [60] for languages with
an existence predicate. As standard, we show that if �Q .S5n φ then there exists a Kripke model M such that M �|� φ. In
particular, we show that the canonical model M Q .S5n for Q .S5n to be defined below is a model according to Definition 22,
it is based on a frame for Q .S5n and M Q .S5n �|� φ. Therefore, the following is a sufficient condition to prove completeness.
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Proposition 35. If Q .S5n does not prove a formula φ ∈ Ln , then the canonical model M Q .S5n for Q .S5n does not validate φ.

This result relies on two lemmas: the saturation lemma and the truth lemma. Their proofs need the following definitions,
where Liφ is defined as ¬Ki¬φ and Λ is any set of formulas in Ln:

Λ is consistent iff Λ �Q .S5n ⊥;
Λ is maximal iff for every φ ∈ Ln , either φ ∈ Λ or ¬φ ∈ Λ;
Λ is max-cons iff Λ is consistent and maximal;
Λ is rich iff ∃i yφ ∈ Λ implies that there is a term t ∈ Ln

such that Admi(t) ∧ φ[y/t] ∈ Λ;
Λ is L j-rich iff φ0 ∧ L j(φ1 ∧ · · · ∧ L j(φk ∧ L j∃i yφk+1) . . .) ∈ Λ

for y not free in φ0, . . . , φk implies there is t ∈ Ln such that
φ0 ∧ L j(φ1 ∧ · · · ∧ L j(φk ∧ L j(Admi(t) ∧ φk+1[y/t])) . . .) ∈ Λ,

Λ is saturated iff Λ is max-cons, rich and L j-rich, for every j ∈ A

The constraint on L j-richness, which is due to Thomason [60], is needed in order to guarantee that the canonical model for
Q .S5n has a single outer domain D . We briefly sketch the proof of the saturation lemma and refer to [30] for details; the
extension to the multi-modal case is straightforward.

Lemma 36 (Saturation lemma). If � is a consistent set of the formulas in Ln, then it can be extended to a saturated set Π on some
expansion L+

n obtained by adding to Ln an infinite set of new local constants and an infinite set of new global constants.

Proof. Let θ0, θ1, . . . be an enumeration of the formulas in L+
n , and let there be enumerations of the new global and local

constants m0,m1, . . . . We define by recursion a chain of sets of formulas in L+
n as follows:

Γ0 = �

Γ2n+1 =
{

Γ2n ∪ {Admi(m2n) ∧ θn[y/m2n]} if Γ2n ∪ {∃yθn} is consistent and
m2n /∈ Γ2n ∪ {θn} is the first new constant;

Γ2n otherwise

Γ2n+2 =

⎧⎪⎨
⎪⎩

Γ2n+1 ∪ {φ0 ∧ L j(φ1 ∧ · · · ∧ L j(φk ∧ L j(Admi(m2n+1) ∧ φk+1[y/m2n+1])) . . .)}
if Γ2n+1 ∪ {φ0 ∧ L j(φ1 ∧ · · · ∧ L j(φk ∧ L j∃i yφk+1) . . .)} is consistent
and m2n+1 is the first variable not in Γ2n+1, φ1, . . . , φk+1;

Γ2n+1 otherwise

By induction we can prove that every Γn is consistent. Thus, by the chain lemma Γ = ⋃
n∈N

Γn is a consistent, rich and
L j-rich set of formulas in L+

n , for every j ∈ A. By Lindenbaum’s lemma Γ can be extended to a saturated set Π ⊇ � in
L+

n . �
As a result, if �Q .S5n φ then the set {¬φ} is consistent and by the saturation lemma we obtain a saturated set Π ⊇ {¬φ}.
In order to introduce the canonical model M Q .S5n for Q .S5n we need a few more definitions. For closed global terms

v, v ′ , define v ∼w v ′ iff (v = v ′) ∈ w . This is an equivalence relation and we take [v]w = {v ′ | v ∼w v ′} to be the equivalence
class of v in w .

The accessibility relation in M Q .S5n is defined so that w Ri w ′ iff {φ | Kiφ ∈ w} ⊆ w ′: by axioms T , 4 and 5 we can show
that Ri is an equivalence relation.

Further, by axioms Ki Id and KiDif the definition of [v]w is provably independent from the choice of w and v – i.e.,
w Ri w ′ implies [v]w = [v]w ′ – so we simply write [v]. We define each Di(w) as the set {[v] | Admi(v) ∈ w}. By NecAdm and
Nec¬Adm we can show that also this definition is independent from the choice of w , therefore we simply write Di .

Moreover, for every closed local term r we introduce a function fr such that:

fr(w) =
{ [v] if there is a v such that (r = v) ∈ w;

{r′ | (r′ = r) ∈ w} otherwise

Each Fi(w) is the set { fr | Admi(r) ∈ w}: by NecAdm and Nec¬Adm also this definition is provably independent from the
choice of w , so we simply write Fi .

Given these definitions, we present the canonical model for Q .S5n as follows:

Definition 37. The canonical model for Q .S5n on the language Ln , with an expansion L+
n , is the tuple M Q .S5n =

〈W , {Ri}i∈A, D, {Di}i∈A, F , {Fi}i∈A, I〉 such that:

• W is the set of all saturated sets of formulas in L+
n ;

• for i ∈ A, w, w ′ ∈ W , w Ri w ′ iff {φ | Kiφ ∈ w} ⊆ w ′;
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• the domain D of individuals is the set {[v] | v ∈ L+
n }∪ { fr(w) | r ∈ L+

n , w ∈ W }, and for each i ∈ A, Di = {[v] | Admi(v) ∈
w};

• the domain F of intensional objects is the set { fr | r ∈ L+
n }, and for each i ∈ A, Fi = { fr | Admi(r) ∈ w};

• I is an interpretation of L+
n such that:

◦ I(c) = [c] and I(d) = fd;
◦ for a1, . . . ,ak ∈ D ∪ F , I( f k)(�a) is a function such that

I( f k)(�a)(w) =
{ [ f k(�v)] if every ai = [vi];

f f k(�e)(w) for ei = vi if ai = [vi], or ei = ri if ai = fri

◦ for a1, . . . ,ak ∈ D , 〈�a〉 ∈ I(Pk, w) iff Pk(�e) ∈ w , for ei = vi and ai = [vi], or ei = ri and ai = fri (w).

Note that the interpretation of functions and predicates is well defined by axioms F unc and Subst . The following propo-
sition holds by the remarks above.

Proposition 38. The canonical model M Q .S5n for Q .S5n satisfies the constraints in Definition 22, so M Q .S5n is a Kripke model.

