An Algebraic Proof of Cut Elimination

Francesco Belardinelli Imperial College London

January 25, 2010

ヨト イヨト

Sequent Calculi Cut Elimination via Quasi-completion Conclusions Why an algebraic proof of cut elimination? Idea of the proof

Introduction

Why an algebraic proof of cut elimination? Idea of the proof

Sequent Calculi

The sequent calculus FL_{ew} FL_{ew} -algebras Gentzen structures for FL_{ew}

Cut Elimination via Quasi-completion

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Conclusions

Extensions to other systems The finite model property

< ∃⇒

Why an algebraic proof of cut elimination? Idea of the proof

Why an algebraic proof of cut elimination?

▶ To clarify the meaning of cut elimination from an algebraic point of view.

프 + + 프 +

э

Sequent Calculi Cut Elimination via Quasi-completion Conclusions Why an algebraic proof of cut elimination? Idea of the proof

Why an algebraic proof of cut elimination?

- ▶ To clarify the meaning of cut elimination from an algebraic point of view.
- To provide a proof of cut elimination comprehensible to algebraists, which avoids heavy syntactic arguments.

ヨト イヨト

3

Sequent Calculi Cut Elimination via Quasi-completion Conclusions Why an algebraic proof of cut elimination? Idea of the proof

Why an algebraic proof of cut elimination?

- ► To clarify the meaning of cut elimination from an algebraic point of view.
- To provide a proof of cut elimination comprehensible to algebraists, which avoids heavy syntactic arguments.
- This talks is based on the paper:
 F. Belardinelli, P. Jipsen and H. Ono; Algebraic Aspects of Cut Elimination, Studia Logica, 2004.

< ∃ >

Sequent Calculi Cut Elimination via Quasi-completion Conclusions Why an algebraic proof of cut elimination? Idea of the proof

Why an algebraic proof of cut elimination?

- ► To clarify the meaning of cut elimination from an algebraic point of view.
- To provide a proof of cut elimination comprehensible to algebraists, which avoids heavy syntactic arguments.
- This talks is based on the paper:
 F. Belardinelli, P. Jipsen and H. Ono; Algebraic Aspects of Cut Elimination, Studia Logica, 2004.
- These slides are adapted from the talk given by prof. Ono at the Logic Summer School, ANU, December 2004.

4 E b

Sequent Calculi Cut Elimination via Quasi-completion Conclusions

Idea of the proof

Why an algebraic proof of cut elimination? Idea of the proof

▶ We introduce *Gentzen structures* for the sequent system FL_{ew} without cut. FL_{ew} is intuitionistic logic without the contraction rule.

프 + + 프 +

э

Sequent Calculi Cut Elimination via Quasi-completion Conclusions

Idea of the proof

Why an algebraic proof of cut elimination? Idea of the proof

- ▶ We introduce *Gentzen structures* for the sequent system FL_{ew} without cut. FL_{ew} is intuitionistic logic without the contraction rule.
- ▶ We use the *quasi-completion* of these Gentzen structures to show the completeness of FL_{ew} without cut with respect to FL_{ew}-algebras.

- ∢ ⊒ ▶

Sequent Calculi Cut Elimination via Quasi-completion Conclusions

Idea of the proof

Why an algebraic proof of cut elimination? Idea of the proof

- We introduce *Gentzen structures* for the sequent system FL_{ew} without cut. FL_{ew} is intuitionistic logic without the contraction rule.
- ▶ We use the *quasi-completion* of these Gentzen structures to show the completeness of FL_{ew} without cut with respect to FL_{ew}-algebras.
- This method works for a variety of sequent systems of nonclassical (substructural, modal) logic, both in the propositional and predicate case.

-∢ ≣ ▶

Sequent Calculi Cut Elimination via Quasi-completion Conclusions

Idea of the proof

Why an algebraic proof of cut elimination? Idea of the proof

- ▶ We introduce *Gentzen structures* for the sequent system FL_{ew} without cut. FL_{ew} is intuitionistic logic without the contraction rule.
- ► We use the *quasi-completion* of these Gentzen structures to show the completeness of FL_{ew} without cut with respect to FL_{ew}-algebras.
- This method works for a variety of sequent systems of nonclassical (substructural, modal) logic, both in the propositional and predicate case.
- In the process we show that the quasi-completion is a generalization of the MacNeille completion.

-∢ ≣ ▶

Sequent Calculi Cut Elimination via Quasi-completion Conclusions

Idea of the proof

Why an algebraic proof of cut elimination? Idea of the proof

- We introduce *Gentzen structures* for the sequent system FL_{ew} without cut. FL_{ew} is intuitionistic logic without the contraction rule.
- ▶ We use the *quasi-completion* of these Gentzen structures to show the completeness of FL_{ew} without cut with respect to FL_{ew}-algebras.
- This method works for a variety of sequent systems of nonclassical (substructural, modal) logic, both in the propositional and predicate case.
- In the process we show that the quasi-completion is a generalization of the MacNeille completion.
- Moreover, the finite model property is obtained for many cases by modifying our completeness proof.

-∢ ⊒ ▶

The sequent calculus FLew

The sequent calculus FL_{ew}

The sequent calculus FL_{ew} is obtained from intuitionistic logic LJ by deleting the contraction rule.

