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Why an algebraic proof of cut elimination?

I To clarify the meaning of cut elimination from an algebraic point of view.

I To provide a proof of cut elimination comprehensible to algebraists, which
avoids heavy syntactic arguments.

I This talks is based on the paper:
F. Belardinelli, P. Jipsen and H. Ono; Algebraic Aspects of Cut
Elimination, Studia Logica, 2004.

I These slides are adapted from the talk given by prof. Ono at the Logic
Summer School, ANU, December 2004.
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Idea of the proof

I We introduce Gentzen structures for the sequent system FLew without cut.
FLew is intuitionistic logic without the contraction rule.

I We use the quasi-completion of these Gentzen structures to show the
completeness of FLew without cut with respect to FLew-algebras.

I This method works for a variety of sequent systems of nonclassical
(substructural, modal) logic, both in the propositional and predicate case.

I In the process we show that the quasi-completion is a generalization of the
MacNeille completion.

I Moreover, the finite model property is obtained for many cases by
modifying our completeness proof.
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The sequent calculus FLew

The sequent calculus FLew is obtained from intuitionistic logic LJ by deleting
the contraction rule.

Initial sequents: 1) α⇒ α, 2) 0⇒ , 3) ⇒ 1.

Logical rules:
Γ⇒ δ

1, Γ⇒ δ
(1⇒)

Γ⇒
Γ⇒ 0

(⇒ 0)

Γ⇒ α β,Σ⇒ δ

α→ β, Γ,Σ⇒ δ
(→⇒)

Γ, α⇒ β

Γ⇒ α→ β
(⇒→)

α, Γ⇒ δ

α ∧ β, Γ⇒ δ
(∧1⇒)

β, Γ⇒ δ

α ∧ β, Γ⇒ δ
(∧2⇒)

Γ⇒ α Γ⇒ β

Γ⇒ α ∧ β
(⇒ ∧)

α, Γ⇒ δ β, Γ⇒ δ

α ∨ β, Γ⇒ δ
(∨ ⇒)

Γ⇒ α
Γ⇒ α ∨ β

(⇒ ∨1)
Γ⇒ β

Γ⇒ α ∨ β
(⇒ ∨2)

α, β, Γ⇒ δ

α · β, Γ⇒ δ
(· ⇒)

Γ⇒ α Σ⇒ β

Γ,Σ⇒ α · β
(⇒ ·)
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The sequent calculus FLew

Structural rules:

Γ⇒ δ
α, Γ⇒ δ

(w ⇒)
Γ⇒

Γ⇒ α
(⇒ w)

Γ, α, β,Σ⇒ δ

Γ, β, α,Σ⇒ δ
(e ⇒)

Γ⇒ α α,Σ⇒ δ

Γ,Σ⇒ δ
(cut)

Theorem (Cut elimination [4])

If a sequent Γ⇒ δ is provable in FLew then it is provable in FLew without using
the cut rule.

FLew
− denotes the sequent system obtained from FLew by deleting the cut rule.
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FLew-algebras

Definition
A structure P = 〈P,∧,∨, ·,→, 0, 1〉 is a FLew-algebra if:

1. 〈P,∧,∨, 0, 1〉 is a bounded lattice,

2. 〈P, ·, 1〉 is a commutative monoid with the unit 1,

3. a · b ≤ c iff a ≤ (b → c) (law of residuation).

Let h be an assignment of propositional variables to elements of P such that
h(0) = 0 and h(1) = 1.
The assignment h can be lifted to the set of all formulas.

Definition
A sequent α1, . . . , αn ⇒ β is valid on an FLew-algebra P iff
h(α1) · . . . · h(αn) ≤ h(β) holds in P for any assignment h.

Theorem (Completeness of FLew)

A sequent α1, . . . , αm ⇒ β is provable in FLew iff it is valid on every
FLew-algebra.
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Gentzen structures for FLew

For a nonempty set Q, let Q∗ be the set of all (finite, possibly empty) multisets
of members of Q. The empty multiset is denoted by ε.