Proof. Assume that �Q .S5n φ, then the set {¬φ} is consistent, so by Lemma 36 it can be extended to a saturated set of
formulas in L+

n . Therefore, the set W of possible worlds is non-empty. We remarked that by axioms T , 4 and 5, each
relation Ri is reflexive, transitive and euclidean, i.e., it is an equivalence relation. Further, the domains D and F are non-
empty by definition of L+

n , and each Di (respectively Fi ) is trivially a subset of D (respectively F ). Finally, the interpretation
I is well-defined and satisfies the constraints on Kripke models by the remarks above. �

Now let σ be an assignment for local and global variables into D and F respectively, we can show the following:

Lemma 39. For every w ∈ M, t ∈ L+
n , for σ(yi) = I(ei),

Iσ (t[�y], w) = I(t[�y/�e])(w)

Proof. This can be shown by induction on the length of t . We give the proof for t = f (t1, . . . , tk), y = z, and e = d:

Iσ (t[z], w) = Iσ ( f (t1[z], . . . , tk[z]), w) = I( f )(Iσ (t1[z], w), . . . , Iσ (tk[z], w))

= I( f )(I(t1[z/d])(w), . . . , I(tk[z/d])(w))

= I( f )(I(t1[z/d]), . . . , I(tk[z/d]))(w)

= I( f (t1[z/d], . . . , tk[z/d]))(w)

= I( f (t1, . . . , tk)[z/d])(w)

= I(t[z/d)(w) �
By Lemma 39 the base case of the truth lemma below follows. In the rest of this section we simply write M for M Q .S5n .

Lemma 40 (Truth lemma). For every w ∈ M, φ ∈ L+
n , for σ(yi) = I(ei),

(Mσ , w) |� φ[�y] iff φ[�y/�e] ∈ w

Proof. The proof is by induction on the structure of φ ∈ L+
n .

φ = Pk(t1, . . . , tk). By the definition of satisfaction and Lemma 39:

(Mσ , w) |� Pk(t1, . . . , tk)[�y] iff 〈Iσ (t1[�y], w), . . . , Iσ (tk[�y], w)〉 ∈ I(Pk, w)

iff 〈I(t1[�y/�e])(w), . . . , I(tk[�y/�e])(w)〉 ∈ I(Pk, w)

iff Pk(t1[�y/�e], . . . , tk[�y/�e]) ∈ w

φ = t = t′ . Similar to the previous case.
φ = ¬ψ,ψ → ψ ′ . The cases for the propositional connectives follow by the maximality and consistency of the worlds in

the canonical model.
φ = ∀i zψ . ⇐ Assume that ∀i zψ[z, �y/�e] ∈ w and f is an individual in Fi . This means that f = fr , for some r such that

Admi(r), then ψ[r, �y/�e] ∈ w by Ex. By the induction hypothesis (Mσ , w) |� ψ[r, �y], therefore (Mσ( z
fr), w) |� ψ[z, �y]. By

the arbitrariness of the variant σ
( z )

we obtain (Mσ , w) |� ∀i zψ[z, �y].
fr
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⇒ Assume that ∀i zψ[z, �y/�e] /∈ w . Since w is max-cons, ∃i z¬ψ[z, �y/�e] ∈ w . But w is rich, so there exists d ∈ LCon such
that Admi(d) ∧ ¬ψ[d, �y/�e] ∈ w . This means that fd ∈ Fi and by induction hypothesis (Mσ , w) �|� ψ[d, �y]. Thus, there is

fd ∈ Fi such that (Mσ( z
fd
)
, w) �|� ψ[z, �y], i.e., (Mσ , w) �|� ∀i zψ[z, �y].

φ = ∀i xψ . The proof goes as in the previous case.
φ = Kiψ . ⇐ Assume that Kiψ[�y/�e] ∈ w and w Ri w ′ . By definition of Ri , ψ[�y/�e] ∈ w ′ and by induction hypothesis

(Mσ , w ′) |� ψ[�y]. Thus, (Mσ , w) |� Kiψ[�y].
⇒ Assume that Kiψ[�y/�e] /∈ w . Note that the set {φ | Kiφ ∈ w} ∪ {¬ψ[�y/�e]} is consistent: if not, there would be

φ1, . . . , φm ∈ {φ | Kiφ ∈ w} such that � ∧
φ → ψ[�y/�e]. By axiom K , � ∧

Kiφ → Kiψ[�y/�e] and since
∧

Kiφ ∈ w , also
Kiψ[�y/�e] ∈ w against hypothesis. Since {φ | Kiφ ∈ w} ∪ {¬ψ[�y/�e]} is consistent, we can extend it to a saturated set
w ′ on L+

n (see [60] for further details) such that w Ri w ′ and (Mσ , w ′) |� ¬ψ[�y] by induction hypothesis. Hence,
(Mσ , w) �|� Kiψ[�y]. �

By the truth lemma we conclude that the canonical model M is a model for Q .S5n , based on a Kripke frame, falsifying
any unprovable formula φ. Thus, we state the following completeness result.

Theorem 41 (Completeness). The system Q .S5n is complete with respect to the class K of Kripke frames, i.e., K |� φ implies �Q .S5n φ .

Further, we have completeness also with respect to systems of global states. In fact, if �Q .S5n φ then by Theorem 41
there exists a model M = 〈F , I〉 based on a frame F , which falsifies φ. Define the quantified interpreted system P as
〈g(F ), I〉: by definition P |� φ iff P f = 〈 f (g(F )), I〉 models φ, but by Lemma 14 the frame f (g(F )) is isomorphic to F .
Hence, P �|� φ. As a consequence, the following implications hold:

S G S |� φ ⇒ K |� φ ⇒ �Q .S5n φ

and we have a further completeness result.

Corollary 42 (Completeness). The system Q .S5n is complete with respect to the class S G S of systems of global states, i.e., S G S |� φ

implies �Q .S5n φ .

By combining together the soundness and completeness theorems we obtain the main result of this section.

Corollary 43 (Soundness and completeness). For every φ ∈ Ln,

S G S |� φ iff �Q .S5n φ

We conclude that Q .S5n is a sound and complete axiomatisation of the validities on the general class of systems of
global states.

4.6. Completeness for other axiomatisations

We now show how to modify the techniques applied in the previous subsection to obtain completeness also for the
other classes of Kripke frames and systems of global states considered. We start with varying and regular frames.

Theorem 44 (Completeness). The system Q .S5var
n is complete with respect to the class Kvar of varying frames.

Proof. If a formula φ ∈ Ln is not provable in Q .S5var
n , then we define the canonical model M Q .S5var

n for Q .S5var
n as in

Definition 37. Note that neither NecAdm nor Nec¬Adm are theorems in Q .S5var
n , so we cannot show that the various Di(w) =

{[v] | Admi(v) ∈ w} and Fi(w) = { fr | Admi(r) ∈ w} are independent from the choice of w . However, we can prove that the
canonical model is based on a varying Kripke frame. Also, Proposition 38 and Lemmas 39, 40 hold also for M Q .S5var

n , as their
proofs do not require the Barcan formulas. Therefore, the canonical model M Q .S5var

n satisfies ¬φ and we have completeness
for varying frames. �
Theorem 45 (Completeness). The system Q .S5reg

n is complete with respect to the class Kreg of regular frames.

Proof. As regards Q .S5reg
n , we show that the canonical model M Q .S5reg

n defined as in Definition 37 satisfies constraint (7)
on regular frames, i.e.,

• for all w, w ′ ∈ W , w Ri w ′ implies Di(w) = Di(w ′) and Fi(w) = Fi(w ′).
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Assume that w Ri w ′ and Admi(v) ∈ w . By the restricted version CBFi−i of the converse of the Barcan formula we can show
that Admi(v) → KiAdmi(v) ∈ w , and by definition of Ri also Admi(v) ∈ w ′ . Thus, Di(w) ⊆ Di(w ′). The other direction of
the inclusion follows by symmetry of Ri . The proof of Fi(w) = Fi(w ′) is similar. Further, Proposition 38 and Lemmas 39, 40
hold also for M Q .S5reg

n , therefore we have completeness for regular frames. �
By axiomatising the class of regular SGS we showed that the restricted versions of the Barcan formulas considered are

powerful enough to characterise the idea of quantification domains as part of agents’ local state.
We now consider the completeness results for systems Q .S5obj

n and Q .S5D
n with respect to objectual frames. Let φ ∈ Lobj

n

be a formula not provable in Q .S5obj
n , we define the canonical model for Q .S5obj

n as the restriction of M Q .S5n to constant
terms.