Initial sequents: 1) $\alpha \Rightarrow \alpha$, 2) $0 \Rightarrow$, 3) $\Rightarrow 1$. Logical rules:

_

$$\frac{\Gamma \Rightarrow \delta}{1, \Gamma \Rightarrow \delta} (1 \Rightarrow) \qquad \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow 0} (\Rightarrow 0)$$

$$\frac{\Gamma \Rightarrow \alpha \quad \beta, \Sigma \Rightarrow \delta}{\alpha \to \beta, \Gamma, \Sigma \Rightarrow \delta} \ (\to \Rightarrow) \qquad \frac{\Gamma, \alpha \Rightarrow \beta}{\Gamma \Rightarrow \alpha \to \beta} \ (\Rightarrow \to)$$

$$\frac{\alpha, \Gamma \Rightarrow \delta}{\alpha \land \beta, \Gamma \Rightarrow \delta} (\land 1 \Rightarrow) \qquad \frac{\beta, \Gamma \Rightarrow \delta}{\alpha \land \beta, \Gamma \Rightarrow \delta} (\land 2 \Rightarrow) \qquad \frac{\Gamma \Rightarrow \alpha \quad \Gamma \Rightarrow \beta}{\Gamma \Rightarrow \alpha \land \beta} (\Rightarrow \land)$$

$$\frac{\alpha, \Gamma \Rightarrow \delta}{\alpha \lor \beta, \Gamma \Rightarrow \delta} (\lor \Rightarrow) \qquad \frac{\Gamma \Rightarrow \alpha}{\Gamma \Rightarrow \alpha \lor \beta} (\Rightarrow \lor 1) \qquad \frac{\Gamma \Rightarrow \beta}{\Gamma \Rightarrow \alpha \lor \beta} (\Rightarrow \lor 2)$$

$$\frac{\alpha, \beta, \Gamma \Rightarrow \delta}{\alpha \cdot \beta, \Gamma \Rightarrow \delta} \ (\cdot \Rightarrow) \qquad \frac{\Gamma \Rightarrow \alpha \quad \Sigma \Rightarrow \beta}{\Gamma, \Sigma \Rightarrow \alpha \cdot \beta} \ (\Rightarrow \cdot)$$

The sequent calculus FL_{ew} FL_{ew}-algebras Gentzen structures for FL_{ew}

The sequent calculus FL_{ew}

Structural rules:

$$\frac{\Gamma \Rightarrow \delta}{\alpha, \Gamma \Rightarrow \delta} (w \Rightarrow) \qquad \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow \alpha} (\Rightarrow w)$$
$$\frac{\Gamma, \alpha, \beta, \Sigma \Rightarrow \delta}{\Gamma, \beta, \alpha, \Sigma \Rightarrow \delta} (e \Rightarrow) \qquad \frac{\Gamma \Rightarrow \alpha \quad \alpha, \Sigma \Rightarrow \delta}{\Gamma, \Sigma \Rightarrow \delta} (cut)$$

▲ 문 ► ▲ 문 ►

æ

The sequent calculus FL_{ew} FL_{ew}-algebras Gentzen structures for FL_{ew}

The sequent calculus FLew

Structural rules:

$$\frac{\Gamma \Rightarrow \delta}{\alpha, \Gamma \Rightarrow \delta} (w \Rightarrow) \qquad \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow \alpha} (\Rightarrow w)$$
$$\frac{\Gamma, \alpha, \beta, \Sigma \Rightarrow \delta}{\Gamma, \beta, \alpha, \Sigma \Rightarrow \delta} (e \Rightarrow) \qquad \frac{\Gamma \Rightarrow \alpha \quad \alpha, \Sigma \Rightarrow \delta}{\Gamma, \Sigma \Rightarrow \delta} (cut)$$

Theorem (Cut elimination [4])

If a sequent $\Gamma \Rightarrow \delta$ is provable in FL_{ew} then it is provable in FL_{ew} without using the cut rule.

 FL_{ew}^{-} denotes the sequent system obtained from FL_{ew} by deleting the cut rule.

ヨト イヨト

The sequent calculus FL_{ew} FL_{ew} -algebras Gentzen structures for FL_{ew}

FL_{ew} -algebras

Definition

A structure $\mathbf{P} = \langle P, \wedge, \vee, \cdot, \rightarrow, 0, 1 \rangle$ is a \mathbf{FL}_{ew} -algebra if:

- 1. $\langle P, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice,
- 2. $\langle P, \cdot, 1 \rangle$ is a commutative monoid with the unit 1,
- 3. $a \cdot b \leq c$ iff $a \leq (b \rightarrow c)$ (law of residuation).

3

The sequent calculus FL_{ew} $\mathsf{FL}_{ew}\text{-algebras}$ Gentzen structures for FL_{ew}

$\textbf{FL}_{ew}\text{-} algebras$

Definition

A structure $\mathbf{P} = \langle P, \land, \lor, \cdot, \rightarrow, 0, 1 \rangle$ is a \mathbf{FL}_{ew} -algebra if:

- 1. $\langle P, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice,
- 2. $\langle P, \cdot, 1 \rangle$ is a commutative monoid with the unit 1,
- 3. $a \cdot b \leq c$ iff $a \leq (b \rightarrow c)$ (law of residuation).

Let *h* be an assignment of propositional variables to elements of *P* such that h(0) = 0 and h(1) = 1.

The assignment h can be lifted to the set of all formulas.

프 🖌 🔺 프 🛌

3

The sequent calculus FL_{ew} $\mathsf{FL}_{ew}\text{-algebras}$ Gentzen structures for FL_{ew}

FL_{ew} -algebras

Definition

A structure $\mathbf{P} = \langle P, \land, \lor, \cdot, \rightarrow, 0, 1 \rangle$ is a \mathbf{FL}_{ew} -algebra if:

- 1. $\langle P, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice,
- 2. $\langle P, \cdot, 1 \rangle$ is a commutative monoid with the unit 1,
- 3. $a \cdot b \leq c$ iff $a \leq (b \rightarrow c)$ (law of residuation).

