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Abstract

We introduce and investigate quantified interpreted systems,
a semantics to reason about knowledge and time in a first-
order setting. We provide an axiomatisation, which we show
to be sound and complete. We utilise the formalism to study
message passing systems (Lamport 1978; Fagin et al 1995) in
a first-order setting, and compare the results obtained to those
available for the propositional case.

Introduction
The area of modal logic (Blackburn, van Benthem, and
Wolter 2007; Chagrov and Zakharyaschev 1997) has re-
ceived considerable attention in artificial intelligence over
the years. Research has pursued both fundamental theoret-
ical investigations (completeness, decidability, complexity,
etc), as well as the use of modal formalisms in specifica-
tion and automatic system verification, as in model checking
(Clarke, Grumberg, and Peled 1999).

Among the most well-known formalisms are proposi-
tional modal logics for reasoning about knowledge, or
propositional epistemic logics (Fagin et al 1995; Meyer and
Hoek 1995). The typical epistemic language extends propo-
sitional logic by adding n modalities Ki representing the
knowledge of agent i in a group A = {1, . . . , n} of agents.
For expressiveness purposes, epistemic logic has been ex-
tended in several ways. In one direction, further modali-
ties have been added to the formalism (distributed knowl-
edge, common knowledge, belief, etc.) for representing the
knowledge shared in a group of agents. In another one, the
epistemic language has been enriched with temporal oper-
ators under the assumption of a given model of time (e.g.,
linear or branching, discrete or continuous, etc.). In all
these lines of work there is a tension between extending the
expressiveness of the language reflecting the system to be
modeled and retaining some useful theoretical properties of
the formalism, such as decidability.

This tension is still present in the exercise conducted here,
where we aim at extending a combination of epistemic and
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temporal logic to predicate level. We apply this result in
the modeling of a class of computational structures normally
referred to as message passing systems (Lamport 1978). We
also show that known metatheoretical properties of message
passing systems (Fagin et al 1995) become validities in the
predicate logic here considered.

Our starting point is a number of results by Halpern, van
der Meyden, and others regarding the combination of time
and knowledge at propositional level (Fagin, Halpern, and
Vardi 1992; Meyden 1994) together with studies by, among
others, Hodkinson, Reynolds, Wolter, Zakharyaschev for
first-order temporal logic including both positive (Hod-
kinson, Wolter, and Zakharyaschev 2000; Reynolds 1996;
Wolter and Zakharyaschev 2002) and negative results
(Wolter 2000). In this note we also make use of our ini-
tial work in this direction (Belardinelli and Lomuscio 2007a;
2007b), where static (i.e., non-temporal) quantified epis-
temic logics were axiomatised.

Our motivation for the above comes from an interest in
reasoning about reactive, autonomous distributed systems,
or multi-agent systems (MAS), whose high-level proper-
ties may usefully be modeled by epistemic formalisms suit-
ably extended to incorporate temporal logic. While tem-
poral epistemic logics are well understood at propositional
level (Fagin et al 1995; Meyer and Hoek 1995), their useful-
ness has been demonstrated in a number of applications (se-
curity and communication protocols, robotics), and model
checking tools have been developed for them (Gammie
and van der Meyden 2004; Raimondi and Lomuscio 2007;
Dembiński et al 2003), still there is a growing need in
web-services, security, as well as other areas, to extend
these languages to first-order (see (Cohen and Dams 2007;
Solanki, Cau, and Zedan 2006; Viganò 2007)). More-
over, a number of formalisms, including BDI logics (Rao
and Georgeff 1991), the KQML framework (Cohen, and
Levesque 1995), and LORA (Wooldridge 2000), have put
forward agent theories that include the power of first-order
quantification. However, most of these contributions do not
address the issue of completeness, a core concern here.

In MAS applications the power of first-order logic is wel-
come every time agents’ knowledge is concerned with:
• Relational statement, as in agent i knows that message µ

was sent by a to b, or formally
Ki〈P 〉Send(a, b, µ);
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(where 〈P 〉 is the diamond for past time);
• Functional dependency and identity: at some future point

agent i will know that message µ is the encryption of mes-
sage µ′ with key k, formally

〈F 〉Ki(µ = enc(k, µ′));

• An infinite domain of individuals, or a finite domain
whose cardinality cannot be bounded in advance: agent
i has to read an e-mail before deleting it,

∀µ(Delete(i, µ)→ 〈P 〉Read(i, µ));

• Quantification on agents (Lomuscio and Colombetti
1996): the child of any process knows which process
launched it

∀iKchild(i)〈P 〉Launch(i, child(i))

Furthermore, in the context of logics for knowledge it
is known that epistemic modalities can be combined with
quantifiers to express concepts such as knowledge de re and
de dicto (Fitting, and Mendelsohn 1999; Hughes and Cress-
well 1996). For instance, an agent i might know that every
computation will eventually produce an output, thus having
the de dicto knowledge expressed by the following specifi-
cation:

∀comp Ki 〈F 〉 ∃y Output(comp, y)

but she might not know the actual output of every computa-
tion. Therefore, the following de re specification:

∀comp ∃y Ki 〈F 〉 Output(comp, y)

would not be satisfied. From the examples above we con-
clude that quantification can significantly extend the expres-
siveness of epistemic languages.

While the specifications above call for a first-order lan-
guage, we need to consider why one should use an undecid-
able language when a decidable one (propositional temporal
epistemic logic in our case) does a reasonable job already.
Although this is a sensible objection, we should stress that in
many practical applications, such as in model checking, we
are typically not so much concerned with the validity prob-
lem but with satisfaction in a given model, which is often
an easier problem, particularly for some classes of formulas.
Additionally, recent research, including among others (Hod-
kinson, Wolter, and Zakharyaschev 2000; Sturm, Wolter,
and Zakharyaschev 2000; 2002; Wolter and Zakharyaschev
2001), has put forward useful decidable fragments of first-
order modal logic, thereby opening the way for further ex-
tensions.

We approach the problem by introducing quantified in-
terpreted systems, an extension to first-order of “standard”
interpreted systems (Halpern, and Fagin 1989; Parikh and
Ramanujam 1985), which are used to interpret a language
for temporal epistemic logic including distributed knowl-
edge. First, a sound and complete axiomatisation is pre-
sented. Second, message passing systems, a basic frame-
work for reasoning about asynchronous systems (Lamport
1978) are analysed in the light of the novel formalism, and
the results compared to the treatment in propositional logic.

A Quantified Temporal Epistemic Logic
In this section we extend to first-order the formalism of in-
terpreted systems, a class of structures introduced to model
the behaviour of multi-agent systems (Fagin et al 1995;
Meyer and Hoek 1995). In what follows we assume a finite
set A = {i1, . . . , in} of agents.