Definition 46. The canonical model for Q .S5obj
n on the language Lobj

n , with an expansion Lobj+
n , is the tuple M Q .S5obj

n =
〈W , {Ri}i∈A, D, {Di}i∈A, I〉 such that:

• W is the set of all saturated sets of formulas in Lobj+
n ;

• for i ∈ A, Ri and Di are defined as in Definition 37;
• D = {[v] | v ∈ Lobj+

n };
• I is an interpretation of Lobj+

n such that:
◦ I(c) = [c];
◦ for a1, . . . ,ak ∈ D , I( f k)(�a) = [ f k(�v)], for ai = [vi];
◦ for a1, . . . ,ak ∈ D , 〈�a〉 ∈ I(Pk, w) iff Pk(�v) ∈ w , for ai = [vi].

Proposition 38 and Lemmas 39 and 40 hold also for M Q .S5obj
n : the proof is similar to those presented earlier. It follows

that the canonical model M Q .S5obj
n satisfies ¬φ, so we have completeness for objectual frames:

Theorem 47 (Completeness). The system Q .S5obj
n is complete with respect to the class Kobj of objectual frames.

As regards the system Q .S5D
n , we extend to first-order the completeness proof in [15] for proposional systems with

distributed knowledge consisting in unravelling the canonical model to obtain a model which is a tree. Note that an inde-
pendent completeness proof for these systems appeared in [28].

First, we consider the following definition of canonical model, where ℘+(A) is the set of non-empty subsets of A:

Definition 48. The canonical model for Q .S5D
n on the language L D

n , with an expansion L D+
n , is the tuple M Q .S5D

n =
〈W , {Rl}l∈A∪℘+(A), D, {Di}i∈A, I〉 such that:

• W is the set of saturated sets of formulas in L D+
n ;

• for i ∈ A, Ri , Di , and D , I are defined as in Definition 46;
• for G ∈ ℘+(A), w RG w ′ iff {φ | DGφ ∈ w} ⊆ w ′ .

Lemma 36 holds also for the system Q .S5D
n . Therefore, if ��Q .S5D

n
φ there exists a saturated set w ⊇ {¬φ}, so the set W

of possible worlds in M Q .S5D
n is non-empty. By using axioms T , 4 and 5 we can show that the various RG are equivalence

relations. Moreover, by axioms D1 and D2 it follows that R{i} is equal to Ri and RG ⊆ ⋂
i∈G Ri . However, in general RG �=⋂

i∈G Ri [15]. This remark gives the rationale for introducing the pseudo-satisfaction relation |�p , defined as |� but for the

distributed knowledge operator DG (in what follows we simply write M for M Q .S5D
n ):

(Mσ , w) |�p DGψ iff for every w ′ ∈ W , w RG w ′ implies (Mσ , w ′) |�p ψ

We state the truth lemma for the pseudo-satisfaction relation |�p . The proof follows the one for Lemma 40, the distributed
knowledge operator DG being treated as the epistemic operator Ki .

Lemma 49 (Truth lemma). For w ∈ M, ψ ∈ L D+
n , for σ(xi) = [vi],

(Mσ , w) |�p ψ[�x] iff ψ[�x/�v] ∈ w

We now show that the techniques in [15] can be extended to first-order so that M can be unwound into a structure
M′ satisfying the same formulas.

In order to introduce M′ we need a few more definitions. Let w, w ′ be worlds in W , a path from w to w ′ is a sequence
〈w1, l1, w2, l2, . . . , lk−1, wk〉 such that:
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(1) w = w1 and w ′ = wk;
(2) w1, . . . , wk ∈ W ;
(3) each l j is either an agent or a set of agents;
(4) 〈w j, w j+1〉 ∈ Rl j .

The reduction of a path 〈w1, i1, w2, i2, . . . , ik−1, wk〉 is obtained by replacing each maximal consecutive subsequence
〈wq, iq, wq+1, iq+1, . . . , ir−1, wr〉 where iq = iq+1 = · · · = ir−1 by 〈wq, iq, wr〉. A path is said to be reduced is it is equal
to its reduction.

Given the canonical model M = 〈W , {Rl}l∈A∪℘+(A), D, {Di}i∈A, I〉 we define a structure M∗ = 〈W ∗, {R∗
l }l∈A∪℘+(A), D∗,

{D∗
i }i∈A, I∗〉 and a surjective function h : W ∗ → W such that (i) M∗ is a tree, that is, for all w, w ′ ∈ W ∗ , there is at most

one reduced path from w to w ′; (ii) w R∗
i w ′ implies h(w)Rih(w ′); (iii) w R∗

G w ′ implies h(w)RGh(w ′); (iv) 〈a1, . . . ,ak〉 ∈
I∗(Pk, w) iff 〈a1, . . . ,ak〉 ∈ I(Pk,h(w)).

The set of possible worlds W ∗ is defined by induction. Let W ∗
1 be W , and define W ∗

k+1 as the set of worlds v w,l,w ′
such that w ∈ W ∗

k , w ′ ∈ W and l is an agent or group of agents. Let W ∗ = ⋃
k∈N

W ∗
k , then define h : W ∗ → W by letting

h(w) = w , for w ∈ W ∗
1 and h(v w,l,w ′ ) = w ′ , for w ∈ W ∗

k . Further, R∗
l is the reflexive, symmetric and transitive closure of the

relation defined for w, w ′ ∈ W ∗ if w ′ = v w,l,w ′′ , for some w ′′ ∈ W , and h(w)Rlh(w ′). Finally, I∗(Pk, w) = I(Pk,h(w)). We
refer to [15] for a proof that M∗ and h satisfy (i)–(iv) above. In particular, we can show what follows:

Lemma 50. For w ∈ W ∗ , ψ ∈ L D+
n , we have

(M∗σ , w) |�p ψ iff (Mσ ,h(w)) |�p ψ

Finally, we make use of the structure M∗ to define a Kripke model M′ that falsifies the unprovable formula φ.

Definition 51. The model M′ = 〈W ′, {R ′
i}i∈A, D ′, {D ′

i}i∈A, I ′〉 is defined as follows:

• W ′ = W ∗ , D ′ = D∗ , D ′
i = D∗

i , and I ′ = I∗;
• R ′

i is the transitive closure of R∗
i ∪ ⋃

i∈G R∗
G .

Since the various R∗
i and R∗

G are reflexive, transitive and symmetric, R ′
i is an equivalence relation. We state the following

result about M′ and refer to [15] for further details.

Lemma 52. For w ∈ W ′ , ψ ∈ L D+
n , the following holds

(M′σ , w) |� ψ iff (M∗σ , w) |�p ψ

In conclusion, if φ ∈ L D
n is not provable in Q .S5D

n , then the canonical model M Q .S5D
n pseudo-satisfies ¬φ by Lemma 49.