Let *h* be an assignment of propositional variables to elements of *P* such that h(0) = 0 and h(1) = 1.

The assignment h can be lifted to the set of all formulas.

Definition

A sequent $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ is valid on an $\mathsf{FL}_{\mathsf{ew}}$ -algebra P iff $h(\alpha_1) \cdot \ldots \cdot h(\alpha_n) \leq h(\beta)$ holds in P for any assignment h.

(E) < E) </p>

The sequent calculus FL_{ew} $\mathsf{FL}_{ew}\text{-algebras}$ Gentzen structures for FL_{ew}

$\textbf{FL}_{ew}\text{-} algebras$

Definition

A structure $\mathbf{P} = \langle P, \land, \lor, \cdot, \rightarrow, 0, 1 \rangle$ is a \mathbf{FL}_{ew} -algebra if:

- 1. $\langle {\it P}, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice,
- 2. $\langle P, \cdot, 1 \rangle$ is a commutative monoid with the unit 1,
- 3. $a \cdot b \leq c$ iff $a \leq (b \rightarrow c)$ (law of residuation).

Let *h* be an assignment of propositional variables to elements of *P* such that h(0) = 0 and h(1) = 1.

The assignment h can be lifted to the set of all formulas.

Definition

A sequent $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ is valid on an $\mathsf{FL}_{\mathsf{ew}}$ -algebra P iff $h(\alpha_1) \cdot \ldots \cdot h(\alpha_n) \leq h(\beta)$ holds in P for any assignment h.

Theorem (Completeness of FL_{ew})

A sequent $\alpha_1, \ldots, \alpha_m \Rightarrow \beta$ is provable in FL_{ew} iff it is valid on every FL_{ew} -algebra.

★注入 ★注入 二注

The sequent calculus FL_{ew} $\mathsf{FL}_{ew}\text{-algebras}$ Gentzen structures for FL_{ew}

Gentzen structures for FL_{ew}

For a nonempty set Q, let Q^* be the set of all (finite, possibly empty) multisets of members of Q. The empty multiset is denoted by ε .

э

< 🗇 🕨

The sequent calculus FL_{ew} $\mathsf{FL}_{ew}\text{-algebras}$ Gentzen structures for FL_{ew}

Gentzen structures for $\mathsf{FL}_{\mathsf{ew}}$

For a nonempty set Q, let Q^* be the set of all (finite, possibly empty) multisets of members of Q. The empty multiset is denoted by ε .

A Gentzen structure for FL_{ew} is a tuple $\mathbf{Q} = \langle Q, \preceq, \wedge, \vee, \cdot, \rightarrow, 0, 1 \rangle$ such that $0, 1 \in Q, \land, \lor, \cdot, \rightarrow$ are binary operations on Q, and \prec is a subset of $Q^* \times (Q \cup \{\varepsilon\})$ that satisfies the following conditions: • $a \prec a$ and $0 \prec c$ and $\varepsilon \prec 1$ \triangleright x \prec c implies dx \prec c ▶ $x \leq a$ and $by \leq c$ imply $(a \rightarrow b)xy \leq c$ • $ax \prec b$ implies $x \prec a \rightarrow b$ • $ax \prec c$ and $bx \prec c$ imply $(a \lor b)x \prec c$ \triangleright x \prec a implies x \prec a \lor b \triangleright x \prec b implies x \prec a \lor b ▶ $ax \prec c$ implies $(a \land b)x \preceq c$ ▶ $bx \prec c$ implies $(a \land b)x \prec c$ \triangleright x \prec a and x \prec b imply x \prec a \land b ▶ $abx \prec c$ implies $(a \cdot b)x \prec c$ \triangleright x \prec a and y \prec b imply xy \prec a \cdot b

The sequent calculus FL_{ew} FL_{ew} -algebras Gentzen structures for FL_{ew}

Gentzen structures for FL_{ew}

Let g be an assignment of propositional variables to elements in Q such that g(0) = 0 and g(1) = 1.

The assignment g can be lifted to the set of all formulas.

* 原 * * 原 * -

3

< 🗇 🕨

The sequent calculus FL_{ew} FL_{ew} -algebras Gentzen structures for FL_{ew}

Gentzen structures for $\mathsf{FL}_{\mathsf{ew}}$

Let g be an assignment of propositional variables to elements in Q such that g(0) = 0 and g(1) = 1. The assignment g can be lifted to the set of all formulas.

Definition

A sequent $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ is valid on a Gentzen structure **Q** iff $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ holds in **Q** for any assignment g.

ヨト・モート

-

The sequent calculus FL_{ew} $\mathsf{FL}_{ew}\text{-algebras}$ Gentzen structures for FL_{ew}

Gentzen structures for $\mathsf{FL}_{\mathsf{ew}}$

Let g be an assignment of propositional variables to elements in Q such that g(0) = 0 and g(1) = 1. The assignment g can be lifted to the set of all formulas.

Definition

A sequent $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ is valid on a Gentzen structure **Q** iff $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ holds in **Q** for any assignment g.

The system ${\rm FL}_{\rm ew}^-$ is complete with respect to the class of Gentzen structures.

Theorem

A sequent $\alpha_1, \ldots, \alpha_m \Rightarrow \beta$ is provable in $\mathsf{FL}_{\mathsf{ew}}^-$ iff it is valid on every Gentzen structure.