A Gentzen structure for FLew is a tuple Q = 〈Q,�,∧,∨, ·,→, 0, 1〉 such that
0, 1 ∈ Q, ∧,∨, ·,→ are binary operations on Q, and � is a subset of
Q∗ × (Q ∪ {ε}) that satisfies the following conditions:

I a � a and 0 � c and ε � 1
I x � c implies dx � c
I x � a and by � c imply (a→ b)xy � c
I ax � b implies x � a→ b
I ax � c and bx � c imply (a ∨ b)x � c
I x � a implies x � a ∨ b
I x � b implies x � a ∨ b
I ax � c implies (a ∧ b)x � c
I bx � c implies (a ∧ b)x � c
I x � a and x � b imply x � a ∧ b
I abx � c implies (a · b)x � c
I x � a and y � b imply xy � a · b
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Gentzen structures for FLew

Let g be an assignment of propositional variables to elements in Q such that
g(0) = 0 and g(1) = 1.
The assignment g can be lifted to the set of all formulas.

Definition
A sequent α1, . . . , αn ⇒ β is valid on a Gentzen structure Q iff
〈g(α1), . . . , g(αn)〉 � g(β) holds in Q for any assignment g .

The system FLew
− is complete with respect to the class of Gentzen structures.

Theorem
A sequent α1, . . . , αm ⇒ β is provable in FLew

− iff it is valid on every Gentzen
structure.
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Gentzen structures and FLew-algebras

I Each FLew-algebra can be seen as a Gentzen structure if � is defined by

〈a1, . . . , am〉 � c iff (a1 · . . . · am) ≤ c

I Also, let Q be any Gentzen structure with a strongly transitive �:

x � a and ay � c imply xy � c

If the restriction �0 of � to Q ×Q is moreover antisymmetric, then Q is a
FLew-algebra with the lattice order �0.

I In conclusion, we can say that any Gentzen structure with a strongly
transitive relation can be identified with a FLew-algebra, and vice versa.
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Cut elimination

To prove cut elimination for FLew it is enough to show the following result:

Lemma
if 〈g(α1), . . . , g(αn)〉 � g(β) fails for some g in a Gentzen structure Q then
h(α1) · . . . · h(αn) ≤ h(β) fails for some h in an FLew-algebra P.

How do we get such an FLew-algebra P from a given Gentzen structure Q?
Moreover, Q must be embedded into the FLew-algebra P.

1. We give a uniform way of constructing such a P called the
quasi-completion of Q;

2. We show that Q can be quasi-embedded into P.

When Q is a FLew-algebra, P is a MacNeille completion of Q and the
quasi-embedding becomes a complete embedding.
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Closure operators

Let M = 〈M, ·, 1〉 be a commutative monoid.
A unary function C on ℘(M) is a closure operator if for all X ,Y ∈ ℘(M):

1. X ⊆ C(X )

2. C(C(X )) ⊆ C(X )

3. X ⊆ Y implies C(X ) ⊆ C(Y )

4. C(X ) ∗ C(Y ) ⊆ C(X ∗ Y ), where W ∗ Z = {w · z | w ∈W and z ∈ Z}.

Let C(℘(M)) be the set of all C -closed subsets, define operations ∪C , ∗C and
⇒ on C(℘(M)) as follows:

I X ∪C Y = C(X ∪ Y )

I X ∗C Y = C(X ∗ Y )

I X ⇒ Y = {z | X ∗ {z} ⊆ Y }

Lemma
The tuple CM = 〈C(℘(M)),∩,∪C , ∗C ,⇒,C(∅),C({1})〉 is a FLe-algebra, not
necessarily integral.

F. Belardinelli An Algebraic Proof of Cut Elimination



Introduction
Sequent Calculi

Cut Elimination via Quasi-completion
Conclusions

Cut elimination
Closure operators
Quasi-completions
Proof of cut elimination - concluded

Closure operators

Let M = 〈M, ·, 1〉 be a commutative monoid.
A unary function C on ℘(M) is a closure operator if for all X ,Y ∈ ℘(M):

1. X ⊆ C(X )

2. C(C(X )) ⊆ C(X )

3. X ⊆ Y implies C(X ) ⊆ C(Y )

4. C(X ) ∗ C(Y ) ⊆ C(X ∗ Y ), where W ∗ Z = {w · z | w ∈W and z ∈ Z}.

Let C(℘(M)) be the set of all C -closed subsets, define operations ∪C , ∗C and
⇒ on C(℘(M)) as follows:

I X ∪C Y = C(X ∪ Y )

I X ∗C Y = C(X ∗ Y )

I X ⇒ Y = {z | X ∗ {z} ⊆ Y }

Lemma
The tuple CM = 〈C(℘(M)),∩,∪C , ∗C ,⇒,C(∅),C({1})〉 is a FLe-algebra, not
necessarily integral.