By Lemma 50 also M∗ pseudo-satisfies ¬φ, and by the result above M′ does not validate φ. Hence, we have the following
completeness result.

Theorem 53 (Completeness). The system Q .S5D
n is complete with respect to the class of objectual frames.

Finally, we show that formulas (13)–(17) are sufficient to guarantee that the canonical models for the systems Q .S5k
n , for

2 � k � 6, defined as in Definition 37, satisfy the corresponding constraints.

Theorem 54 (Completeness). For 2 � k � 6, the system Q .S5k
n is complete with respect to the class Kk of Kripke frames.

Proof. We show that the canonical models for the systems Q .S5k
n , for 2 � k � 6, satisfy the respective constraint on the

classes Kk of Kripke frames.
Q.S51

n . Assume that w ∼i w ′ and f (w) ∈ Di . If f ∈ F then f = fr for some closed local term r, and by hypothesis
fr(w) = [v], for some v such that Admi(v) ∈ w . This means that (r = v) ∈ w , therefore ∃xi(r = x) ∈ w ′ by formula (13). By
richness of w ′ there exists v ′ such that Admi(v ′) ∈ w ′ and (r = v ′) ∈ w ′ . Thus, fr(w ′) ∈ Di .

Q.S52
n . This can be shown as above, but this time f = fr , for some closed local term r, belongs to Fi .

Q.S53
n . Assume that f = fr ∈ Fi for some closed local term r, then Ki∃i x(r = x) ∈ w by formula (15), and in particular

∃i x(r = x) ∈ w . By the richness of w there exists v such that Admi(v) ∈ w and (r = v) ∈ w . Therefore, there exists [v] ∈ Di
such that fr(w) = [v].

Q.S54
n . Assume that f = fr for some closed local term r belongs to Fi , fr(w) = a ∈ D , and w ∼ w ′ . By hypothesis there

exists a closed term t such that I(t) = a ∈ D and (r = t) ∈ w . By formula (16) this implies that Ki(r = t) ∈ w and (r = t) ∈ w ′ .
Thus fr(w) = fr(w ′).
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Q.S55
n . Since formula (17) is equivalent to the conjunction of formulas (15) and (16), we can prove that for f ∈ Fi ,

w ∼i w ′ implies f (w) = f (w ′) ∈ Di .
As a result, we have completeness with respect to all the relevant classes of frames. �
As for system Q .S5n , for every QML system S from completeness with respect to Kripke frames we can derive com-

pleteness for systems of global state. In fact, if �S φ then by Kripke completeness there exists a model M = 〈F , I〉 based
on a S-frame F , which falsifies φ. Define the quantified interpreted system P as 〈γ (F ), I〉, where γ is the relevant map
from S-frames to SGS for S . By definition P |� φ iff Pϕ = 〈ϕ(γ (F )), I〉 models φ, where ϕ is the relevant map from SGS
for S to S-frames. By the results in Section 2.6, the frame ϕ(γ (F )) is isomorphic to F . Hence, P �|� φ. Thus, the following
implications hold:

S-S G S |� φ ⇒ S-K |� φ ⇒ �S φ

and we have a further completeness result.

Corollary 55 (Completeness). Every QML system S is complete with respect to the class S-S G S of the systems of global states for S,
that is, S-S G S |� φ implies �S φ .

By combining together the soundness and completeness theorems we obtain the main result of this section.

Corollary 56 (Soundness and Completeness). For every formula φ in the language of S,

S-S G S |� φ iff �S φ

We conclude that our QML systems are sound and complete axiomatisations of the validities on the corresponding classes
of systems of global states. The corollary below summarises the main formal results of this paper.

Corollary 57. Let 2 � k � 6, for every row, the QML system in the first column of the following table is a sound and complete axioma-
tisation with respect to the corresponding class of Kripke frames and systems of global states:

QML systems Kripke frames Systems of global states

Q .S5n K S G S
Q .S5var

n Kvar S G S var

Q .S5reg
n Kreg S G S reg

Q .S5obj
n Kobj S G S obj

Q .S5D
n Kobj S G S obj

Q .S5k
n Kk S G S k

5. Applications to multi-agent systems

In this section we show how simple MAS scenarios can be modelled by means of quantified interpreted systems. Specif-
ically, in Section 5.1 we analyse the scenario of battlefield, and in Section 5.2 we consider an infinite version of the muddy
children puzzle. Section 6 deals with a more complex application: a formal analysis of message passing systems. We main-
tain that these investigations show some of the advantages of first-order formalisms.

5.1. Battlefield

In this subsection we model the popular game of battlefield as a quantified interpreted system, then we describe it by
means of the language Ln , for n = 4. We start by considering a set of agents A = {1,2,3,4}, and we assume that each agent
is assigned a quadrant in the region Z × Z as domain of quantification:

D4 = {(x, y) | x ∈ Z
−, y ∈ Z

+} D1 = {(x, y) | x, y ∈ Z
+}

D3 = {(x, y) | x, y ∈ Z
−} D2 = {(x, y) | x ∈ Z

+, y ∈ Z
−}

Intuitively, the set Di represents the country of agent i. Note that, even though in the battlefield game only a finite subset
of Z × Z is considered, in several scenarios either we are not able, or do not want, to bound in advance the size of the
game board. Thus, it can be useful to introduce a potentially infinite playing board, even though at each step only a finite
portion is considered.

We assume that each agent has 5 military units, whose positions are recorded in his local state. Further, we consider
couples (x, y) ∈ Di and triples (k, x, y), for 1 � k � 5, to express that there is a military unit at (x, y) and that the k-th
military unit is at (x, y) respectively.

The local state li of agent i is defined as a 4-tuple 〈α1,α2,α3,α4〉 such that:
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• αi is a 5-tuple 〈(1, x1, y1), . . . , (5, x5, y5)〉 recording the positions of agent i’s units.
• for j �= i, α j is a possibly empty sequence of triples (k, x, y) and couples (x, y) recording the positions and identities of

agent i’s enemies’ units.

Also, le is the local state of the environment recording the positions and identities of all units in similar fashion.
The set S contains the global states s = 〈le, l1, l2, l3, l4〉 such that if either (x, y) ∈ α j(li) or (k, x, y) ∈ α j(li), then (k, x, y) ∈

αi(li). So, an agent may not know the position or the identity of an enemy unit, but if she does, then she cannot be wrong.
Each domain Fi of intensional objects contains the military units mui.k , for 1 � k � 5, such that mui.k(s) = (x, y) iff the

triple (k, x, y) belongs to the component αi of the local state li(s). Moreover, we assume that our language has global and
local constants for denoting the individuals in the various Di and Fi . We use the same notation for syntactic and semantic
elements as the former mirror the latter, the context will disambiguate. Finally, let D contain the real numbers, i.e., D ⊇ R.