Syntax
The first-order modal language Ln contains individual vari-
ables x1, x2, . . ., n-ary functors fn1 , f

n
2 , . . . and n-ary pred-

icative letters Pn1 , P
n
2 , . . ., for n ∈ N, the identity predi-

cate =, the propositional connectives ¬ and→, the universal
quantifier ∀, the epistemic operators Ki, for i ∈ A, the dis-
tributed knowledge operators DG, for non-empty G ⊆ A,
the future operator [F ], and the past operator [P ].
Definition 1 Terms and formulas in the language Ln are
defined in the Backus-Naur form as follows:

t ::= x |fk(~t)

φ ::= P k(~t) | t = t′ |¬φ |φ→ ψ |Kiφ |DGφ | [F ]φ | [P ]φ |∀xφ

The formula Kiφ means “agent i knows φ”, while DGφ
represents “φ is distributed knowledge among the agents
in G”, and [F ]φ (respectively [P ]φ) stands for “φ will al-
ways be true” (respectively “φ has always been true”). The
symbols ⊥, ∧, ∨, ↔, ∃, 〈F 〉 (sometime in the future), 〈P 〉
(sometime in the past) are defined as standard. The temporal
operators [F ]+ (every future time including the present) and
[P ]+ (every past time including the present) can be defined
as φ ∧ [F ]φ and φ ∧ [P ]φ respectively.

We refer to 0-ary functors as individual constants
c1, c2, . . . A closed term v is a term where no variable ap-
pears; closed terms are either constants or terms obtained by
applying functors to closed terms.

By t[~y] (resp. φ[~y]) we mean that ~y = y1, . . . , yn are all
the free variables in t (resp. φ); while t[~y/~t] (resp. φ[~y/~t])
denotes the term (resp. formula) obtained by substituting
simultaneously some, possibly all, free occurrences of ~y in
t (resp. φ) with ~t = t1, . . . , tn, renaming bounded variables
if necessary.

Quantified Interpreted Systems
Interpreted systems are widely used to model the behaviour
of MAS, in this subsection we extend these structures to
first-order. This extension can be performed in several ways,
all leading to different results. For instance, we could intro-
duce a domain of quantification for each agent and/or for
each computational state (see (Belardinelli and Lomuscio
2007a; 2007b) for a discussion of the static case). In this pa-
per we consider the simplest extension, obtained by adding
a single quantification domain D common to all agents and
states. We present further options in the conclusions.

More formally, for each agent i ∈ A in a multi-agent
system we introduce a set Li of local states li, l′i, . . ., and
a set Acti of actions αi, α′i, . . .. We consider local states
and actions for the environment e as well. The set S ⊆
Le×L1× . . .×Ln contains all possible global states of the
MAS, while Act ⊆ Acte × Act1 × . . .× Actn is the set of
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all possible joint actions. Note that some states may never
be reached and some joint actions may never be performed.
We also introduce a transition function τ : Act→ (S → S).
Intuitively, τ(α)(s) = s′ encodes that the agents can ac-
cess the global state s′ from s by performing the joint action
α ∈ Act. The transition function τ defines the admissible
evolutions of the MAS. We say that the global state s′ is
reachable in one step from s, or s ≺ s′, iff there is α ∈ Act
such that τ(α)(s) = s′; while s′ is reachable from s iff
s ≺+ s′, where ≺+ is the transitive closure of relation ≺.

To represent the temporal evolution of the MAS we con-
sider the flow of time T = 〈T,<〉 defined as a weakly con-
nected, strict partial order, i.e., T is a non-empty set and
the relation < on T is irreflexive, transitive and weakly con-
nected: for n, n′, n′′ in T ,

- n 6< n
- (n < n′ ∧ n′ < n′′)→ (n < n′′)
- (n < n′ ∧ n < n′′) → (n′ < n′′ ∨ n′′ < n′ ∨ n′ = n′′)
- (n′ < n ∧ n′′ < n) → (n′ < n′′ ∨ n′′ < n′ ∨ n′ = n′′)

The relation < can be thought of as the precedence re-
lation on the set T of moments in time. A run r over
〈S, Act, τ, T 〉, where S, Act, τ , and T are defined as above,
is a function from T to S such that n < n′ implies r(n) ≺+

r(n′). Intuitively, a run represents a possible evolution of
the MAS on the flow of time T .

We now define the quantified interpreted systems for the
language Ln as follows:

Definition 2 A quantified interpreted system, or QIS, over
〈S, Act, τ, T 〉 is a triple P = 〈R,D, I〉 such that R is a
non-empty set of runs over 〈S, Act, τ, T 〉; D is a non-empty
set of individuals; I(fk) is a k-ary function from Dk to D;
for r ∈ R, n ∈ T , I(P k, r, n) is a k-ary relation on D and
I(=, r, n) is the equality on D. We denote byQIS the class
of all quantified interpreted systems.

Note that individual constants as well as functors in Ln
are interpreted rigidly, that is, their interpretation is the same
in every global state. Further, the present definition of quan-
tified interpreted systems covers the most intuitive formali-
sations of time, as it includes N, Z, Q, and R with a notion
of precedence among instants. Therefore, QIS are general
enough to cover a wide range of cases, while still being in-
teresting for applications.

Now we assign a meaning to the formulas of Ln in quan-
tified interpreted systems. Following standard notation (Fa-
gin et al 1995) a pair (r,m) is a point in P . If r(m) =
〈le, l1, . . . , ln〉 is the global state at (r,m), then re(m) = le
and ri(m) = li are the environment’s and agent i’s local
state at (r,m) respectively. We consider also the converse
relation> defined as n > m iffm < n, and the partial order
≤ such that n ≤ m iff n < m or n = m.

Let σ be an assignment from the variables in Ln to the
individuals in D, the valuation Iσ(t) of a term t is defined
as σ(y) for t = y, and Iσ(t) = I(fk)(Iσ(t1), . . . , Iσ(tk)),
for t = f(~t). A variant σ

(
x
a

)
of an assignment σ assigns

a ∈ D to x and coincides with σ on all the other variables.
Definition 3 The satisfaction relation |= for φ ∈ Ln,
(r,m) ∈ P , and an assignment σ is defined as follows:

(Pσ, r,m) |= P k(~t) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, r,m)
(Pσ, r,m) |= t = t′ iff Iσ(t) = Iσ(t′)
(Pσ, r,m) |= ¬ψ iff (Pσ, r,m) 6|= ψ
(Pσ, r,m) |= ψ → ψ′ iff (Pσ, r,m) 6|= ψ or (Pσ, r,m) |= ψ′

(Pσ, r,m) |= Kiψ iff ri(m)=r′i(m
′)implies(Pσ, r′,m′) |=ψ

(Pσ, r,m) |= DGψ iff ri(m) = r′i(m
′) for all i ∈ G,

implies (Pσ, r′,m′) |= ψ
(Pσ, r,m) |= [F ]ψ iff m < m′ implies (Pσ, r,m′) |= ψ
(Pσ, r,m) |= [P ]ψ iff m > m′ implies (Pσ, r,m′) |= ψ

(Pσ, r,m) |= ∀xψ iff for all a ∈ D, (Pσ(x
a), r,m) |= ψ

The truth conditions for ⊥, ∧, ∨, ↔, ∃, 〈F 〉, and 〈P 〉
are defined from those above. In particular, the temporal
operators [F ]+ and [P ]+ respect the intended semantics:
(Pσ, r,m) |= [F ]+ψ iff m ≤ m′ implies (Pσ, r,m′) |= ψ
(Pσ, r,m) |= [P ]+ψ iff m ≥ m′ implies (Pσ, r,m′) |= ψ

A formula φ ∈ Ln is said to be true at a point (r,m) iff it
is satisfied at (r,m) by every σ; φ is valid on a QIS P iff it
is true at every point in P; φ is valid on a class C of QIS iff
it is valid on every QIS in C.