F. Belardinelli An Algebraic Proof of Cut Elimination



Introduction
Sequent Calculi

Cut Elimination via Quasi-completion
Conclusions

Cut elimination
Closure operators
Quasi-completions
Proof of cut elimination - concluded

Closure operators
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Quasi-completions

I Let Q be a Gentzen structure, for x ∈ Q∗ and a ∈ Q ∪ {ε} define

[x ; a] = {w ∈ Q∗ | xw � a}

I Now define a function C on ℘(Q∗) by

C(X ) =
⋂
{[x ; a] | X ⊆ [x ; a] for x ∈ Q∗ and a ∈ Q ∪ {ε}}

I The function C is a closure operator such that C({ε}) = Q∗ = C({1}).
Thus, CQ∗ is a FLew-algebra, which is called the quasi-completion of Q.
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Quasi-embeddings

I To show that the Gentzen structure Q is quasi-embeddable into CQ∗ we
define a quasi-embedding k : Q → C(℘(Q∗)) as

k(a) = [ε; a] = {w ∈ Q∗ | w � a}

I Then we can prove the following.

Lemma
Suppose that a, b ∈ Q and that U and V are arbitrary C-closed subsets of Q∗

such that a ∈ U ⊆ k(a) and b ∈ V ⊆ k(b), then for each ? ∈ {∧,∨, ·,→}:

a ? b ∈ U ?C V ⊆ k(a ? b),

where ?C denotes ∩,∪C , ∗C and ⇒ respectively.
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Proof of cut elimination - concluded

I Suppose that 〈g(α1), . . . , g(αn)〉 � g(β) does not hold in Q by an
assignment g .

I Define an assignment h on CQ∗ as h(q) = k(g(q)) for each proposition q.

I By induction on the length of a formula φ we can show that:

g(φ) ∈ h(φ) ⊆ k(g(φ))

I Now, suppose that α1, . . . , αn ⇒ β holds in CQ∗ .

I Then in particular h(α1) ∗C . . . ∗C h(αn) ⊆ h(β), and by the results above,

〈g(α1), . . . , g(αn)〉 ∈ h(α1)∗C . . .∗C h(αn) ⊆ h(β) ⊆ k(g(β)) = {w | w � g(β)}

I But this implies 〈g(α1), . . . , g(αn)〉 � g(β), which is a contradiction.
Thus, α1, . . . αn ⇒ β is not valid in CQ∗ .

I This completes the proof of cut elimination for FLew.
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MacNeille- and Quasi-completions

I Let P be a FLew-algebra and define

C(X ) =
⋂
{[x ; a] | X ⊆ [x ; a] for x ∈ P∗ and a ∈ P ∪ {ε}}

I Then we can show that

C(X ) = (X→)← = {a | a ≤ b for all b such that b ≥ c for all c ∈ X}

and therefore the quasi-completion CP∗ of P is isomorphic to the
MacNeille completion of P.

I Further, since ≤ is strongly transitive, a ? b ∈ k(a) ?C k(b) implies that
k(a ? b) = k(a) ?C k(b).

I Thus, the map k can be identified with the complete embedding of a
FLew-algebra P into its MacNeille completion.

F. Belardinelli An Algebraic Proof of Cut Elimination



Introduction
Sequent Calculi

Cut Elimination via Quasi-completion
Conclusions

Cut elimination
Closure operators
Quasi-completions
Proof of cut elimination - concluded

MacNeille- and Quasi-completions

I Let P be a FLew-algebra and define

C(X ) =
⋂
{[x ; a] | X ⊆ [x ; a] for x ∈ P∗ and a ∈ P ∪ {ε}}

I Then we can show that

C(X ) = (X→)← = {a | a ≤ b for all b such that b ≥ c for all c ∈ X}

and therefore the quasi-completion CP∗ of P is isomorphic to the
MacNeille completion of P.