The quantified interpreted system P contains all the global states consistent with the definitions above. In particular,
suppose that the initial state s = 〈le, l1, l2, l3, l4〉, describing the position of the military units at the beginning, is defined as
follows:

l1(s) = 〈〈(1,2,2), (2,6,5), (3,2,7), (4,4,12), (5,7,9)〉, 〈〉, 〈〉, 〈〉〉
l2(s) = 〈〈〉, 〈(1,3,−3), (2,7,−2), (3,6,−5), (4,3,−6), (5,8,−9)〉, 〈〉, 〈〉〉
l3(s) = 〈〈〉, 〈〉, 〈(1,−3,−3), (2,−3,−6), (3,−6,−3), (4,−6,−8), (5,−8,−5)〉, 〈〉〉
l4(s) = 〈〈〉, 〈〉, 〈〉, 〈(1,−4,4), (2,−3,9), (3,−7,7), (4,−5,12), (5,−8,11)〉〉

The QIS P containing s describes a situation in which the first military unit of agent 1 is positioned at (2,2). In particular,
agent 1 knows this fact:

(P , s) |� K1∃1z(z = (2,2)) and also (P , s) |� ∃1zK1(z = (2,2))

while agent 3 does not know this:

(P , s) |� ¬∃1zK3(z = (2,2)) and also (P , s) |� ¬K3∃1z(z = (2,2))

Thus, agent 1 has not only de dicto knowledge that one of his military units is at (2,2), but he also has de re knowledge of
the first of his units being at (2,2).

Consider now a function dist returning the distance between two points in Z × Z as a real number:

I(dist)((x, y), (x′, y′)) =
√

(x − x′)2 + (y − y′)2

We can check that agent 2 starts with all his military units within a distance of less than 8. Further, he knows this fact, but
agent 4 does not. To express this, we introduce a relation symbol < with the obvious interpretation “less than”.

(P , s) |� ∀2z, z′K2(dist(z, z′) < 8) but (P , s) �|� ∀2z, z′K4(dist(z, z′) < 8)

The latter formula fails as agent 4’s local state is consistent with a different state s′′′ such that l2(s′′′) contains two military
units at a distance greater than 8, that is, l4(s′′′) = l4(s) but for instance

l2(s′′′) = 〈〈〉, 〈(1,30,−30), (2,7,−2), (3,6,−5), (4,3,−6), (5,8,−9)〉, 〈〉, 〈〉〉
Note that s′′′ ∈ P by definition of P .

Further, consider a global constant firedist representing the maximum range of fire of the military units and set it to 8,
i.e., I(firedist) = 8. We can express the fact that the units z and z′ are within fire range by the following formula:

FDist(z, z′) ::= dist(z, z′) < firedist

The following expression specifies that in the present QIS every agent has at least one unit which is not within the fire
range of any other enemy unit:

(P σ , s) |� ∃i z∀ j z
′¬FDist(z, z′), for j �= i

Now suppose that hostilities break out in our scenario and agent 3 somehow acquires the knowledge that one of agent 1’s
military units is at (2,2). The resulting state s′ differs from s only for the local state of agent 3:

l3(s′) = 〈〈(2,2)〉, 〈〉, 〈(1,−3,−3), (2,−3,−6), (3,−6,−3), (4,−6,−8), (5,−8,−5)〉, 〈〉〉
As a consequence, agent 3 acquires de dicto knowledge that the first of his units is within the range of enemy fire, even if
she does not know this fact de re, that is, she does not know which of agent 1’s units actually threatens agent 3’s first unit.

(P , s′) |� ∃3zK3∃1z′FDist(z, z′) but (P , s′) �|� ∃3z∃1z′K3FDist(z, z′)
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This is because the following local states for agent 1 is consistent with agent 3’s local state in s′ , i.e., there is a state s′′′′
such that l3(s′′′′) = l3(s′) and

l1(s′′′′) = 〈〈(2,2,2), (1,6,5), (3,2,7), (4,4,12), (5,7,9)〉, 〈〉, 〈〉, 〈〉〉
Now suppose that agent 1 discovers unit mu3.1’s position. The change in his local state is recorded in the global state s′′
differing from s′ as to l1:

l1(s′′) = 〈〈(1,2,2), (2,6,5), (3,2,7), (4,4,12), (5,7,9)〉, 〈〉, 〈(1,−3,−3)〉, 〈〉〉
Then, agent 1 too knows that one of his units is within the range of enemy fire. In particular, she has de re knowledge of
this fact, i.e., she knows the identity of agent 3’s unit:

(P , s′′) |� ∃1zK1∃3z′FDist(z, z′) and also (P , s′′) |� ∃1z∃3z′K1FDist(z, z′)

Given that one of agent i’s units is within the range of enemy fire, agent i is in a dangerous situation. For expressing
this, we introduce a predicate Danger, whose meaning is left underspecified through a caeteris paribus clause θ . We assume
that our QIS validates the following de dicto specification on Danger:

∀i z(Ki∃ j z
′FDist(z, z′) ∧ θ ↔ Danger(z)), for j �= i

The specification above is weaker than the following de re formula for specifying the Danger′ predicate on danger:

∀i z(∃ j z
′KiFDist(z, z′) ∧ θ ↔ Danger′(z)), for j �= i

In fact, the notion of Danger′ implies that of Danger, and agent 1 knows herself to be both in Danger and in Danger′ ,
while agent 3 only knows herself to be in Danger:

(P , s′′) |� ∃1zK1Danger(z) and (P , s′′) |� ∃1zK1Danger′(z)

(P , s′′) |� ∃3zK3Danger(z) but (P , s′′) �|� ∃3zK3Danger′(z)

Agents can try to find a way out of this situation either by attacking or by withdrawing. In order to analyse these alterna-
tives, we introduce a knowledge based protocol [14]. First of all, we define a predicate Access such that Access((x, y)(x′, y′))
iff |x − x′| � 1 and |y − y′| � 1. Intuitively, the set {p′ | Access(p, p′)} contains the points reachable from p in a single
move. Moreover, we consider two actions: ATTACK and MOVE. The protocol for agent i �= j can be written in pseudo-code as
follows:

if KiDanger(z) then
if ∃i x(Access(z, x) ∧ ∀ j z′Ki(¬FDist(x, z′))) then

MOVE(z, x)
else if ∃ j z′KiFDist(z, z′) then

ATTACK(z’)

This protocol says that if agent i knows that a unit z is in danger, then she has to move it to an area known to be out of
the enemy fire range. If this is not possible, then she has to attack the enemy unit threatening her own unit. Note that this
protocol is extremely strict, as it requires knowledge of safety conditions before moving. In the present case, we have:

(P , s′′) |� ∃1z(K1Danger(z) ∧ ∀1x(Access(z, x) → K1∃3z′FDist(x, z′)) ∧ ∃3z′K1FDist(z, z′))

Therefore agent 1, by following the knowledge-based protocol above, will attack the first unit of agent 3.
By suitably extending our language, we could express interesting topological relationships on the various Di , like the

presence of obstacles. Moreover, we could introduce intensional predicates to describe in detail the characteristics of the
military units. The system above is simply an example, but we deem it persuading enough to let us conclude that QIS are
sufficiently expressive to represent a number of concrete MAS scenarios.

5.2. Infinitely many muddy children

In this subsection we use the language Lobj
n to present an infinite version of the muddy children puzzle [14], a well-

known scenario in epistemic logic. We observe that the solution to this puzzle depends only on the number k of muddy
children, not on the total number m � k of children. In other words, at the end of the k-th round every child knows whether
his forehead is muddy or not, independently from the total number m of children.

