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abstract. In this paper we make use of counterpart semantics to prove an
original incompleteness result in quantified modal logic (QML), that is, the

system QE .K+BF based on free logic and containing the Barcan formula

is incomplete with respect to Kripke semantics. This incompleteness result
extends to the system QE .K+CBF+BF obtained by adding the converse

of the Barcan formula to QE .K+BF .
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1 Kripke Semantics

In this paper we consider a first-order modal alphabet A containing a de-
numerable infinite set V ar of individual variables x1, x2, . . .; a denumerable
infinite set of n-ary predicative constants Pn

1 , P
n
2 , . . ., for n ∈ N; the connec-

tives ¬ and →; the quantifier ∀; the operator �; the existence predicative
constant E. The terms t1, t2, . . . are only individual variables.

DEFINITION 1. The formulas in the first-order modal language L are de-
fined in the Backus-Naur form as follows:

φ ::= Pn(t1, . . . , tn) | E(t) | ¬φ | φ→ ψ | ∀xφ | �φ

The symbols ∧, ∨, ↔, ∃, � are standardly defined; φ[~y/~t] denotes the
simultaneous substitution of some, possibly all, free occurrences of ~y =
y1, . . . , yn in φ with ~t = t1, . . . , tn, renaming bounded variables if necessary.

DEFINITION 2. A Kripke frame, or K-frame, is a tuple F = 〈W,R,D, d〉
such that W is a non-empty set; R ⊆ W 2; for w,w′ ∈ W , D(w) is a non-
empty set and wRw′ implies D(w) ⊆ D(w′); for w ∈W , d(w) ⊆ D(w).

A K-frame F has constant (resp. increasing, decreasing) inner domains
iff wRw′ implies d(w) = d(w′) (resp. d(w) ⊆ d(w′), d(w) ⊇ d(w′)).

DEFINITION 3. A Kripke model of language L based on a K-frame F , or
K-model, is a pair M = 〈F , I〉 where I is an interpretation of L such that
(i) if Pn is an n-ary predicative constant and w ∈ W , then I(Pn, w) is an
n-ary relation on D(w); (ii) I(E,w) = d(w).
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A w-assignments is any function σ : V ar → D(w). The variant σ
(
x
a

)
does

not coincide with σ at most on x, and assigns a ∈ D(w) to x.

DEFINITION 4. The satisfaction relation |= for a world w ∈M, a formula
φ ∈ L, and a w-assignment σ is defined as follows:

(Mσ, w) |= Pn(t1, . . . , tn) iff 〈σ(t1), . . . , σ(tn)〉 ∈ I(Pn, w)
(Mσ, w) |= ¬ψ iff (Mσ, w) 6|= ψ
(Mσ, w) |= ψ → ψ′ iff (Mσ, w) 6|= ψ or (Mσ, w) |= ψ′

(Mσ, w) |= �ψ iff for every w′ ∈W , wRw′ implies (Mσ, w′) |= ψ

(Mσ, w) |= ∀xψ iff for every a ∈ d(w), (Mσ(x
a), w) |= ψ

A formula φ is true at a world w iff it is satisfied by every w-assignment
σ; φ is valid on a K-model M iff it is true at every world in M; φ is valid
on a K-frame F iff it is valid on every K-model based on F .

2 The Systems QE.K+BF and QE.K+CBF+BF

We now introduce the systems QE .K+BF and QE .K+CBF+BF based
on free logic. We will consider the following principles in what follows.

Taut tautologies of classical propositional calculus
K �(φ→ ψ) → (�φ→ �ψ) distribution axiom
MP φ→ ψ, φ⇒ ψ modus ponens
Nec φ⇒ �φ necessitation

E-Ex ∀xφ→ (E(y) → φ[x/y]) E-exemplification
E-Gen φ→ (E(x) → ψ) ⇒ φ→ ∀xψ, x not free in φ E-generalization

BF ∀x�φ→ �∀xφ Barcan formula
CBF �∀xφ→ ∀x�φ converse of BF
N¬E ¬E(x) → �¬E(x) necessity of fictionality
NE E(x) → �E(x) necessity of existence

DEFINITION 5. The system QE .K+BF includes the schemes of axioms
Taut, K, E-Ex, BF , and the inference rules MP , Nec, E-Gen. The system
QE .K+CBF+BF extends QE .K+BF by adding CBF .

We consider the standard definitions of proof and theorem: S ` φ means
that φ is a theorem in the system S. A K-frame F is a K-frame for S iff
all the theorems of S are valid on F , i.e., S ` φ implies F |= φ.

LEMMA 6. For any system S in the first column, F is a K-frame for S iff
it satisfies the constraint on inner domains in the second column:

calculi inner domain

QE .K+BF decreasing
QE .K+CBF+BF constant

LEMMA 7. Every K-frame for QE .K+BF validates the necessity of fic-
tionality, i.e., QE .K+BF |= N¬E.