三下 人王下

-

The sequent calculus FL_{ew} FL_{ew} -algebras Gentzen structures for FL_{ew}

Gentzen structures and FL_{ew} -algebras

▶ Each FL_{ew} -algebra can be seen as a Gentzen structure if \leq is defined by

 $\langle a_1, \ldots, a_m \rangle \preceq c \quad iff \quad (a_1 \cdot \ldots \cdot a_m) \leq c$

< 注入 < 注入 →

э

The sequent calculus FL_{ew} FL_{ew} -algebras Gentzen structures for FL_{ew}

Gentzen structures and FL_{ew} -algebras

▶ Each FL_{ew} -algebra can be seen as a Gentzen structure if \leq is defined by

$$\langle a_1, \ldots, a_m \rangle \preceq c \quad iff \quad (a_1 \cdot \ldots \cdot a_m) \leq c$$

▶ Also, let **Q** be any Gentzen structure with a strongly transitive \leq :

$$x \leq a$$
 and $ay \leq c$ imply $xy \leq c$

If the restriction \leq_0 of \leq to $Q \times Q$ is moreover antisymmetric, then **Q** is a **FL**_{ew}-algebra with the lattice order \leq_0 .

프 🖌 🛪 프 🛌

-

The sequent calculus FL_{ew} FL_{ew} -algebras Gentzen structures for FL_{ew}

Gentzen structures and FL_{ew} -algebras

▶ Each FL_{ew} -algebra can be seen as a Gentzen structure if \leq is defined by

$$\langle a_1, \ldots, a_m \rangle \preceq c \quad iff \quad (a_1 \cdot \ldots \cdot a_m) \leq c$$

▶ Also, let **Q** be any Gentzen structure with a strongly transitive \leq :

$$x \leq a$$
 and $ay \leq c$ imply $xy \leq c$

If the restriction \leq_0 of \leq to $Q \times Q$ is moreover antisymmetric, then **Q** is a **FL**_{ew}-algebra with the lattice order \leq_0 .

In conclusion, we can say that any Gentzen structure with a strongly transitive relation can be identified with a FLew-algebra, and vice versa.

- < ≣ > ____

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Cut elimination

To prove cut elimination for \textbf{FL}_{ew} it is enough to show the following result:

Lemma

if $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \leq g(\beta)$ fails for some g in a Gentzen structure **Q** then $h(\alpha_1) \cdot \ldots \cdot h(\alpha_n) \leq h(\beta)$ fails for some h in an **FL**_{ew}-algebra **P**.

3

< 🗇 🕨

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Cut elimination

To prove cut elimination for FL_{ew} it is enough to show the following result:

Lemma

if $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \leq g(\beta)$ fails for some g in a Gentzen structure **Q** then $h(\alpha_1) \cdot \ldots \cdot h(\alpha_n) \leq h(\beta)$ fails for some h in an **FL**_{ew}-algebra **P**.

How do we get such an $FL_{ew}\mbox{-}algebra \ P$ from a given Gentzen structure Q? Moreover, Q must be embedded into the $FL_{ew}\mbox{-}algebra \ P.$

- 1. We give a uniform way of constructing such a **P** called the *quasi-completion* of **Q**;
- 2. We show that \mathbf{Q} can be quasi-embedded into \mathbf{P} .

通 ト イ ヨ トー

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Cut elimination

To prove cut elimination for FL_{ew} it is enough to show the following result:

Lemma

if $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \leq g(\beta)$ fails for some g in a Gentzen structure **Q** then $h(\alpha_1) \cdot \ldots \cdot h(\alpha_n) \leq h(\beta)$ fails for some h in an **FL**_{ew}-algebra **P**.

How do we get such an $FL_{ew}\mbox{-}algebra \ P$ from a given Gentzen structure Q? Moreover, Q must be embedded into the $FL_{ew}\mbox{-}algebra \ P.$

- 1. We give a uniform way of constructing such a **P** called the *quasi-completion* of **Q**;
- 2. We show that \mathbf{Q} can be quasi-embedded into \mathbf{P} .

When ${\bf Q}$ is a ${\sf FL}_{\sf ew}$ -algebra, ${\bf P}$ is a MacNeille completion of ${\bf Q}$ and the quasi-embedding becomes a complete embedding.

・ 同 ト ・ ヨ ト ・ ヨ ト

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Closure operators

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a commutative monoid. A unary function C on $\wp(M)$ is a *closure operator* if for all $X, Y \in \wp(M)$:

- 1. $X \subseteq C(X)$
- 2. $C(C(X)) \subseteq C(X)$
- 3. $X \subseteq Y$ implies $C(X) \subseteq C(Y)$
- 4. $C(X) * C(Y) \subseteq C(X * Y)$, where $W * Z = \{w \cdot z \mid w \in W \text{ and } z \in Z\}$.

< 三 > < 三 >

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Closure operators

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a commutative monoid. A unary function C on $\wp(M)$ is a *closure operator* if for all $X, Y \in \wp(M)$:

- 1. $X \subseteq C(X)$
- 2. $C(C(X)) \subseteq C(X)$
- 3. $X \subseteq Y$ implies $C(X) \subseteq C(Y)$
- 4. $C(X) * C(Y) \subseteq C(X * Y)$, where $W * Z = \{w \cdot z \mid w \in W \text{ and } z \in Z\}$.