This remark suggests that there is no need to fix in advance the size of the set D of children in the muddy children
puzzle. Given this, we take D as containing an infinite number of children and we introduce an infinite version of this
puzzle.
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However, the language Lobj
n in Section 3.1 contains only a finite number n of epistemic operators, so in the present

formalism we can reason about the knowledge of just a finite subset of D . This is a limitation of the present setting, which
can be overcome by introducing a language with infinite denumerable epistemic operators. Such an extension is beyond our
interest in this paper, so we leave it for further work.

We take the local state li of child i � n to be either 1 or 0 depending on whether his forehead is muddy or not, while
the local state of the environment remains unspecified as it does not influence the present analysis. So we take it to be the
empty sequence. We define a muddy children quantified interpreted system as follows:

Definition 58. A muddy children QIS, or MCQIS, is any pair 〈S, D〉, where S ⊆ Le × L1 × · · · × Ln , and D is an infinite set of
children.

Note that we have a single quantification domain D for all children, this implies that we can omit the subscript i from
quantifiers, and consider in Lobj

n unique quantifiers ∀, ∃ for all agents.
Instead of using, as in the propositional case, propositions pi for 1 � i � n, representing the fact that “child i’s forehead

is muddy”, we use a unary predicative constant M and infinitely many constants such that M(ai) intuitively means that
“child i’s forehead is muddy”. Hereafter we present our analysis of this infinite version of the muddy children puzzle.

After the father’s announcement that at least one child has a muddy forehead, the children have common knowledge of
this fact. The language Lobj

n has no common knowledge operator: we approximate this by assuming that Ki1 . . . Ki j ∃xM(x)
holds at step 1, for every i1, . . . , i j � n. This formula does not hold in every muddy children QIS, but it is valid on the MCQIS
where S does not contain the global state with only 0s.

Further, every child knows whether any other child is muddy or not, and this can be expressed in Lobj
n as the following

specification:

∀x(x �= a jk → (K j1 . . . K jk M(x) ∨ K j1 . . . K jk ¬M(x))) (18)

but he does not know whether he is muddy or not, that is, also the following specification holds at the beginning:

¬K j M(a j) ∧ ¬K j¬M(a j) (19)

By induction on the number k of muddy children, it is provable that at the k-th round of answers every child knows whether
his forehead is muddy or not. Moreover, this result is independent from the actual number of children, and it holds also
for an infinite number of children. In what follows we refer to principles and rules of inference of the system Q .S5obj

n in
Section 4, we do not provide all the details of proofs, the interested reader should nonetheless be able to fill the gaps.

For k = 1, assume that child j knows that (20) at least one child has a muddy forehead, and that (21) he cannot see any
other child with a muddy forehead:

K j∃xM(x) (20)

K j∀y(y �= a j → ¬M(y)) (21)

These formulas hold in the muddy children QIS where at least one and only one child has a muddy forehead. In the
first-order modal system Q .S5obj

n we can show that child j deduces that his own forehead is muddy as follows:

a. K j(∃xM(x) ∧ ∀y(y �= a j → ¬M(y))) from (20), (21) by modal calculus

b. K j∃x(M(x) ∧ (x �= a j → ¬M(x))) from a by predicate calculus
c. K j∃x(M(x) ∧ x = a j) from b by propositional calculus

So child j acquires the knowledge that his own forehead is muddy, i.e., K j M(a j) holds, and he will answer positively in the
first round when asked.

For k = 2, after the first round of negatively answered questions, every child i knows that there are at least two children
with muddy foreheads. We can represent this situation by means of the following de dicto formula:

Ki∃x, y(x �= y ∧ M(x) ∧ M(y)) (22)

Note that if child i has not a muddy forehead, it is trivial to check that (22) holds, as child i can see two other children
with muddy foreheads. On the other hand, if child i is one of the muddy children, then he can derive (22) in Q .S5obj

n from
the principles (20), (21), (c) above.

In order to see this, assume that j is the muddy child other than i, who has negatively answered the first question. This
means that (c) K j M(a j) fails, so either (20) or (21) does not hold. But it is the case that (20) K j∃xM(x), so ¬K j∀y(y �=
a j → ¬M(y)), that is, (21) is not valid.

Further, we can show that if child j does not know that he is the only muddy child, then there is some other child, who
is known to be muddy by j:

¬K j∀y(y �= a j → ¬M(y)) → ∃y(y �= a j ∧ K j M(y)) (23)
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In fact, formula (23) can be proved in the system Q .S5obj
n as follows1:

a. ¬K j∀y(y �= a j → ¬M(y)) by assumption

b. ¬∀y(y �= a j → K j¬M(y)) from a by (see footnote)

c. ∃y(y �= a j ∧ ¬K j¬M(y)) from b by predicate calculus

d. ∃y(y �= a j ∧ K j M(y)) from c by (18)

As a result, (23) holds in the muddy children QIS. Therefore, by (23) and the negation of (21) we derive ∃y(y �= a j ∧ K j M(y)).
Finally, by axioms T and Nec the muddy child i acquires the knowledge that there is a muddy child different from j, i.e.,
Ki∃y(y �= a j ∧ M(y)). We also assumed that i knows that j has a muddy forehead, Ki M(a j), so we can easily derive (22) in

Q .S5obj
n by first-order calculus.

Up to now we showed that after the first round of questions every child, muddy or not, knows that there are at least
two muddy children. Now, suppose that child j can see only another child z with a muddy forehead. This situation validates
the following de re specification, i.e., child j knows that every child other than him and z is clean:

∃zK j∀k(k �= a j ∧ k �= z → ¬M(k)) (24)

We can show that from the de dicto knowledge of the existence of two muddy children expressed in (22), and formula (24)
above, in Q .S5obj

n child j deduces the de re knowledge that he is the other muddy child as follows:

a. K j∃x, y (x �= y ∧ M(x) ∧ M(y))

∧ ∃zK j∀k (k �= a j ∧ k �= z → ¬M(k)) from (22), (24)

b. ∃zK j∃x, y (x �= y ∧ M(x) ∧ M(y)

∧ ∀k(k �= a j ∧ k �= z → ¬M(k))) from a by predicate calculus

c. ∃zK j∃x, y (x �= y ∧ M(x) ∧ M(y)

∧ (x = a j ∨ x = z) ∧ (y = a j ∨ y = z)) from b by Ex

d. ∃zK j∃x, y (x �= y ∧ M(x) ∧ M(y)

∧ ((x = a j ∧ y = z) ∨ (y = a j ∧ x = z))) from c by distributivity
e. ∃zK j (a j �= z ∧ M(a j) ∧ M(z)) from d by predicate calculus

As a result, child j acquires de re knowledge that he is the other muddy child and replies positively on the second round of
questions.

It is an easy induction step to show that if there are k muddy children, then there are formal proofs in the system
Q .S5obj

n that they will know within the k-th round whether their foreheads are muddy. Since we are reasoning about an
infinite set D of children, none of the formulas above can be translated into the propositional language of [14] for example.
Given the above, the infinite version of the muddy children puzzle has a natural and intelligible formal proof in first-order
epistemic logic

6. Message-passing QIS

This section is devoted to modelling message-passing systems (MPS) [14,52] in the framework of objectual QIS. An MPS
is a multi-agent system where agents communicate by exchanging messages, so the most relevant actions performed by
agents are the sending and receiving of messages. The formalism of message passing systems is useful to model a wide
range of multi-agent systems. For instance, a network of computers, such as the Internet, can be seen as an MPS. In general,
any multi-agent system is an MPS if the message transmission delay is not negligible. In MPS the local state of each agent
contains information about the initial state, the messages it has sent or received, as well as the internal actions it has
taken. One of the first references dealing with MPS is [38], since then they have been extensively investigated both in their
synchronous and asynchronous formulations [14,52].