We leave to the interested reader the proof of this standard result, which
is due to decreasing inner domains. In the incompleteness result in section 4
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we will show that QE .K+BF does not prove N¬E. Lemma 7 applies also
to the system QE .K+CBF+BF .

3 Counterpart Semantics

For introducing the counterpart semantics for QML we make use of typed
languages. First, every variable xi in the alphabet A is a term of type n,
or n-term, for n ≥ i. If xj is an n-term and t1, . . . , tn are m-terms, the
substituted m-term xj [t1, . . . , tn] is the m-term tj , or tj : m in short.
DEFINITION 8. The typed first-order modal language LT contains all and
only the formulas φ of type n, or φ : n, for n ∈ N, defined as follows:

• if Pm is an m-ary predicative constant and (t1, . . . , tm) is an m-tuple of
n-terms, then Pm(t1, . . . , tm) is a (atomic) formula of type n;

• if ψ,ψ′ are n-formulas, then ¬ψ and ψ → ψ′ are formulas of type n;

• if ψ is an m-formula and (t1, . . . , tm) is an m-tuple of n-terms,
then (�ψ)(t1, . . . , tm) is a formula of type n;

• if ψ is an n+1-formula, then ∀xn+1ψ is a formula of type n.

The formula �φ : n is a shorthand for (�φ)(x1, . . . , xn) : n. Let φ be
an n-formula and ~s an n-tuple of k-terms, the substituted k-formula φ[~s] is
inductively defined as follows:

• φ is the atomic formula Pm(t1, . . . , tm), then φ[~s] is Pm(t1[~s], . . . , tm[~s]);

• φ = ¬ψ, then (¬ψ)[~s] = ¬(ψ[~s]);

• φ = ψ → ψ′, then (ψ → ψ′)[~s] = ψ[~s] → ψ′[~s];

• φ = (�ψ)(t1, . . . , tm), then (�ψ)(t1, . . . , tm)[~s] = (�ψ)(t1[~s], . . . , tm[~s]);

• φ = ∀xn+1ψ, then (∀xn+1ψ)[~s] = ∀xk+1(ψ[~s, xk+1]).

Note that substitution does not commute with the modal operator, there-
fore it is not the case that (�φ)[t1, . . . , tm] is equivalent to �(φ[t1, . . . , tm]).

DEFINITION 9. A counterpart frame, or c-frame, is a tuple F = 〈W,R,D,
d, C〉 such that W is a non-empty set; R ⊆W 2; for w ∈W , D(w) is a non-
empty set and d(w) ⊆ D(w); for wRw′, Cw,w′ ⊆ D(w)×D(w′).

In this paper we focus on the following classes of c-frames:

existentially faithful iff wRw′, a ∈ d(w) and Cw,w′(a, b), imply b ∈ d(w′)
fictionally faithful iff wRw′, a ∈ D(w) \ d(w) and Cw,w′(a, b), imply b ∈ D(w′) \ d(w′)
everywhere-defined iff wRw′ and a ∈ D(w), imply there is b ∈ D(w′) s.t. Cw,w′(a, b)
surjective iff wRw′ and b ∈ d(w′), imply there is a ∈ d(w) s.t. Cw,w′(a, b)
functional iff wRw′, Cw,w′(a, b) and Cw,w′(a, b′), imply b = b′

DEFINITION 10. A counterpart model for the language LT based on a
c-frame F , or c-model in short, is a couple M = 〈F , I〉 where I is an
interpretation of LT such that (i) if Pn is an n-ary predicative constant and
w ∈W , then I(Pn, w) is an n-ary relation on D(w); (ii) I(E,w) = d(w).

A finitary assignment of type n, or n-assignment, in a world w is an n-
tuple ~a of elements in D(w). Let t be the n-term xj , the valuation ~a(t) for
the n-assignment ~a is equal to aj .
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DEFINITION 11. The satisfaction relation |= for a world w ∈M, a typed
formula φ : n, and an n-assignment ~a is defined as follows:

(M~a, w) |= Pm(t1, . . . , tm) iff 〈~a(t1), . . . ,~a(tm)〉 ∈ I(Pm, w)
(M~a, w) |= ¬ψ iff (M~a, w) 6|= ψ
(M~a, w) |= ψ → ψ′ iff (M~a, w) 6|= ψ or (M~a, w) |= ψ′

(M~a, w) |= (�ψ)(t1, . . . , tm) iff for w′ ∈W , for b1, . . . , bm ∈ D(w′),
wRw′ and Cw,w′(~a(ti), bi) imply (M~b, w′) |= ψ

(M~a, w) |= ∀xn+1ψ iff for every a∗ ∈ d(w), (M~a·a∗
, w) |= ψ

where ~a · a∗ is the n+ 1-assignment (a1, . . . , an, a
∗).