The present definition of QIS is based on two assump-
tions. Firstly, the domainD of individuals is the same for ev-
ery agent i, so all agents reason about the same objects. This
choice is consistent with the external account of knowledge
usually adopted in the framework of interpreted systems: if
knowledge is ascribed to agents by an external observer, i.e.,
the specifier of the system, it seems natural to focus on the
set of individuals assumed to exist by the observer. Sec-
ondly, the domain D is assumed to be the same for every
global state, i.e., no individual appears nor disappears in
moving from one state to another. This also can be justi-
fied by the external account of knowledge: all individuals
are supposed to be existing from the observer’s viewpoint.
However, either assumption can be relaxed to accommodate
agent-indexed domains as well as individuals appearing and
disappearing in the flow of time. We discuss further options
in the conclusions. Finally, it can be the case that A ⊆ D:
this means that the agents can reason about themselves, their
properties, and relationships.

Expressiveness
Clearly, the language Ln is extremely expressive. We can
use it to specify the temporal evolution of agents’ knowl-
edge, as well as the knowledge agents have of temporal facts
about individuals. Both features are exemplified in the fol-
lowing specification: agent i will know that someone sent
him a message when he receives it,

∀j, µ [F ] (Rec(i, j, µ)→ Ki 〈P 〉 Send(j, i, µ)) (1)

In Ln we can also express that if agent i receives a mes-
sage, then he will know that someone sent it to him:

∀µ [F ](∃j Rec(i, j, µ)→ Ki ∃j′ 〈P 〉 Send(j′, i, µ)) (2)

The latter specification is weaker than the former: (2) says
nothing about the identity of the sender, while (1) requires
that the receiver knows the identity of the sender. Further, we
can express the fact that the existence of a sender is assumed
only at the time the message is sent:

∀µ [F ](∃j Rec(i, j, µ)→ Ki 〈P 〉 ∃j′ Send(j′, i, µ))
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In the section on message passing systems we provide
further examples of the expressiveness of Ln. Most impor-
tantly, we will show that this expressiveness is attained while
retaining completeness.

We conclude this paragraph by considering some relevant
validities on the class of QIS. Given that the domain of quan-
tification is the same in every global state, both the Barcan
formula and its converse are valid on the class of all QIS for
all primitive modalities:

QIS |= ∀xKiφ↔ Ki∀xφ
QIS |= ∀xDGφ↔ DG∀xφ
QIS |= ∀x[F ]φ↔ [F ]∀xφ
QIS |= ∀x[P ]φ↔ [P ]∀xφ

Also, these validities are in line with the bird’s eye ap-
proach usually adopted in epistemic logic. However, should
we wish to do so, we can drop them by introducing quanti-
fied interpreted systems with varying domains.

For what concerns identity, the following principles hold:
QIS |= t = t′ → Ki(t = t′) QIS |= t 6= t′ → Ki(t 6= t′)
QIS |= t = t′ → DG(t = t′) QIS |= t 6= t′ → DG(t 6= t′)
QIS |= t = t′ → [F ](t = t′) QIS |= t 6= t′ → [F ](t 6= t′)
QIS |= t = t′ → [P ](t = t′) QIS |= t 6= t′ → [P ](t 6= t′)

These validities, which hold because of rigid designation,
are consistent with the external account of knowledge. How-
ever, should we require terms whose denotations depends on
the epistemic states of agents, or change accordingly to the
evolution of the MAS, we can consider introducing flexible
terms in the language (Belardinelli and Lomuscio 2007b).
In such an extended formalism none of the validities above
holds whenever t and t′ are flexible terms.

The System QKT.S5n

In this section we provide a sound and complete axioma-
tisation of quantified interpreted systems. This result shows
that, even though languageLn is highly expressive, QIS pro-
vide a perfectly adequate semantics for it. This also opens
the possibility of developing automated verification meth-
ods for the formalism. We first prove the completeness of
the first-order multi-modal system QKT.S5n with respect to
Kripke models. The proof presented here is an extension of
(Gabbay, Hodkinson, and Reynolds 1993), where complete-
ness of a first-order temporal language on weakly-connected
partial orders was presented. Then, by means of a map from
Kripke models to QIS, the completeness of QKT.S5n with
respect to QIS follows.

The system QKT.S5n is a first-order multi-modal ver-
sion of the propositional system S5 combined with a linear
temporal logic. Although tableaux proof systems and natu-
ral deduction calculi are more suitable for automated theo-
rem proving, Hilbert-style systems are easier to handle for
the completeness proof. Hereafter we list the postulates of
QKT.S5n. Note that⇒ is the inference relation between for-
mulas, while � is a placeholder for any primitive modality
in Ln (both temporal and epistemic).
Definition 4 The system QKT.S5n on Ln contains the fol-
lowing schemes of axioms and inference rules:

Taut every instance of classic propositional tautologies
MP φ→ ψ, φ⇒ ψ
Dist �(φ→ ψ)→ (�φ→ �ψ)
4 �φ→ ��φ
Nec φ⇒ �φ
T Kiφ→ φ DGφ→ φ
5 ¬Kiφ→ Ki¬Kiφ ¬DGφ→ DG¬DGφ
D1 D{i}φ↔ Kiφ
D2 DGφ→ DG′ , for G ⊆ G′
FP φ→ [F ]〈P 〉φ
PF φ→ [P ]〈F 〉φ
WConF 〈P 〉〈F 〉φ→ (〈P 〉φ ∨ φ ∨ 〈F 〉φ)
WConP 〈F 〉〈P 〉φ→ (〈P 〉φ ∨ φ ∨ 〈F 〉φ)
Ex ∀xφ→ φ[x/t]
Gen φ→ ψ[x/t]⇒ φ→ ∀xψ, where x is not free in φ
Id t = t
Func t = t′ → (t′′[x/t] = t′′[x/t′])
Subst t = t′ → (φ[x/t]→ φ[x/t′])

By the definition above the operators Ki and DG are S5
type modalities, while the future [F ] and past [P ] operators
are axiomatised as linear-time modalities. To this we add the
classic theory of quantification, consisting of postulates Ex
and Gen, which are both sound in our interpretation as we
are considering a unique domain of individuals. Finally, we
have the axioms for identity.