I Further, since ≤ is strongly transitive, a ? b ∈ k(a) ?C k(b) implies that
k(a ? b) = k(a) ?C k(b).

I Thus, the map k can be identified with the complete embedding of a
FLew-algebra P into its MacNeille completion.

F. Belardinelli An Algebraic Proof of Cut Elimination



Introduction
Sequent Calculi

Cut Elimination via Quasi-completion
Conclusions

Cut elimination
Closure operators
Quasi-completions
Proof of cut elimination - concluded

MacNeille- and Quasi-completions

I Let P be a FLew-algebra and define

C(X ) =
⋂
{[x ; a] | X ⊆ [x ; a] for x ∈ P∗ and a ∈ P ∪ {ε}}

I Then we can show that

C(X ) = (X→)← = {a | a ≤ b for all b such that b ≥ c for all c ∈ X}

and therefore the quasi-completion CP∗ of P is isomorphic to the
MacNeille completion of P.

I Further, since ≤ is strongly transitive, a ? b ∈ k(a) ?C k(b) implies that
k(a ? b) = k(a) ?C k(b).

I Thus, the map k can be identified with the complete embedding of a
FLew-algebra P into its MacNeille completion.

F. Belardinelli An Algebraic Proof of Cut Elimination



Introduction
Sequent Calculi

Cut Elimination via Quasi-completion
Conclusions

Cut elimination
Closure operators
Quasi-completions
Proof of cut elimination - concluded

MacNeille- and Quasi-completions

I Let P be a FLew-algebra and define

C(X ) =
⋂
{[x ; a] | X ⊆ [x ; a] for x ∈ P∗ and a ∈ P ∪ {ε}}

I Then we can show that

C(X ) = (X→)← = {a | a ≤ b for all b such that b ≥ c for all c ∈ X}

and therefore the quasi-completion CP∗ of P is isomorphic to the
MacNeille completion of P.

I Further, since ≤ is strongly transitive, a ? b ∈ k(a) ?C k(b) implies that
k(a ? b) = k(a) ?C k(b).

I Thus, the map k can be identified with the complete embedding of a
FLew-algebra P into its MacNeille completion.

F. Belardinelli An Algebraic Proof of Cut Elimination



Introduction
Sequent Calculi

Cut Elimination via Quasi-completion
Conclusions

Extensions to other systems
The finite model property

Extensions to other systems

This algebraic proof of cut elimination can be extended to:

I the intuitionistic and classic systems LJ and LK.
I intuitionistic substractural systems:

I propositional calculi FLe and FLec.
I first-order calculi QFLew, QFLe and QFLec.

I the classic substructural systems CFLew, CFLe and CFLec.

I the propositional modal logics K, T and S4.
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The Finite Model Property

The idea of the proof is based on [2, 3].

Lemma
Let Q be a Gentzen structure for FLew such that the closed base
B = {[x ; a] | x ∈ Q∗, a ∈ Q ∪ {ε}} is finite, then the quasi-completion CQ∗ of
Q is also finite.

Now define a subset P(x,a) of Q∗ × (Q ∪ {ε}) such that:

1. (x , a) ∈ P(x,a).

2. Suppose that (w , b) ∈ P(x,a). If “u � c implies w � b” is one of the
conditions for � in Q, then (u, c) is a member of P(x,a). Similarly, if
“u � c and v � d imply w � b” is one of the conditions for �.

For a finite subset S of Q∗ × (Q ∪ {ε}), let PS be the union of P(x,a) for
(x , a) ∈ S . We say that the set S is finitely based, when PS is finite.
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The Finite Model Property

Now we show how to obtain a Gentzen structure for FLew such that the closed
base B is finite.

Lemma
If Q is a Gentzen structure for FLew and S is finitely based, then the relation
�? such that for (w , b) ∈ PS , w�?b iff w � b, and otherwise w�?b always
holds, satisfies the following conditions:

1. the structure Q? = 〈Q,�?,∧,∨, ·,→, 0, 1〉 is a Gentzen structure for FLew,

2. the closed base B determined by �? is finite.
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The finite model property for FLew

I Suppose that FLew 0 α1, . . . , αm ⇒ β, then 〈α1, . . . , αm〉 � β doesn’t hold
in the free Gentzen structure Q+ for FLew.