A typed formula φ : n is said to be true at a world w iff it is satisfied by
every n-assignment; φ is valid on a c-model M iff it is true at every world
in M; φ is valid on a c-frame F iff it is valid on every c-model based on F .

4 Incompleteness of QML Systems

This section is devoted to the incompleteness proofs for systems QE .K+BF
and QE .K+CBF+BF , which are inspired to a similar result in [3]. We
first show that QE .K+BF is Kripke-incomplete, that is, there is no class
of Kripke frames which validates all and only the theorems of QE .K+BF .

THEOREM 12. The system QE .K+BF is Kripke-incomplete, i.e., every
K-frame for QE .K+BF validates N¬E, but QE .K+BF 0 N¬E.

In section 2 we remarked that QE .K+BF |= N¬E. In order to show
that QE .K+BF does not prove N¬E we need two lemmas. By the first
one if a formula φ ∈ L is a theorem in QE .K+BF , then its translation
τn(φ) ∈ LT as defined below holds in a suitable c-frame. By the second
lemma this suitable c-frame does not validate ¬E(xn) → �¬E(xn), i.e.,
the translation of N¬E according to τn. By contraposition we obtain that
QE .K+BF does not prove N¬E.

Following [3, 6] we define a translation function from untyped to typed
first-order modal languages.

DEFINITION 13. Let φ ∈ L be an untyped formula and define g(φ) as the
maximum k such that xk occurs in φ. For n ≥ g(φ), the formula τn(φ) ∈ LT

of type n is inductively defined as follows:

τn(Pm(t1, . . . , tm)) := Pm(t1, . . . , tm)
τn(¬ψ) := ¬τn(ψ)
τn(�ψ) := �τn(ψ)
τn(ψ → ψ′) := τn(ψ) → τn(ψ′)
τn(∀xiψ) := ∀xn+1(τn(ψ)[x1, . . . , xi−1, xn+1, xi+1, . . . , xn])

By the first lemma theoremhood inQE .K+BF implies validity in everywhere-
defined, surjective, functional c-frames, modulo the translation function τn.

LEMMA 14. Let φ ∈ L, n ≥ g(φ) and let F be an everywhere-defined,
surjective, and functional c-frame, then

QE .K +BF ` φ implies F |= τn(φ)
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The proof of this lemma requires the following auxiliary result, in which
the assumptions of everywhere-definiteness and functionality are essential.

LEMMA 15. If φ is a formula in L, F is an everywhere-defined and func-
tional c-frame, and xi1 , . . . , xim

are free for x1, . . . , xm in φ, then

F |= τm(φ)[xi1 , . . . , xim
] ↔ τn(φ[xi1 , . . . , xim

])

If QE .K+BF proves N¬E, then any everywhere-defined, surjective, and
functional c-frame models τn(N¬E). But the latter fact is negated by the
next lemma.

LEMMA 16. There exists an everywhere-defined, surjective, and functional
c-frame F such that F 6|= ¬E(xn) → �¬E(xn) : n.

Proof. Consider the c-frame F , where W = {w,w′}; R = {(w,w′)};
D(w) = {a, a′},D(w′) = {b}; d(w) = {a}, d(w′) = {b}; Cw,w′ = {(a, b), (a′, b)}.
By definition F is everywhere-defined, surjective, and functional, but N¬E
fails in F as it is not fictionally faithful. Consider a c-model M based
on F and an n-assignment ~a such that an = a′ and (M~a, w) |= ¬E(xn).
We have that Cw,w′(a′, b) and b ∈ d(w′), so (M~a, w) |= �E(xn). Thus,
(M~a, w) |= ¬E(xn) ∧ �E(xn) and F 6|= N¬E. �

By lemmas 14 and 16 the system QE .K+BF does not prove N¬E, which
is nonetheless valid on every K-frame for QE .K+BF . As a result, theorem
12 holds.

Note that also the system QE .K+CBF+BF is Kripke-incomplete, as
lemma 14 holds also for QE .K+CBF+BF with respect to existentially
faithful, everywhere-defined, surjective, and functional c-frames. Further,
the c-frame in lemma 16 is also existentially faithful.

THEOREM 17. The system QE .K+CBF+BF is Kripke-incomplete, i.e.,
QE .K+CBF+BF |= N¬E, but QE .K+CBF+BF 0 N¬E.
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[7] M. Kracht and O. Kutz. The Semantics of Modal Predicate Logic ii. In R. Kahle,
editor, Intensionality, Lecture Notes in Logic, volume 22. ASL, Los Angeles, 2001.

[8] M. Kracht and O. Kutz. The Semantics of Modal Predicate Logic i. Counterpart

Frames. In Advances in Modal Logic, volume 3. World Scientific Publishing, 2002.
[9] D. Skvortsov and V. Shehtman. Maximal Kripke-type Semantics for Modal and Su-

perintuitionistic Predicate Logics. Annals of pure and applied logic, 63:69–101, 1993.