We consider the standard definitions of proof and theo-
rem: ` φ means that φ ∈ Ln is a theorem in QKT.S5n. A
formula φ ∈ Ln is derivable in QKT.S5n from a set ∆ of
formulas, or ∆ ` φ, iff ` φ1 ∧ . . . ∧ φn → φ for some
φ1, . . . , φn ∈ ∆.

It can be easily checked that the axioms of QKT.S5n are
valid on every QIS and the inference rules preserve validity.
As a consequence, we have the following soundness result:

Theorem 5 (Soundness) The system QKT.S5n is sound for
the class QIS of quantified interpreted systems.

Now we show that the axioms in QKT.S5n are not only nec-
essary, but also sufficient to prove all validities on QIS.

Kripke Models
Although quantified interpreted systems are useful for mod-
eling MAS, for showing that QKT.S5n is complete with re-
spect to QIS we introduce an appropriate class of Kripke
models (Blackburn, van Benthem, and Wolter 2007; Cha-
grov and Zakharyaschev 1997), which are more suitable for
theoretical investigations, namely, the completeness proof.

Definition 6 A Kripke model, orK-model, for the language
Ln is a tupleM = 〈W, {∼i}i∈A, <,D, I〉 such that W is a
non-empty set; for i ∈ A, ∼i is an equivalence relation on
W ; < is a weakly connected, strict partial order on W ; D
is a non-empty set of individuals; I(fk) is a k-ary function
from Dk to D; for w ∈ W , I(P k, w) is a k-ary relation on
D, and I(=, w) is the equality on D. The class of all Kripke
models is denoted by K.

Further, the satisfaction relation |= for an assignment σ is
inductively defined as follows:

(Mσ, w) |= P k(~t) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, w)
(Mσ, w) |= t = t′ iff Iσ(t) = Iσ(t′)
(Mσ, w) |= ¬ψ iff (Mσ, w) 6|= ψ
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(Mσ, w) |= ψ → ψ′ iff (Mσ, w) 6|= ψ or (Mσ, w) |= ψ′

(Mσ, w) |= [F ]ψ iff w < w′ implies (Mσ, w′) |= ψ
(Mσ, w) |= [P ]ψ iff w > w′ implies (Mσ, w′) |= ψ
(Mσ, w) |= Kiψ iff w ∼i w′ implies (Mσ, w′) |= ψ
(Mσ, w) |= DGψ iff (w,w′) ∈

T
i∈G ∼i implies (Mσ, w′) |=ψ

(Mσ, w) |= ∀xψ iff for all a ∈ D, (Mσ(x
a), w) |= ψ

We formally compare Kripke models to quantified inter-
preted systems by means of a map g : K → QIS. Let
M = 〈W, {∼i}i∈A, <,D, I〉 be a Kripke model. For ev-
ery equivalence relation ∼i, for w ∈ W , let the equiva-
lence class [w]∼i = {w′ | w ∼i w′} be a local state for
agent i; while W is the set of local states for the environ-
ment. Let 〈W,<〉 be the irreflexive, transitive and weakly
connected flow of time. Then define g(M) as the triple
〈R,D, I ′〉, where R contains the run r such that r(w) =
〈w, [w]∼1 , . . . , [w]∼n

〉 for w ∈ W , D is the same as inM,
and I ′(P k, r, w) = I(P k, w). The structure g(M) is a QIS
that satisfies the following result:
Lemma 7 For every φ ∈ Ln, w ∈W ,

(Mσ, w) |= φ iff (g(M)σ, r, w) |= φ

where r is the only run in g(M). We refer to the appendix
for a proof of this lemma.

Completeness
We show that the system QKT.S5n is complete by extend-
ing to first-order the proof for the propositional system S5Dn
in (Fagin, Halpern, and Vardi 1992), together with the com-
pleteness proof for the first-order temporal logic discussed
in (Gabbay, Hodkinson, and Reynolds 1993). The relevance
of our result consists in showing that these two methods can
be combined together to prove an original completeness re-
sult, as long as there is no interaction between epistemic and
temporal modalities. Note that an independent completeness
proof for S5Dn appeared in (Meyer and Hoek 1992).

More formally, we show that if QKT.S5n does not prove
a formula φ ∈ Ln, then the canonical modelMQKT.S5n for
QKT.S5n does not pseudo-validate φ. It is not guaranteed
that pseudo-validity (as defined below) coincides with plain
validity, but by results in (Fagin, Halpern, and Vardi 1992;
Gabbay, Hodkinson, and Reynolds 1993) fromMQKT.S5n

we can obtain a K-model M+ such that MQKT.S5n

pseudo-validates φ iffM+ |= φ, and completeness follows.
In order to prove the first part of the completeness result

we rely on two lemmas: the saturation lemma and the truth
lemma, whose statements require the following definitions:
let Λ be a set of formulas in Ln,
Λ is consistent iff Λ 0 ⊥;
Λ is maximal iff for every φ ∈ Ln, φ ∈ Λ or ¬φ ∈ Λ;
Λ is max-cons iff Λ is consistent and maximal;
Λ is rich iff ∃xφ ∈ Λ⇒ φ[x/c] ∈ Λ, for some c ∈ Ln;
Λ is saturated iff Λ is max-cons and rich.

Assume that QKT.S5n does not prove φ, then the set
{¬φ} is consistent, and by the saturation lemma below {¬φ}
can be extended to a saturated set:

Lemma 8 (Saturation (Hughes and Cresswell 1996))
If ∆ is a consistent set of formulas in Ln, then it can

be extended to a saturated set Π of formulas on some
expansion L+

n obtained by adding an infinite enumerable
set of new individual constants to Ln.

Now we introduce the canonical model for QKT.S5n.
Note that ℘+(A) is the set of non-empty sets of agents.

Definition 9 (Canonical model) The canonical model for
QKT.S5n on the languageLn, with an expansionL+

n , is a tu-
pleMQKT.S5n = 〈W, {Rj}j∈A∪℘+(A), <,D, I〉 such that:

- W is the set of saturated sets of formulas in L+
n ;

- for i ∈ A, w,w′ ∈W , wRiw′ iff {φ | Kiφ ∈ w} ⊆ w′;
- for non-empty G ⊆ A, wRGw′ iff {φ | DGφ ∈ w} ⊆ w′;
- for w,w′ ∈W , w < w′ iff {φ | [F ]φ ∈ w} ⊆ w′;
- D is the set of equivalence classes [v] = {v′ | v = v′ ∈
w}, for each closed term v ∈ L+

n ;
- I(fk)([v1], . . . , [vk]) = [fk(v1, . . . , vk)];
- 〈[v1], . . . , [vk]〉 ∈ I(P k, w) iff P k(v1, . . . , vk) ∈ w.