In what follows we show that MPS can be defined as a particular class of objectual SGS satisfying a finite number of
specifications in the first-order modal language L D

n , where n is the number of agents in the MPS. Our main result consists
in showing that Proposition 4.4.3 in [14], concerning the knowledge of the ordering of events in MPS, can be restated as a
validity on the class of QIS modelling MPS. Thus, the formalism of objectual QIS is powerful enough to deal with the theory
of message passing systems. Throughout this section we refer to [14], par. 4.4.5-6, for details on MPS.

More formally, we introduce a set Act of actions α1,α2, . . . , and a set Msg of messages μ1,μ2, . . . For each agent i ∈ A,
we consider a set Σi of initial events init(i,α), and a set Inti of internal events int(i,α). We define the local state li for
agent i as a history over Σi , Inti and Msg, that is, a sequence of events whose first element is in Σi , and whose following
elements either belong to Inti or are events of the form send(i, j,μ), rec(i, j,μ) for j ∈ A, μ ∈ Msg. Intuitively, init(i,α)

1 Note that (t �= t′ → K jφ) → K j(t �= t′ → φ) is a validity in all muddy children QIS, because of the interpretation of terms.
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represents the event where agent i performs the initial action α, send(i, j,μ) represents the event where agent i sends message
μ to j, while the intended meaning of rec(i, j,μ) is that agent i receives message μ from j. Finally, int(i,α) means that agent
i performs the internal action α.

A global state s is a tuple 〈le, l1, . . . , ln〉, where l1, . . . , ln are local states as above and le contains all the events in l1, . . . , ln .
We define a reflexive, transitive and anti-symmetric relation � on the set of local states of any agent i such that li � l′i

iff li is a prefix of l′i . This order extends to global states, so that s � s′ iff li � l′i for every i ∈ A.
We define message passing QIS (MPQIS) as objectual quantified interpreted systems P = 〈S, D, I〉 where S is a non-

empty set of global states, the domain D of individuals includes all agents in A, the messages in Msg, the actions in Act, the
events e1, e2, . . . , and I is an interpretation for language L D

n .
Intuitively, each MPQIS models the temporal evolution of a message passing system, which can be represented as a

sequence s0, s1, . . . of global states such that s0 = 〈init(e,αe), init(1,α1), . . . , init(n,αn)〉, and for every n ∈ N, either sn+1 is
identical to sn or there is i ∈ A such that li(sn) � li(sn+1) but li(sn) �= li(sn+1). Note that a single MPQIS can model several
temporal evolutions of the same MPS.

We assume that our language has terms and predicative letters for representing the objects in the domain D and the
relations among them. In particular, e1, e2, . . . are metaterms ranging over events: for instance, we introduce ∀eφ[e] as a
shorthand for

∀i, j,μ,α φ[send(i, j,μ)] ∧ φ[rec(i, j,μ)] ∧ φ[init(i,α)] ∧ φ[int(i,α)]
In fact, every event is either a send event, a receive event, an initial action, or an internal action. We use the same notation
for the objects in the model and the syntactic elements, the distinction will be made clear by the context. We observe that
we can express event specifications by using formulas in L D

n , which are provably valid on every MPQIS (the existence of a
unique individual ∃! can be defined by means of =). For example, we can state:

∀e∃!i, j,μ,α (i �= j) ∧ (e = send(i, j,μ) ∨ e = rec(i, j,μ) ∨ e = init(i,α) ∨ e = int(i,α))

∀i, j,μ,α ∃!e1, e2, e3, e4(send(i, j,μ) = e1 ∧ rec(i, j,μ) = e2 ∧ init(i,α) = e3

∧ int(i,α) = e4 ∧ e1 �= e2 ∧ e1 �= e3 ∧ e1 �= e4 ∧ e2 �= e3 ∧ e2 �= e4 ∧ e3 �= e4)

The first specification expresses the fact that every event is either a send event or a receive event, where the sender is
different from the receiver, an initial action, or an internal action. Thus, it cannot be the case that e = send(i, j,μ) =
send(i′, j′,μ′) for distinct agents and messages. The second specification states that every send or receive event, initial
action, and internal action are distinct events. Thus, we cannot have send(i, j,μ) = e = rec(i′, j′,μ′). It is easy to check that
our definition of MPQIS validates both specifications.

In [14], p. 132 the authors list three key constraints on MPS, the third one involves the notion of run on a SGS, i.e., a
temporal evolution of global states. Nonetheless, we can restate the first two without introducing runs:

MP1 a local state li for agent i is a history over Σi , Inti and Msg;
MP2 for every event rec(i, j,μ) in li(s) there exists an event send( j, i,μ) in l j(s).

Further, the following simplifying assumption is considered:

* all events in a given agent’s local state are distinct, an agent can never perform the same action twice.

We show how to formalise these specifications in the present formalism. First, we introduce a predicate H for happened
such that (P σ , s) |� H(e, i) iff e is an event in the local state li(s) of agent i. The formula H(e) is a shorthand for ∃iH(e, i).
By definition of MPS we can show that (P σ , s) |� H(e) iff e is an event in s. Further, we define an order Prec on events as
follows:

(P σ , s) |� Prec(e, e′, i) iff (P σ , s) |� H(e, i) ∧ H(e′, i) and

for all s′ � s, (P σ , s′) |� H(e′, i) → H(e, i)

The definition of Prec(e, e′) can be obtained from the one above by disregarding the i component:

(P σ , s) |� Prec(e, e′) iff (P σ , s) |� H(e) ∧ H(e′) and

for all s′ � s, (P σ , s′) |� H(e′) → H(e)

We can insist on the events in a global state s to be partially ordered by specifying that Prec(e, e′) is a reflexive and
transitive relation on the set of past events:

H(e) → Prec(e, e) (25)

Prec(e, e′) ∧ Prec(e′, e′′) → Prec(e, e′′) (26)

Moreover, Prec(e, e′, i) can be defined as a linear order on the events in li , i.e., it is also anti-symmetric and total:
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Prec(e, e′, i) ∧ Prec(e′, e, i) → (e = e′) (27)

H(e, i) ∧ H(e′, i) → Prec(e, e′, i) ∨ Prec(e′, e, i) (28)

We define Linear(Prec(e, e′, i)) as the conjunction of (25)–(28) above, expressing the fact that the relation Prec(e, e′, i) is
linear. Also, we define the first event as the minimal one with respect to Prec(e, e′, i), that is,

Fst(e, i) ::= ∀e′(H(e′, i) → Prec(e, e′, i))

Finally, the formulas Sent(i, j,μ), Recd(i, j,μ), Init(i,α), and Int(i,α) are shorthands for H(send(i, j,μ)), H(rec(i, j,μ)),
H(init(i,α)), and H(int(i,α)) respectively. We can now formalise the specifications MP1-2 and * as follows:

MP1* Linear(Prec(e, e′, i)) ∧ ∃!e(F st(e, i) ∧ ∃α(e = init(i,α)))

∧ ∀e(¬F st(e, i) → ∃ j,α,μ(e = int(i,α) ∨ e = send(i, j,μ) ∨ e = rec(i, j,μ)))

MP2′ ∀i, j,μ(Recd(i, j,μ) → Sent( j, i,μ))

The validity of MP1* on MPQIS forces the local state of any agent i to satisfy specifications MP1 and *; while by MP2′
specification MP2 is satisfied.