Let $C(\wp(M))$ be the set of all C-closed subsets, define operations $\cup_C, *_C$ and \Rightarrow on $C(\wp(M))$ as follows:

- $\blacktriangleright X \cup_C Y = C(X \cup Y)$
- $\bullet X *_C Y = C(X * Y)$
- $\blacktriangleright X \Rightarrow Y = \{z \mid X * \{z\} \subseteq Y\}$

< 臣 > (臣 >)

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Closure operators

Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a commutative monoid. A unary function *C* on $\wp(M)$ is a *closure operator* if for all $X, Y \in \wp(M)$:

- 1. $X \subseteq C(X)$
- 2. $C(C(X)) \subseteq C(X)$
- 3. $X \subseteq Y$ implies $C(X) \subseteq C(Y)$
- 4. $C(X) * C(Y) \subseteq C(X * Y)$, where $W * Z = \{w \cdot z \mid w \in W \text{ and } z \in Z\}$.

Let $C(\wp(M))$ be the set of all C-closed subsets, define operations $\cup_C, *_C$ and \Rightarrow on $C(\wp(M))$ as follows:

- $\blacktriangleright X \cup_C Y = C(X \cup Y)$
- $\bullet X *_C Y = C(X * Y)$
- $X \Rightarrow Y = \{z \mid X * \{z\} \subseteq Y\}$

Lemma

The tuple $C_M = \langle C(\wp(M)), \cap, \cup_C, *_C, \Rightarrow, C(\emptyset), C(\{1\}) \rangle$ is a FL_e -algebra, not necessarily integral.

▲国家 ▲国家 ----

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Quasi-completions

▶ Let **Q** be a Gentzen structure, for $x \in Q^*$ and $a \in Q \cup \{\varepsilon\}$ define

$$[x; a] = \{w \in Q^* \mid xw \preceq a\}$$

イロン イ理 とく ヨント

æ

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Quasi-completions

▶ Let **Q** be a Gentzen structure, for $x \in Q^*$ and $a \in Q \cup \{\varepsilon\}$ define

$$[x; a] = \{w \in Q^* \mid xw \preceq a\}$$

▶ Now define a function *C* on
$$\wp(Q^*)$$
 by

$$C(X) = \bigcap \{ [x; a] \mid X \subseteq [x; a] \text{ for } x \in Q^* \text{ and } a \in Q \cup \{ \varepsilon \} \}$$

・ロト ・聞 ト ・ ヨト ・ ヨトー

Э.

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Quasi-completions

▶ Let **Q** be a Gentzen structure, for $x \in Q^*$ and $a \in Q \cup \{\varepsilon\}$ define

$$[x; a] = \{w \in Q^* \mid xw \preceq a\}$$

Now define a function
$$C$$
 on $\wp(Q^*)$ by

$$C(X) = \bigcap \{ [x; a] \mid X \subseteq [x; a] \text{ for } x \in Q^* \text{ and } a \in Q \cup \{ \varepsilon \} \}$$

► The function C is a closure operator such that C({ε}) = Q* = C({1}). Thus, C_{Q*} is a FL_{ew}-algebra, which is called the *quasi-completion* of Q.

A E > A E >

э

< 🗇 🕨

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Quasi-embeddings

▶ To show that the Gentzen structure **Q** is quasi-embeddable into C_{Q^*} we define a *quasi-embedding* $k : Q \to C(\wp(Q^*))$ as

$$k(a) = [\varepsilon; a] = \{w \in Q^* \mid w \preceq a\}$$

・ロン ・聞と ・ 聞と ・ 聞と

э

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Quasi-embeddings

▶ To show that the Gentzen structure **Q** is quasi-embeddable into C_{Q^*} we define a *quasi-embedding* $k : Q \to C(\wp(Q^*))$ as

$$k(a) = [\varepsilon; a] = \{w \in Q^* \mid w \preceq a\}$$

Then we can prove the following.

Lemma

Suppose that $a, b \in Q$ and that U and V are arbitrary C-closed subsets of Q^* such that $a \in U \subseteq k(a)$ and $b \in V \subseteq k(b)$, then for each $\star \in \{\land, \lor, \cdot, \rightarrow\}$:

$$a \star b \in U \star_C V \subseteq k(a \star b),$$

where \star_C denotes \cap, \cup_C, \ast_C and \Rightarrow respectively.

▲ 臣 ▶ | ▲ 臣 ▶ | |

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Proof of cut elimination - concluded

Suppose that $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ does not hold in **Q** by an assignment g.

(本間) (本語) (本語) (二)

э.

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Proof of cut elimination - concluded

- Suppose that $\langle g(\alpha_1), \ldots, g(\alpha_n) \rangle \preceq g(\beta)$ does not hold in **Q** by an assignment g.
- Define an assignment h on C_{Q^*} as h(q) = k(g(q)) for each proposition q.

(4 回) (4 回) (4 回)

3

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Proof of cut elimination - concluded

- Suppose that ⟨g(α₁),...,g(α_n)⟩ ≤ g(β) does not hold in Q by an assignment g.
- Define an assignment h on C_{Q^*} as h(q) = k(g(q)) for each proposition q.
- By induction on the length of a formula ϕ we can show that:

 $g(\phi) \in h(\phi) \subseteq k(g(\phi))$

(소문) 소문) 문

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Proof of cut elimination - concluded

- Suppose that ⟨g(α₁),...,g(α_n)⟩ ≤ g(β) does not hold in Q by an assignment g.
- Define an assignment h on C_{Q^*} as h(q) = k(g(q)) for each proposition q.
- By induction on the length of a formula ϕ we can show that:

 $g(\phi) \in h(\phi) \subseteq k(g(\phi))$

▶ Now, suppose that $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ holds in C_{Q^*} .