If QKT.S5n 6` φ, then by the saturation lemma there is
a saturated set w ⊇ {¬φ}, so the set W of possible worlds
is non-empty. Since T , 4 and 5 are axioms of QKT.S5n,
the various Ri and RG are equivalence relations. More-
over, from D1 and D2 it follows that R{i} is equal to Ri
and RG ⊆

⋂
i∈GRi. However, in general RG 6=

⋂
i∈GRi

(Fagin, Halpern, and Vardi 1992). On the other hand, the
relation < is transitive and weakly connected by axioms 4,
WConF , WConP . By FP , PF the relation w > w′ de-
fined as {φ | [P ]φ ∈ w} ⊆ w′ is the converse of <. How-
ever, < might not be irreflexive (Gabbay, Hodkinson, and
Reynolds 1993).

These remarks give the rationale for introducing the
pseudo-satisfaction relation |=p, defined as |= but for the dis-
tributed knowledge operatorDG (in what follows we simply
writeM forMQKT.S5n ):

(Mσ, w) |=p DGψ iff wRGw
′ implies (Mσ, w′) |=p ψ

We state the truth lemma for the pseudo-satisfaction rela-
tion |=p and refer to (Fagin, Halpern, and Vardi 1992) for a
proof.

Lemma 10 (Truth lemma) Letw∈M,ψ∈L+
n ,σ(yi)=[vi],

(Mσ, w) |=p ψ[~y] iff ψ[~y/~v] ∈ w
We remarked that the canonical modelM might not sat-

isfy
⋂
i∈GRi = RG. However, by applying the techniques

in (Fagin, Halpern, and Vardi 1992)M can be unwound to
get a K-modelM′ in such a way that RG =

⋂
i∈GRi and

the same formulas hold. We refer to the appendix for a proof
of the following lemma.

Lemma 11 For every ψ ∈ L+
n ,

M′ |= ψ iff M |=p ψ

In conclusion, if QKT.S5n 0 φ, then the canonical model
M pseudo-satisfies ¬φ by lemma 10. By lemma 11 we ob-
tain that the K-modelM′ does not validate φ.

Note that the relation<′ onW ′ might not be irreflexive, as
< on W is not such. However, we can apply the techniques
in (Gabbay, Hodkinson, and Reynolds 1993) to construct an
irreflexive K-modelM+ fromM′ such that:
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Lemma 12 For every ψ ∈ L+
n ,

M+ |= ψ iff M′ |= ψ

Also in this case we refer to the appendix for a proof.
By lemma 12 we conclude that the K-model M+ fal-

sifies the unprovable formula φ. Therefore, the following
completeness result holds:

Theorem 13 (Completeness) The system QKT.S5n is com-
plete for the class K of Kripke models.

In order to prove completeness for the class QIS con-
sider the quantified interpreted system g(M+). In lemma 7
we showed thatM+ |= φ iff g(M+) |= φ, hence g(M+)
satisfies ¬φ. As a result, we have the following implications
and a further completeness result:

QIS |= φ ⇒ K |= φ ⇒ QKT.S5n ` φ

Theorem 14 (Completeness) The system QKT.S5n is com-
plete for the class QIS of quantified interpreted systems.

By combining together the soundness and complete-
ness theorems we can compare directly the axiomatisation
QKT.S5n and QIS, so we state our main result:

Corollary 15 (Soundness and Completeness) A formula
φ ∈ Ln is valid on the class QIS of quantified interpreted
systems iff φ is provable in QKT.S5n.

Message Passing Systems as QIS
In this section we model message passing systems (Fagin et
al 1995; Lamport 1978) in the framework of QIS. A message
passing system (MPS) is a MAS in which the only external
actions for the agents are message exchanges, specifically
sending and receiving messages. This setting is common in
the study of a variety of distributed systems, well beyond the
realms of MAS and AI. Indeed, any synchronous or asyn-
chronous networked system can be seen as an MPS.

The notion of time is crucial for the analysis of the or-
dering of events in MPS. As remarked in (Lamport 1978), a
message µ can be said to have been sent (received) before
message µ′ if µ was sent (respectively received) at an ear-
lier time than µ′. We can of course specify this condition
in terms of an external global clock. However, maintaining
synchronicity in a distributed system is known to be costly.
An alternative is to study asynchronous MPS (or AMPS),
where only internal clocks exist and agents can work at ar-
bitrary rates relative to each other.

In what follows we show how both (synchronous) MPS
and AMPS can be thought of as particular classes of QIS
satisfying a finite number of specifications expressed in the
first-order modal language Ln. Further, we analyse in de-
tail the agents’ knowledge about the ordering of events in
AMPS. Our main result consists in showing that the charac-
terisation of AMPS at propositional level given as a metathe-
orem (specifically, in (Fagin et al 1995), Proposition 4.4.3)
can naturally be cast as a formula in Ln, which turns out to
be a validity on the class of QIS we introduce. While the
basic details are given below, we refer to (Fagin et al 1995),
sections 4.4.5-6, for more details on MPS.

We introduce a set Act of actions α1, α2, . . ., and a set
Msg of messages µ1, µ2, . . . For each agent i ∈ A, we con-
sider a set Σi of initial events init(i, α), and a set Inti of
internal events int(i, α). We define the local state li for
agent i as a history over Σi, Inti and Msg, that is, a se-
quence of events whose first element is in Σi, and whose
following elements either belong to Inti or are events of the
form send(i, j, µ), rec(i, j, µ) for j ∈ A, µ ∈ Msg. In-
tuitively, init(i, α) represents the event where agent i per-
forms the initial action α, send(i, j, µ) represents the event
where agent i sends message µ to j, while the meaning of
rec(i, j, µ) is that agent i receives message µ from j. Finally,
int(i, α) means that agent i performs the internal action α.

A global state s ∈ S is a tuple 〈le, l1, . . . , ln〉, where
l1, . . . , ln are local states as above, and le contains all the
events in l1, . . . , ln. In what follows we assume that the nat-
ural numbers N as the flow of time. This choice implies
that we cannot provide a complete characterisation of MPS
in this formalism, as first-order temporal logic on N is unax-
iomatisable (Gabbay, Hodkinson, and Reynolds 1993). Still,
we can express a number of interesting properties of MPS in
the language Ln.

A run r over 〈S,N〉 is a function from the natural numbers
N to S such that:

MP1 ri(m) is a history over Σi, Inti and Msg;

MP2 for every event rec(i, j, µ) in ri(m) there exists a corre-
sponding event send(j, i, µ) in rj(m).

MP3 ri(0) is a sequence of length one (the initial state
init(i, α)), and ri(m + 1) is either identical to ri(m) or
results from appending an event to ri(m).

The last specification MP4 has only a simplifying purpose
and does not restrict our analysis:

MP4 All events in a given agent’s history are distinct. An agent
can never perform the same action twice in a given run.

By MP1 the local states of each agent records her initial
state, the messages she has sent or received, as well as the
internal actions she has taken. MP2 guarantees that any re-
ceived message was actually sent, while MP3 specifies that
at each step at most a single event occurs to any agent. Fi-
nally, MP4 is not essential, but it simplifies proofs as we do
not have to distinguish different occurrences of the same ac-
tion by, for example, time-stamping actions. We will use this
constraint throughout the present section without explicitly
mentioning it.