I We can show that the singleton {(〈α1, . . . , αm〉, β)} is finitely based.

I By the lemma above, {(〈α1, . . . , αm〉, β)} is embedded into a Gentzen
structure (Q+)? for FLew with a relation �? such that the closed base is
finite. Moreover, 〈α1, . . . , αm〉�?β doesn’t hold in (Q+)? by definition.

I By a previous lemma, the quasi-completion R of (Q+)? is finite. Since
〈α1, . . . , αm〉�?β doesn’t hold in (Q+)?, (α1 · . . . · αm) ≤ β doesn’t hold
either in R, which is a FLew-algebra.

I This proof of the finite model property can be extended to the first-order
substructural logic QFLew.

F. Belardinelli An Algebraic Proof of Cut Elimination



Introduction
Sequent Calculi

Cut Elimination via Quasi-completion
Conclusions

Extensions to other systems
The finite model property

The finite model property for FLew

I Suppose that FLew 0 α1, . . . , αm ⇒ β, then 〈α1, . . . , αm〉 � β doesn’t hold
in the free Gentzen structure Q+ for FLew.

I We can show that the singleton {(〈α1, . . . , αm〉, β)} is finitely based.

I By the lemma above, {(〈α1, . . . , αm〉, β)} is embedded into a Gentzen
structure (Q+)? for FLew with a relation �? such that the closed base is
finite. Moreover, 〈α1, . . . , αm〉�?β doesn’t hold in (Q+)? by definition.

I By a previous lemma, the quasi-completion R of (Q+)? is finite. Since
〈α1, . . . , αm〉�?β doesn’t hold in (Q+)?, (α1 · . . . · αm) ≤ β doesn’t hold
either in R, which is a FLew-algebra.

I This proof of the finite model property can be extended to the first-order
substructural logic QFLew.

F. Belardinelli An Algebraic Proof of Cut Elimination



Introduction
Sequent Calculi

Cut Elimination via Quasi-completion
Conclusions

Extensions to other systems
The finite model property

The finite model property for FLew

I Suppose that FLew 0 α1, . . . , αm ⇒ β, then 〈α1, . . . , αm〉 � β doesn’t hold
in the free Gentzen structure Q+ for FLew.

I We can show that the singleton {(〈α1, . . . , αm〉, β)} is finitely based.

I By the lemma above, {(〈α1, . . . , αm〉, β)} is embedded into a Gentzen
structure (Q+)? for FLew with a relation �? such that the closed base is
finite. Moreover, 〈α1, . . . , αm〉�?β doesn’t hold in (Q+)? by definition.

I By a previous lemma, the quasi-completion R of (Q+)? is finite. Since
〈α1, . . . , αm〉�?β doesn’t hold in (Q+)?, (α1 · . . . · αm) ≤ β doesn’t hold
either in R, which is a FLew-algebra.

I This proof of the finite model property can be extended to the first-order
substructural logic QFLew.

F. Belardinelli An Algebraic Proof of Cut Elimination



Introduction
Sequent Calculi

Cut Elimination via Quasi-completion
Conclusions

Extensions to other systems
The finite model property

The finite model property for FLew

I Suppose that FLew 0 α1, . . . , αm ⇒ β, then 〈α1, . . . , αm〉 � β doesn’t hold
in the free Gentzen structure Q+ for FLew.

I We can show that the singleton {(〈α1, . . . , αm〉, β)} is finitely based.

I By the lemma above, {(〈α1, . . . , αm〉, β)} is embedded into a Gentzen
structure (Q+)? for FLew with a relation �? such that the closed base is
finite. Moreover, 〈α1, . . . , αm〉�?β doesn’t hold in (Q+)? by definition.

I By a previous lemma, the quasi-completion R of (Q+)? is finite. Since
〈α1, . . . , αm〉�?β doesn’t hold in (Q+)?, (α1 · . . . · αm) ≤ β doesn’t hold
either in R, which is a FLew-algebra.

I This proof of the finite model property can be extended to the first-order
substructural logic QFLew.
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Thank you!
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