Formulas MP1* and MP2′are the basic specifications for MPQIS, but we can consider further key constraints on message
passing system. A property often required in the framework of MPS is channel reliability. Modified from [14], an MPS is
reliable if every sent message is eventually received, or more formally:

MP4 if send(i, j,μ) is in li(s), then there exists a global state s′ such that rec( j, i,μ) is in l j(s′).

In the language L D
n we can formalise this specification as follows:

MP4′ ∀ j,μ(Sent(i, j,μ) → ¬Ki¬Recd( j, i,μ)).

In fact, if send(i, j,μ) is in li(s), by M4’ (P σ , s) |� ¬Ki¬Recd( j, i,μ), this means that there exists a global state s′ such that
(P σ , s′) |� Recd( j, i,μ), that is, rec( j, i,μ) ∈ l j(s′). Thus, MP4 holds. Note that MP4′ is actually stronger than MP4 as the
former requires that the local states of agent i in s and s′ are identical.

Further, a relevant property of MPS concerns authentication: if agent i receives a message μ from agent j, then i knows
that μ was actually sent by j. This specification can be expressed as

∀ j,μ(Recd(i, j,μ) → KiSent( j, i,μ))

Finally, we may require that agents have perfect recall, i.e., to know everything that has happened to them:

∀e(H(e, i) → Ki H(e, i))

It is easy to show that MPQIS satisfy authentication and perfect recall but not channel reliability. Of course, we could add
this formula in any specification should channel reliability be required. We remark that all the specifications introduced so
far are defined by means of only the predicative constants H(e, i) and Prec(e, e′, i).

We now prove the main result of this section: Proposition 4.4.3 in [14] can be restated as a validity on the class of
MPQIS satisfying MP1, MP2, and *. We do not provide the full statement here, but we note that this metatheoretical result
can be cast as a formula in the first-order epistemic language L D

n . First, we introduce a relation �→G of potential causality
between events, as discussed in [38,52]. This relation is intended to capture the intuition that event e might have caused
event e′. Fix a non-empty subset G of A, the relation �→G holds between events e, e′ at a state s iff both e and e′ appear in
s, and

1. for some i, j ∈ G , e′ is a receive event and e is the corresponding send event;
2. for some i ∈ G , events e, e′ are both in li(s), and either e = e′ , or e comes earlier than e′ in li(s);
3. for some event e′′ , we have that e �→G e′′ and e′′ �→G e′ hold at s.

Note that �→G is a partial order on events. We say that (P σ , s) |� e �→G e′ if e �→G e′ hold at s (we use the same notation
for syntax and semantics).

Now we prove that the potential causality relation �→G respects the order Prec of events by showing that the following
validity holds in the class of MPQIS. This means that if event e is the cause of event e′ , then it is distributed knowledge
among the agents that e happened before e′ . Note that this is the right to left implication of Proposition 4.4.3 in [14]:

Proposition 59. MPQIS |� ∀e, e′((e �→G e′) → DG Prec(e, e′)).
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Proof. Assume that (P σ , s) |� e �→G e′ . If e′ is a receive event and e is the corresponding send event, then li(s) = li(s′) for
all i ∈ G implies (P σ , s′) |� H(e) ∧ H(e′), and for s′′ � s′ , (P σ , s′′) |� Recd(i, j,μ) → Sent( j, i,μ) by MP2′ . Thus, (P σ , s) |�
DG Prec(e, e′).

If e, e′ are both in li(s) and either e = e′ or e comes earlier than e′ in li(s), then li(s) = li(s′) implies that (P σ , s′) |�
H(e) ∧ H(e′), and for s′′ � s′ , (P σ , s′′) |� H(e′) → H(e). It follows that (P σ , s) |� KiPrec(e, e′), and by axioms D1 and D2,
(P σ , s) |� DG Prec(e, e′).

Finally, if there exists some event e′′ such that e �→G e′′ and e′′ �→G e′ , then we can assume without loss of generality
that we are either in the first or second case above. In both cases (P σ , s) |� DG Prec(e, e′′) ∧ DG Prec(e′′, e′). Therefore, for
every s′ , li(s) = li(s′) for all i ∈ G implies (P σ , s′) |� H(e)∧ H(e′), and for s′′ � s′ , (P σ , s′′) |� H(e′′) → H(e)∧ H(e′) → H(e′′).
By transitivity, (P σ , s′′) |� H(e′) → H(e). Thus, (P σ , s) |� DG Prec(e, e′). �

The analysis of message-passing systems carried out in this section shows the advantages in terms of expressivity of
first-order epistemic formalisms in comparison with propositional ones. By means of language L D

n we are able to formalise
various constraints on MPS, thereby validating the suitability of the approach. Most importantly, an encoding of the right to
left implication of Proposition 4.4.3 in [14] can be shown to be a validity on the class of QIS modelling MPS.

7. Conclusions

First-order epistemic logic allows for greater expressiveness in comparison to propositional formalisms. In specific ap-
plications this advantage can be critical for modelling agent systems in a more intuitive and effective way. Because of this,
FOEL has successfully been applied to reasoning about knowledge in artificial intelligence [39,42,51]. However, the litera-
ture on this subject in the MAS area have so far fallen short of a deep and systematic analysis of the formal machinery
(axiomatisability, decidability, completeness), even in the case of static epistemic logic.

In this paper we showed that the semantics of interpreted systems may naturally be extended to first-order, and we
provided complete axiomatisations for several classes of structures, which is noteworthy given the known difficulties of
these formalisms [19,57]. Specifically, we considered different assumptions on quantification domains, their relationship
with the agents’ local states, and the impact these assumptions make in terms of axiomatisations. We exemplified the use of
these formalisms by investigating two examples. The puzzle of muddy children in Section 5 is part of the folklore of multi-
agent systems in AI [14]; while the formalisation of the battlefield game as a quantified interpreted system is an original
example of the expressive features of the present semantical framework. As regards message passing systems, the topic of
Section 6, they have been extensively investigated in computer science both in their synchronous and asynchronous version.
In [38] the relation �→G between events is introduced, and in [52] it is used to defined a notion of common knowledge
which is attainable also in asynchronous message passing systems. In Section 6 we followed [14] in the presentation of
MPS, and proved that Proposition 4.4.3 can be cast as a validity on the class of MPQIS. This reassures us that the analysis is
adequate.

We see this paper as a first contribution in the development of computationally grounded semantics for quantified
epistemic logics. Indeed, extensions of the present framework seem worth pursuing. It may be of interest to explore the
completeness issues resulting from term-indexing epistemic operators, as in [43]. This would greatly increase the expressive
power of the formalism, so some limitation on index quantification might be introduced to retain a reasonable computa-
tional complexity. Another significant extension would be to add temporal operators to the language. This would open the
way for axiomatisations of first-order temporal epistemic logics for MAS. However, any work in this area is likely to be
affected by technical problems, especially with respect to axiomatisation and decidability [25,62].
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