We now define message passing QIS (MPQIS) as a partic-
ular class of quantified interpreted systems P = 〈R,D, I〉,
whereR is a non-empty set of runs satisfying the constraints
MP1-4 above, D contains the agents in A, the actions in
Act, the messages in Msg, and the events e1, e2, . . ., and I
is an interpretation for Ln. We assume that our language has
terms and predicative letters for representing the objects in
the domain D and the relations among them. In particular,
e1, e2, . . . are metaterms ranging over events; for instance,
∀eφ[e] is a shorthand for

∀i, j, µ φ[send(i, j, µ)]∧φ[rec(i, j, µ)]∧φ[init(i)]∧φ[int(i, α)]

where φ[t] means that the term t occurs in the formula φ.
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We use the same notation for the objects in the model and
the syntactic elements, the distinction will be clear by the
context.

For the specification of MPS it is useful to intro-
duce a predicative constant H for happens such that
(Pσ, r,m) |= H(e, i) iff the event e occurs to agent i
at time m in run r, i.e., ri(m) is the result of append-
ing e to ri(m − 1). We write H(e) as a shorthand
for ∃iH(e, i). By definition of the environment’s local
state, (Pσ, r,m) |= H(e) iff e occurs at time m in run
r. Also, we introduce the predicate H ′ed(e, i) for hap-
pened as 〈P 〉+H(e, i), and H ′ed(e) := ∃iH ′ed(e, i). Fi-
nally, Sent(i, j, µ), Recd(i, j, µ), Init(i, α), and Int(i, α)
are shorthands for H ′ed(send(i, j, µ)), H ′ed(rec(i, j, µ)),
H ′ed(init(i, α)), and H ′ed(int(i, α)) respectively.

Let us now explore the range of specifications that can
be expressed in the formalism. A property often required is
channel reliability. We express this by stating that every sent
message is eventually received. According to the definition
of message passing QIS, it is possible that a message is lost
during a run of the system. We can force channel reliability
by requiring the following specification on MPQIS:

∀i, j, µ(Sent(i, j, µ)→ 〈F 〉+Recd(j, i, µ))

Another relevant property of MPQIS concerns authenti-
cation: if agent i has received a message µ from agent j,
then i knows that µ had actually been sent by j. This speci-
fication can be expressed as:

∀j, µ(Recd(i, j, µ)→ KiSent(j, i, µ))

Further, we may require that agents have perfect recall,
that is, they know everything that has happened to them:

∀e(H ′ed(e, i)→ KiH
′ed(e, i))

It is easy to show that by definition MPQIS satisfy authen-
tication and perfect recall but not channel reliability.

We anticipated that the formalism of QIS is powerful
enough for expressing the specifications MP1-4 in Ln.
Moreover, we can reason about the knowledge agents have
of the ordering of events in asynchronous MPS. To show
this, we define Prec(e, e′, i) as a shorthand for:

H ′ed(e′, i) ∧H ′ed(e, i) ∧ [P ]+(H ′ed(e′, i)→ H ′ed(e, i))

It follows that (Pσ, r,m) |= Prec(e, e′, i) iff events e and
e′ both occur to agent i by roundm of run r, and e occurs no
later than e′ in r. Also, the ordering Prec(e, e′) is defined
as:

H ′ed(e′) ∧H ′ed(e) ∧ [P ]+(H ′ed(e′)→ H ′ed(e))

Note that in the propositional language of (Fagin et al 1995)
Prec(e, e′) is assumed as a primitive proposition.

We can express that the events in a state r(m) are par-
tially ordered by specifying that Prec(e, e′) is a reflexive
and transitive relation on the set of past events:

∀e (H ′ed(e)→ Prec(e, e)) (3)

∀e, e′, e′′ (Prec(e, e′)∧Prec(e′, e′′)→ Prec(e, e′′)) (4)

Moreover, Prec(e, e′, i) can be defined as an anti-
symmetric, linear, discrete order on the events in ri(m),
where with each non-final point is associated an immediate
successor, that is, it is also anti-symmetric and total:

∀e, e′ (Prec(e, e′, i) ∧ Prec(e′, e, i)→ (e = e′)) (5)

∀e, e′ (H ′ed(e, i) ∧H ′ed(e′, i)→ Prec(e, e′, i) ∨ Prec(e′, e, i))
(6)

and each non-final point has an immediate successor:

∀e, e′(Prec(e, e′, i)→ ∃e′′ (Prec(e, e′′, i)∧
∧¬∃e′′′(Prec(e, e′′′, i) ∧ Prec(e′′′, e′′, i)))) (7)

We define LinDisc(Prec(e, e′, i)) as the conjunction of
(3)-(7) above, expressing that the relation Prec(e, e′, i) is
a linear, discrete order where every non terminal event has a
successor. Also, we define the first event as the minimal one
with respect to Prec(e, e′, i), that is,

Fst(e, i) ::= ∀e′(H ′ed(e′, i)→ Prec(e, e′, i))

the first event is provably unique as the order on histories is
total. We formally define the specifications MP1-4 as fol-
lows:

MP1’ LinDisc(Prec(e, e′, i))∧
∧∃e(Fst(e, i) ∧ ∃α(e = init(i, α)))∧
∧∀e(H ′ed(e, i) ∧ ¬Fst(e, i)→ ∃j, α, µ(e = int(i, α)∨
∨e = send(i, j, µ) ∨ e = rec(i, j, µ)))

MP2’ ∀i, j, µ(Recd(i, j, µ)→ Sent(j, i, µ))
MP3’ 〈P 〉+([P ]⊥ ∧ ∃e(H ′ed(e, i) ∧ ∃α(e = init(α, i))∧

∧∀e′(H ′ed(e′, i)→ e′ = e)))∧
∧∀e(H ′ed(e, i)→ (〈P 〉H ′ed(e, i)∨
∨(H(e, i) ∧ ∀e′(H(e′, i)→ e′ = e))))

MP4’ H(e, i)→ ([P ]¬H(e, i) ∧ [F ]¬H(e, i))
By MP1’ the events in the local of agent i are a linear, dis-

crete order, whose first element is an initial event, and whose
following events are either send or receive events or internal
events. According to MP2’ each local state trivially satis-
fies MP2. By MP3’ there is a moment (the starting point)
when the only event in an agent’s local state is the initial
event, and for every event already happened, either it hap-
pened at some point strictly in the past, or it is the single
event which happened in the last round. Finally, by MP4’
each event happens only once in a given run, thus satisfying
MP4. MP1’-4’ are the basic specifications for MPQIS. We
underline that these specifications are defined by means of
only the predicative constant H .

As we pointed out above, synchronicity is a costly as-
sumption in terms of computational resources in MPS. This
remark prompts us to consider asynchronous MPS, where
agents have no common clock. To make this informal defi-
nition precise, we follow once more (Fagin et al 1995). First,
we say that a set V of histories is prefix closed if whenever
h ∈ V , every non-empty prefix of h is in V as well. Then,
we consider the following constraint for AMPQIS:

MP5 The set R of runs in an AMPQIS includes all runs satis-
fying MP1-4 such that the local states of agent i belong to
Vi, for some prefix closed set Vi of histories.
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This constraint implies that at round m of a run r, each
agent i considers possible that any other agent j has per-
formed only a proper subset r′j(m) of the actions listed in
rj(m).