▲ 国 ▶ | ▲ 国 ▶ | |

3

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Proof of cut elimination - concluded

- Suppose that ⟨g(α₁),...,g(α_n)⟩ ≤ g(β) does not hold in Q by an assignment g.
- Define an assignment h on C_{Q^*} as h(q) = k(g(q)) for each proposition q.
- By induction on the length of a formula ϕ we can show that:

$$g(\phi) \in h(\phi) \subseteq k(g(\phi))$$

- ▶ Now, suppose that $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ holds in C_{Q^*} .
- ▶ Then in particular $h(\alpha_1) *_C \ldots *_C h(\alpha_n) \subseteq h(\beta)$, and by the results above,

 $\langle g(\alpha_1),\ldots,g(\alpha_n)\rangle \in h(\alpha_1)*_{\mathcal{C}}\ldots*_{\mathcal{C}}h(\alpha_n) \subseteq h(\beta) \subseteq k(g(\beta)) = \{w \mid w \leq g(\beta)\}$

イロト 不得下 不良下 不良下 一度

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Proof of cut elimination - concluded

- Suppose that ⟨g(α₁),...,g(α_n)⟩ ≤ g(β) does not hold in Q by an assignment g.
- Define an assignment h on C_{Q^*} as h(q) = k(g(q)) for each proposition q.
- By induction on the length of a formula ϕ we can show that:

$$g(\phi) \in h(\phi) \subseteq k(g(\phi))$$

- ▶ Now, suppose that $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ holds in C_{Q^*} .
- ▶ Then in particular $h(\alpha_1) *_C \ldots *_C h(\alpha_n) \subseteq h(\beta)$, and by the results above,

 $\langle g(\alpha_1),\ldots,g(\alpha_n)\rangle \in h(\alpha_1)*_{\mathcal{C}}\ldots*_{\mathcal{C}}h(\alpha_n)\subseteq h(\beta)\subseteq k(g(\beta))=\{w\mid w\preceq g(\beta)\}$

But this implies (g(α₁),...,g(α_n)) ≤ g(β), which is a contradiction. Thus, α₁,...α_n ⇒ β is not valid in C_{Q*}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

Proof of cut elimination - concluded

- Suppose that ⟨g(α₁),...,g(α_n)⟩ ≤ g(β) does not hold in Q by an assignment g.
- Define an assignment h on C_{Q^*} as h(q) = k(g(q)) for each proposition q.
- By induction on the length of a formula ϕ we can show that:

$$g(\phi) \in h(\phi) \subseteq k(g(\phi))$$

- ▶ Now, suppose that $\alpha_1, \ldots, \alpha_n \Rightarrow \beta$ holds in C_{Q^*} .
- ▶ Then in particular $h(\alpha_1) *_C \ldots *_C h(\alpha_n) \subseteq h(\beta)$, and by the results above,

 $\langle g(\alpha_1),\ldots,g(\alpha_n)\rangle \in h(\alpha_1)*_{\mathcal{C}}\ldots*_{\mathcal{C}}h(\alpha_n)\subseteq h(\beta)\subseteq k(g(\beta))=\{w\mid w\preceq g(\beta)\}$

- But this implies (g(α₁),...,g(α_n)) ≤ g(β), which is a contradiction. Thus, α₁,...α_n ⇒ β is not valid in C_{Q*}.
- This completes the proof of cut elimination for FL_{ew}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

MacNeille- and Quasi-completions

Let P be a FL_{ew}-algebra and define

$$\mathcal{C}(X) = \bigcap \{ [x; a] \mid X \subseteq [x; a] \text{ for } x \in P^* \text{ and } a \in P \cup \{ \varepsilon \} \}$$

★ E ► < E ►</p>

< 🗇 🕨

э

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

MacNeille- and Quasi-completions

Let P be a FL_{ew}-algebra and define

$$\mathcal{C}(X) = \bigcap \{ [x; a] \mid X \subseteq [x; a] \text{ for } x \in P^* \text{ and } a \in P \cup \{ \varepsilon \} \}$$

Then we can show that

 $C(X) = (X^{\rightarrow})^{\leftarrow} = \{a \mid a \leq b \text{ for all } b \text{ such that } b \geq c \text{ for all } c \in X\}$

and therefore the quasi-completion $C_{P^{\ast}}$ of P is isomorphic to the MacNeille completion of P.

医下颌 医下口

э

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

MacNeille- and Quasi-completions

Let P be a FL_{ew}-algebra and define

$$\mathcal{C}(X) \hspace{.1in} = \hspace{.1in} \bigcap \{ [x; a] \mid X \subseteq [x; a] \hspace{.1in} \textit{for} \hspace{.1in} x \in P^* \hspace{.1in} \textit{and} \hspace{.1in} a \in P \cup \{ \varepsilon \} \}$$

Then we can show that

 $C(X) = (X^{\rightarrow})^{\leftarrow} = \{a \mid a \leq b \text{ for all } b \text{ such that } b \geq c \text{ for all } c \in X\}$

and therefore the quasi-completion C_{P^*} of P is isomorphic to the MacNeille completion of P.

Further, since ≤ is strongly transitive, a ★ b ∈ k(a) ★_C k(b) implies that k(a ★ b) = k(a) ★_C k(b).

-

Cut elimination Closure operators Quasi-completions Proof of cut elimination - concluded

MacNeille- and Quasi-completions

Let P be a FL_{ew}-algebra and define

$$\mathcal{C}(X) \hspace{.1in} = \hspace{.1in} \bigcap \{ [x; a] \mid X \subseteq [x; a] \hspace{.1in} \textit{for} \hspace{.1in} x \in P^* \hspace{.1in} \textit{and} \hspace{.1in} a \in P \cup \{ \varepsilon \} \}$$

Then we can show that

 $C(X) = (X^{\rightarrow})^{\leftarrow} = \{a \mid a \leq b \text{ for all } b \text{ such that } b \geq c \text{ for all } c \in X\}$

and therefore the quasi-completion C_{P^*} of P is isomorphic to the MacNeille completion of P.