We can now prove the main result of this section: Propo-
sition 4.4.3 in (Fagin et al 1995) can be restated as a validity
on the class of AMPQIS. We do not provide the full state-
ment here, but we note that this metatheoretical result can
be restated as a formula in the first-order modal language
Ln. We introduce a relation of potential causality between
events, as first discussed in (Lamport 1978). This relation
is intended to capture the intuition that event e might have
caused event e′. Fix a subset G of A, the relation 7→G holds
between events e, e′ at a point (r,m) iff both e and e′ occur
by round m in the run r, and

1. for some i, j ∈ G, e′ is a receive event and e is the corre-
sponding send event, or

2. for some i ∈ G, events e, e′ are both in ri(m) and either
e = e′ or e comes earlier than e′ in ri(m), or

3. for some e′′, we have that e 7→G e′′ and e′′ 7→G e′ hold at
(r,m).

Note that 7→G is a partial order on events, it is also anti-
symmetric by MP4. We can say that two events e, e′ are
concurrent iff e 67→G e′ and e′ 67→G e. Intuitively, the relation
7→G holds between events e and e′ iff it is possible for event
e to causally affect event e′. Two events are concurrent if
neither can affect the other. We say that (Pσ, r,m) |= e 7→G

e′ if e 7→G e′ holds at (r,m).
Now we prove that the potential causality relation 7→G is

the closest we can come in AMPS to an ordering of events,
that is, even if the agents inG could combine all their knowl-
edge of the order Prec(e, e′) on events, they could not de-
duce any more about this ordering than is implied by the
relation 7→G. This is due to the fact that the delivery of mes-
sages can be arbitrarily delayed in AMPS, and the agents
might be unaware of this because of asynchronicity. We re-
fer to the appendix for a detailed proof.

Lemma 16 The following validity holds in the class of AM-
PQIS satisfying the specifications MP1-5 above:

AMPQIS |= ∀e, e′((e 7→G e′)↔ DGPrec(e, e′))

By virtue of the analysis above we remark that the quan-
tified language we have introduced has the power to express
complex specifications, which identify metaproperties about
the semantical class under discussion. In particular, by us-
ing language Ln we are able to formalise various constraints
on MPS such as reliability, authentication and perfect recall.
The traditional propositional specifications MP1-4 for MPS
can be given formal counterparts MP1’-4’ in Ln, which
can be shown valid on the corresponding semantical classes
thereby signaling the general correctness of the approach.

Conclusions and Future Work
In this paper we analysed a quantified variant of interpreted
systems and showed completeness for the axiomatisation
QKT.S5n involving temporal and epistemic modalities on

the first-order language Ln. Retaining completeness seems
noteworthy given the known difficulties of these formalisms.

Further, we used this formalism to reason about message
passing systems, a mainstream framework to reason about
asynchronous systems. In particular, we compared the re-
sults obtained at first-order with what was already known at
propositional level, and observed that some properties in the
latter setting become formal validities in the former.

Still, further work seems to be needed in this line of re-
search. First, it seems interesting to relax the assumption on
the domain of quantification, and admit a different domain
Di(s) for each agent i and for each global state s. In such
a framework we should check how to modify the complete-
ness proof for QKT.S5n to accommodate varying domains.

Moreover, we aim at extending the temporal fragment of
our language with the next © and until U operators. Com-
pleteness results are available for various monodic fragments
of such a language (Wolter and Zakharyaschev 2002), and
for the fragment with © over the rational numbers (Mey-
den 1994). It is yet to be checked whether these results
extend to first-order languages with epistemic operators as
well. Also, we would like to analyse relevant classes of QIS,
such as synchronous QIS and QIS with perfect recall. We
have sound and complete axiomatisations for these struc-
tures at propositional level (Fagin et al 1995), but it is not
clear whether these results extend to first-order.
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Appendix
Lemma 7 For every φ ∈ Ln, w ∈W ,

(Mσ, w) |= φ iff (g(M)σ, r, w) |= φ

Proof. The proof of this lemma is by induction on the
length of the formula φ. The base of induction for φ =
P k(~t) or φ = (t = t′) follows by definition of the interpre-
tation I ′ in g(M). The inductive cases for the propositional
connectives are straightforward.

For φ = Kiψ, (Mσ, w) |= φ iff for all w′ ∼i w,
(Mσ, w′) |= ψ, iff for ri(w′) = ri(w), (g(M)σ, r, w) |=
φ, by definition of r and induction hypothesis, iff
(g(M)σ, r, w) |= φ.

The inductive cases for the other modal operators can be
shown similarly.

Lemma 11 For every ψ ∈ L+
n ,

M′ |= ψ iff M |=p ψ

Proof. We first show that if the canonical model M
pseudo-validates ψ ∈ Ln, then there is a tree-like structure
M∗ which pseudo-validates φ as well. Then, fromM∗ we
can obtain a K-modelM′ satisfying lemma 11.

In order to define M∗ we need few more definitions.
Let w,w′ be worlds in W , a path from w to w′ is a se-
quence 〈w1, l1, w2, l2, . . . , lk−1, wk〉 such that (1) w = w1

and w′ = wk; (2) w1, . . . , wk ∈ W ; (3) each lj is either an
agent or a set of agents; (4) 〈wj , wj+1〉 ∈ Rlj .

The reduction of a path 〈w1, i1, w2, i2, . . . , ik−1, wk〉
is obtained by replacing each maximal consecutive sub-
sequence 〈wq, iq, wq+1, iq+1, . . . , ir−1, wr〉 where iq =
iq+1 = . . . = ir−1 by 〈wq, iq, wr〉. A path is said to be
reduced is it is equal to its reduction.

Given the canonical modelM = 〈W,R,<,D, I〉, we de-
fine a structureM∗ = 〈W ∗, R∗, <∗, D, I∗〉 and a surjective
function h : W ∗ → W such that (i) M∗ is a tree, that is,
for w,w′ ∈W ∗ there is at most one reduced path from w to
w′; (ii) wR∗iw

′ implies h(w)Rih(w′); (iii) wR∗Gw
′ implies

h(w)RGh(w′); (iv) w <∗ w′ implies h(w) < h(w′); (v)
〈a1, . . . , ak〉 ∈ I∗(P k, w) iff 〈a1, . . . , ak〉 ∈ I(P k, h(w)).