- Further, since ≤ is strongly transitive, a ★ b ∈ k(a) ★_C k(b) implies that k(a ★ b) = k(a) ★_C k(b).
- Thus, the map k can be identified with the complete embedding of a FL_{ew}-algebra P into its MacNeille completion.

▲ 国 ▶ | ▲ 国 ▶ | |

Extensions to other systems The finite model property

Extensions to other systems

This algebraic proof of cut elimination can be extended to:

- the intuitionistic and classic systems LJ and LK.
- intuitionistic substractural systems:
 - propositional calculi FLe and FLec.
 - first-order calculi QFL_{ew}, QFL_e and QFL_{ec}.
- the classic substructural systems CFL_{ew}, CFL_e and CFL_{ec}.
- the propositional modal logics K, T and S4.

< ∃ >

Extensions to other systems The finite model property

The Finite Model Property

The idea of the proof is based on [2, 3].

Lemma

Let **Q** be a Gentzen structure for FL_{ew} such that the closed base $\mathcal{B} = \{[x; a] \mid x \in Q^*, a \in Q \cup \{\varepsilon\}\}$ is finite, then the quasi-completion C_{Q^*} of **Q** is also finite.

프 + + 프 +

Extensions to other systems The finite model property

The Finite Model Property

The idea of the proof is based on [2, 3].

Lemma

Let **Q** be a Gentzen structure for FL_{ew} such that the closed base $\mathcal{B} = \{[x; a] \mid x \in Q^*, a \in Q \cup \{\varepsilon\}\}$ is finite, then the quasi-completion C_{Q^*} of **Q** is also finite.

Now define a subset $\mathcal{P}_{(x,a)}$ of $Q^* \times (Q \cup \{\varepsilon\})$ such that:

- 1. $(x, a) \in \mathcal{P}_{(x,a)}$.
- Suppose that (w, b) ∈ P_(x,a). If "u ≤ c implies w ≤ b" is one of the conditions for ≤ in Q, then (u, c) is a member of P_(x,a). Similarly, if "u ≤ c and v ≤ d imply w ≤ b" is one of the conditions for ≤.

프 🖌 🔺 프 🕨 👘

Extensions to other systems The finite model property

The Finite Model Property

The idea of the proof is based on [2, 3].

Lemma

Let **Q** be a Gentzen structure for FL_{ew} such that the closed base $\mathcal{B} = \{[x; a] \mid x \in Q^*, a \in Q \cup \{\varepsilon\}\}$ is finite, then the quasi-completion C_{Q^*} of **Q** is also finite.

Now define a subset $\mathcal{P}_{(x,a)}$ of $Q^* \times (Q \cup \{\varepsilon\})$ such that:

- 1. $(x, a) \in \mathcal{P}_{(x,a)}$.
- Suppose that (w, b) ∈ P_(x,a). If "u ≤ c implies w ≤ b" is one of the conditions for ≤ in Q, then (u, c) is a member of P_(x,a). Similarly, if "u ≤ c and v ≤ d imply w ≤ b" is one of the conditions for ≤.

For a finite subset S of $Q^* \times (Q \cup \{\varepsilon\})$, let \mathcal{P}_S be the union of $\mathcal{P}_{(x,a)}$ for $(x, a) \in S$. We say that the set S is *finitely based*, when \mathcal{P}_S is finite.

Extensions to other systems The finite model property

The Finite Model Property

Now we show how to obtain a Gentzen structure for $\mathsf{FL}_{\mathsf{ew}}$ such that the closed base $\mathcal B$ is finite.

Lemma

If **Q** is a Gentzen structure for FL_{ew} and S is finitely based, then the relation \leq^* such that for $(w, b) \in \mathcal{P}_S$, $w \leq^* b$ iff $w \leq b$, and otherwise $w \leq^* b$ always holds, satisfies the following conditions:

- 1. the structure $\mathbf{Q}^{\star} = \langle Q, \preceq^{\star}, \wedge, \vee, \cdot, \rightarrow, 0, 1 \rangle$ is a Gentzen structure for FL_{ew} ,
- 2. the closed base \mathcal{B} determined by \leq^* is finite.

-∢ ⊒ ▶

Extensions to other systems The finite model property

The Finite Model Property

Now we show how to obtain a Gentzen structure for $\mathsf{FL}_{\mathsf{ew}}$ such that the closed base $\mathcal B$ is finite.

Lemma

If **Q** is a Gentzen structure for FL_{ew} and S is finitely based, then the relation \leq^* such that for $(w, b) \in \mathcal{P}_S$, $w \leq^* b$ iff $w \leq b$, and otherwise $w \leq^* b$ always holds, satisfies the following conditions:

- 1. the structure $\mathbf{Q}^{\star} = \langle Q, \preceq^{\star}, \wedge, \vee, \cdot, \rightarrow, 0, 1 \rangle$ is a Gentzen structure for FL_{ew} ,
- 2. the closed base \mathcal{B} determined by \leq^* is finite.

-∢ ⊒ ▶

Extensions to other systems The finite model property

The finite model property for FL_{ew}

▶ Suppose that $\mathsf{FL}_{\mathsf{ew}} \nvDash \alpha_1, \ldots, \alpha_m \Rightarrow \beta$, then $\langle \alpha_1, \ldots, \alpha_m \rangle \preceq \beta$ doesn't hold in the *free* Gentzen structure \mathbf{Q}^+ for $\mathsf{FL}_{\mathsf{ew}}$.