We define W ∗ by induction. Let W ∗1 be W , and de-
fine W ∗k+1 as the set of worlds vw,l,w′ such that w ∈ W ∗k ,
w′ ∈ W and l is an agent or group of agents. Let W ∗ =⋃
k∈N W

∗
k , then define h : W ∗ → W by letting h(w) = w,

for w ∈ W ∗1 and h(vw,l,w′) = w′, for w ∈ W ∗k . Fur-
ther, R∗l is the reflexive, symmetric and transitive closure
of the relation defined for w,w′ ∈ W ∗ if w′ = vw,l,w′′ ,
for some w′′ ∈ W , and h(w)Rlh(w′); while <∗ is the re-
lation defined for w,w′ ∈ W ∗ if h(w) < h(w′). Finally,
I∗(P k, w) = I(P k, h(w)). By results in (Fagin, Halpern,
and Vardi 1992)M∗ and h satisfy (i)-(v) above. In particu-
lar, we can show the following:

Proposition 17 For w ∈W ∗, ψ ∈ L+
n ,

(M∗σ, w) |=p ψ iff (Mσ, h(w)) |=p ψ
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Finally, we make use of the structure M∗ to define a
K-model M′ such that lemma 11 holds. Define M′ =
〈W ′, R′, <′, D′, I ′〉 as follows:
• W ′ = W ∗, <′=<∗, D′ = D∗ and I ′ = I∗;
• R′i is the transitive closure of R∗i ∪

⋃
i∈GR

∗
G.

Since the various R∗i and R∗G are reflexive, transitive and
symmetric, R′i is an equivalence relation. We state the fol-
lowing result about M′ and refer to (Fagin, Halpern, and
Vardi 1992) for further details.
Proposition 18 For w ∈W ′, ψ ∈ L+

n ,

(M′σ, w) |= ψ iff (M∗σ, w) |=p ψ

In conclusion, The canonical modelM pseudo-validates
ψ ∈ Ln if and only if M∗ pseudo-validates ψ by propo-
sition 17, iff by proposition 18 theK-modelM′ validates ψ.

Lemma 12 For every ψ ∈ L+
n ,

M+ |= ψ iff M′ |= ψ

Proof. Let W ir = {w ∈ W ′ | w 6<′ w} be the set of
irreflexive worlds inM′ and define the equivalence relation
≈ on W r = {w ∈ W ′ | w <′ w} as w1 ≈ w2 iff w1 <

′ w2

and w2 <′ w1. For every ≈-equivalence class a, define a
map a() from the reals R onto a such that for every w ∈ a,
p ∈ R there are s, t ∈ R and
• s < p < t;
• a(s) = w = a(t).
This can be done as every ≈-equivalence class contains at
most 2ℵ0 saturated sets of formulas.

Further, for w ∈ W ir we set {w}(0) = w. Now we
define the K-model M+, where W+ = {({w}, 0) | w ∈
W ir} ∪ {(a, p) | a is a ≈-equivalence class, p ∈ R} is the
set of possible worlds. The order <+ on W+ is such that
(a, p) <+ (b, s) iff
• a 6= b and there are wa ∈ a, wb ∈ b and wa <′ wb; or
• a = b and p < s.

The relation<+ is a weakly connected, strict partial order
onW+, in particular<+ is irreflexive. Also, the relationR+

i

onW+ such that (a, p)R+
i (b, s) iff a(p)R′ib(s) is an equiva-

lence relation asR′i is such. Finally, the domainD+ is equal
to D′, and I+ is such that 〈u1, . . . , uk〉 ∈ I+(P k, (a, p)) iff
〈u1, . . . , uk〉 ∈ I ′(P k, a(p)).

It is straightforward to check that (M+σ, (a, p)) |= ψ iff
(M′σ, a(p)) |= ψ, so the lemma follows.

Lemma 16 The following validity holds in the class of AM-
PQIS satisfying the specifications MP1-5 above:

AMPQIS |= ∀e, e′((e 7→G e′)↔ DGPrec(e, e′))

Proof. ⇒ Assume (Pσ, r,m) |= e 7→G e′. If e′ is a
receive event and e is the corresponding send event, then
ri(m) = r′i(m

′) for all i ∈ G implies (Pσ, r′,m′) |=
H ′ed(e) ∧ H ′ed(e′) ∧ [P ]+(H ′ed(e′) → H ′ed(e)). In
fact, for all m′′ ≤ m′, (Pσ, r′,m′′) |= Recd(i, j, µ) →
Sent(j, i, µ) by MP2’. Thus, (Pσ, r,m) |= DGPrec(e, e′).

If e, e′ are both in ri(m) and either e = e′ or e comes
earlier than e′ in ri(m), then r′i(m

′) = ri(m) implies
(Pσ, r′,m′) |= H ′ed(e) ∧ H ′ed(e′) ∧ [P ]+(H ′ed(e′) →
H ′ed(e)), then (Pσ, r,m) |= KiPrec(e, e′). By D1 and
D2, (Pσ, r,m) |= DGPrec(e, e′).

If there exists some e′′ such that e 7→G e′′ and e′′ 7→G e′,
then without loss of generality we assume that e 7→G e′′

and e′′ 7→G e′ for either case 1 or 2 above, in both
cases (Pσ, r,m) |= DGPrec(e, e′′) ∧ DGPrec(e′′, e′).
This means that ri(m) = r′i(m

′) for all i ∈ G implies
(Pσ, r′,m′) |= [P ]+(H ′ed(e′′) → H ′ed(e)) ∧
[P ]+(H ′ed(e′) → H ′ed(e′′)). By distributivity and tran-
sitivity, (Pσ, r′,m′) |= [P ]+(H ′ed(e′)→ H ′ed(e)). Thus,
(Pσ, r,m) |= DGPrec(e, e′).
⇐ Assume that (Pσ, r,m) |= H(e) ∧ H(e′) but

(Pσ, r,m) 6|= e 7→G e′. The events e, e′ must be dis-
tinct. Moreover, if they both appear in ri(m), for some
i, by hypothesis there must be some m′ < m such that
(Pσ, r,m′) |= H(e′) ∧ ¬H(e). Thus, (Pσ, r,m) 6|=
DGPrec(e, e′).

If e and e′ appear in the local states of distinct agents i, j,
then consider the minimalme′ such that e′ ∈ ri(me′). If e /∈
rj(me′) we are done. Otherwise, consider the minimal me

such that e ∈ rj(me). We define a run r′ such that e 7→G e′′

implies that e′′ occurs (me′ −me) + 1 round later in r′ than
in r. Specifically, for each agent k, if there is no e′′ such
that e 7→G e′′ then r′k(m) = rk(m) for every m. Otherwise,
let me′′ be the minimal round such that e′′ ∈ rk(me′′), then
define r′ as follows:

r′k(m) =

8><>:
rk(m) for m < me′′

rk(me′′ − 1) for me′′ ≤ m ≤ me′′ + (me′ −me)

rk(m− (me′ −me)) for me′′ + (me′ −me) < m

We can show that r′ is well defined, and r′ ∈ P by MP5.
Finally, for all i ∈ G, ri(m) = r′i(m + (me′ − me) + 1)
and (Pσ, r′,me′) |= H(e′) ∧ ¬H(e). Thus, (Pσ, r,m) 6|=
DGPrec(e, e′).
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