医下 不正下

э

Extensions to other systems The finite model property

The finite model property for $\mathsf{FL}_{\mathsf{ew}}$

- ▶ Suppose that $\mathsf{FL}_{\mathsf{ew}} \nvDash \alpha_1, \ldots, \alpha_m \Rightarrow \beta$, then $\langle \alpha_1, \ldots, \alpha_m \rangle \preceq \beta$ doesn't hold in the *free* Gentzen structure \mathbf{Q}^+ for $\mathsf{FL}_{\mathsf{ew}}$.
- We can show that the singleton $\{(\langle \alpha_1, \ldots, \alpha_m \rangle, \beta)\}$ is finitely based.

프 에 제 프 에

э

Extensions to other systems The finite model property

The finite model property for $\ensuremath{\text{FL}_{ew}}$

- ▶ Suppose that $\mathsf{FL}_{\mathsf{ew}} \nvDash \alpha_1, \ldots, \alpha_m \Rightarrow \beta$, then $\langle \alpha_1, \ldots, \alpha_m \rangle \preceq \beta$ doesn't hold in the *free* Gentzen structure \mathbf{Q}^+ for $\mathsf{FL}_{\mathsf{ew}}$.
- We can show that the singleton $\{(\langle \alpha_1, \ldots, \alpha_m \rangle, \beta)\}$ is finitely based.
- By the lemma above, {(⟨α₁,..., α_m⟩, β)} is embedded into a Gentzen structure (**Q**⁺)^{*} for **FL**_{ew} with a relation ≤^{*} such that the closed base is finite. Moreover, ⟨α₁,..., α_m⟩≤^{*}β doesn't hold in (**Q**⁺)^{*} by definition.

通 ト イ ヨ トー

Extensions to other systems The finite model property

The finite model property for $\ensuremath{\text{FL}_{ew}}$

- ▶ Suppose that $\mathsf{FL}_{\mathsf{ew}} \nvDash \alpha_1, \ldots, \alpha_m \Rightarrow \beta$, then $\langle \alpha_1, \ldots, \alpha_m \rangle \preceq \beta$ doesn't hold in the *free* Gentzen structure \mathbf{Q}^+ for $\mathsf{FL}_{\mathsf{ew}}$.
- We can show that the singleton $\{(\langle \alpha_1, \ldots, \alpha_m \rangle, \beta)\}$ is finitely based.
- By the lemma above, {(⟨α₁,..., α_m⟩, β)} is embedded into a Gentzen structure (**Q**⁺)^{*} for **FL**_{ew} with a relation ≤^{*} such that the closed base is finite. Moreover, ⟨α₁,..., α_m⟩≤^{*}β doesn't hold in (**Q**⁺)^{*} by definition.
- ▶ By a previous lemma, the quasi-completion **R** of $(\mathbf{Q}^+)^*$ is finite. Since $\langle \alpha_1, \ldots, \alpha_m \rangle \preceq^* \beta$ doesn't hold in $(\mathbf{Q}^+)^*$, $(\alpha_1 \cdot \ldots \cdot \alpha_m) \leq \beta$ doesn't hold either in **R**, which is a **FL**_{ew}-algebra.

Extensions to other systems The finite model property

The finite model property for $\mathbf{FL}_{\mathbf{ew}}$

- ▶ Suppose that $\mathsf{FL}_{\mathsf{ew}} \nvDash \alpha_1, \ldots, \alpha_m \Rightarrow \beta$, then $\langle \alpha_1, \ldots, \alpha_m \rangle \preceq \beta$ doesn't hold in the *free* Gentzen structure \mathbf{Q}^+ for $\mathsf{FL}_{\mathsf{ew}}$.
- We can show that the singleton $\{(\langle \alpha_1, \ldots, \alpha_m \rangle, \beta)\}$ is finitely based.
- By the lemma above, {(⟨α₁,..., α_m⟩, β)} is embedded into a Gentzen structure (**Q**⁺)^{*} for **FL**_{ew} with a relation ≤^{*} such that the closed base is finite. Moreover, ⟨α₁,..., α_m⟩≤^{*}β doesn't hold in (**Q**⁺)^{*} by definition.
- ▶ By a previous lemma, the quasi-completion **R** of $(\mathbf{Q}^+)^*$ is finite. Since $\langle \alpha_1, \ldots, \alpha_m \rangle \preceq^* \beta$ doesn't hold in $(\mathbf{Q}^+)^*$, $(\alpha_1 \cdot \ldots \cdot \alpha_m) \leq \beta$ doesn't hold either in **R**, which is a **FL**_{ew}-algebra.
- This proof of the finite model property can be extended to the first-order substructural logic QFL_{ew}.

Extensions to other systems The finite model property

Thank you!

F. Belardinelli An Algebraic Proof of Cut Elimination

・ロト ・四ト ・ヨト ・ヨト

æ

- F. BELARDINELLI, P. JIPSEN and H. ONO, Algebraic Aspects of Cut Elimination, Studia Logica 77(2), (2004), 209-240.
- Y. LAFONT, The finite model property for various fragments of linear logic, Journal of Symbolic Logic 62, (1997), 1202–1208.
- M. OKADA and K. TERUI, The finite model property for various fragments of intuitionistic linear logic, Journal of Symbolic Logic 64, (1999), 790–802.

H. ONO and Y. KOMORI, Logics without the contraction rule, Journal of Symbolic Logic 50, (1985), 169-201.

→ Ξ → < Ξ →</p>

э

< 🗇 🕨