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Abstract. We investigate quantified interpreted systems, a semantics
to model multi-agent systems in which the agents can reason about in-
dividuals, their properties, and relationships among them. The seman-
tics naturally extends interpreted systems to first-order by introducing a
domain of individuals. We present a first-order epistemic language inter-
preted on this semantics and prove soundness and completeness of the
quantified modal system QS5D

n , an axiomatisation for these structures.
Finally, we exemplify the use of the logic by modeling message passing
systems, a relevant class of interpreted systems analysed in epistemic
logic.

1 Introduction

Modal epistemic logic has been widely studied in multi-agent systems (MAS)
both on its own and in combination with other modalities, very often temporal
ones. The typical language extends propositional logic by adding n modalities
Ki representing the knowledge of agent i, as well as other modalities represent-
ing different mental states for the agents (distributed and common knowledge,
beliefs, etc) and/or the temporal flow of time [10,25].

The use of modal propositional logic as a specification language requires little
justification: it is a rather expressive language, well-understood from a theo-
retical point of view. Still, it is hard to counterargue the remark, often raised
by practitioners in Software Engineering, that quantification in specifications is
so natural and convenient that it really should be brought explicitly into the
language. Even when working with finite domains of individuals, without quan-
tification one is forced to introduce ad-hoc propositions to emulate basic relations
among individuals. Not always quantification is simply syntactic sugar: certain
expressivity needs do require infinite domains (e.g., see section 4 below).

In multi-agent systems the power of first-order logic is required every time
agents reason about:

– relational statement, as in agent i knows that message μ has been sent by a
to b, or formally

KiSent(a, b, μ)

F. Sadri and K. Satoh (Eds.): CLIMA VIII, LNAI 5056, pp. 248–267, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Complete Quantified Epistemic Logic 249

– functional dependency or identity: agent i knows that message μ is the en-
cryption of message μ′ with key k, formally

Ki(μ = enc(k, μ′))

– an infinite domain of individuals, or a finite domain whose cardinality cannot
be bounded in advance: agent i has to read all e-mails before deleting them,
or formally

∀μ(Delete(i, μ) → Read(i, μ))

– quantification on agents’ indexes [21]: all agents knows..., at least one agent
knows...

∀iKi . . . , ∃iKi . . .

Further, epistemic modalities can be combined with quantifiers to express con-
cepts such as knowledge de re/de dicto [12].

Irrespective of the above, the use of first-order modal logic in MAS specifi-
cations is normally frowned upon by theoreticians. Why should we use an un-
decidable language when a decidable one does the job reasonably well already?
Is the price that quantification brings in justified? While these objections are
certainly sensible, we believe that their strength has been increasingly weakened
by recent progress in the verification of MAS by model checking [13,28,26,23]. In
the model checking approach [8] the decision problem is tackled not by checking
validity but simply model satisfaction. In other words, we do not check whether
a formula representing a specification is satisfiable, but simply whether it is
true on the model representing all possible evolutions of the system. While the
former problem is undecidable for first-order modal logic, the latter is decid-
able at least in some suitable fragments, such as the monodic fragments studied
in [16,32,33,35]. Moreover, we have specification languages supporting first-order
interval temporal logic [29,30]. Recently, first-order modal logic has been applied
to the analysis of security protocols [1,5,9]. Finally, we have some preliminary
works on first-order model checking [31,34].

This paper takes inspiration from the considerations above and aims at making
progress on the subject of first-order epistemic logic. The main contribution of
the paper is the axiomatisation in section 5, where a sound and complete system
for quantified interpreted systems (QIS) is presented. We argue that QIS are
the natural extension to first-order of Interpreted Systems semantics, the usual
formalism for epistemic logic in MAS [10,25].

While completeness results for quantified modal logic are customarily proved
with respect to Kripke semantics [12,18], we should state clearly that QML has
been discussed in MAS settings before. In [10] quantified epistemic logic is briefly
discussed, along with its Kripke semantics and some significant validities; in [21]
the authors introduce a quantified logic of belief, in which the doxastic modalities
are indexed to terms of a first-order language; in [2] a limited form of quantification
is added to Coalition Logic. However, in most of the works above completeness is
not tackled. This may be due to the technical difficulties associated with QML
and the relatively poor status of the metatheoretical investigation in comparison
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with the propositional case. We hope this contribution will be the first in a line of
work in which a systematic analysis of these logics is provided.

Scheme of the paper. In section 2 we present two classes of first-order struc-
tures: systems of global states and Kripke frames. In section 3 we introduce the
first-order modal language LD

n which is interpreted on quantified interpreted sys-
tems, a valued version of the systems of global states. In section 4 we exemplify
syntax and semantics by describing three formal models for multi-agent systems
and discuss some specification patterns. In section 5 we introduce the first-order
modal system Q.S5D

n , and prove the main result of this paper: Q.S5D
n is a sound

and complete axiomatisation of the validities in the structures of global states.
Finally, section 6 outlines some extensions of the present formalism.

2 Systems of Global States and Kripke Frames

In this section we introduce the systems of global states and Kripke frames in a
first-order setting. While the first ones are used in computer science to model the
behaviour of MAS [10,14,25], Kripke frames are best employed to get a deeper
understanding of the formal properties of these systems [6,7]. Technically, we
extend the corresponding propositional structures to first-order. This extension
is not trivial, as there are many ways of performing it: for instance, we can choose
a single domain of quantification or several domains for each agent and/or for
each computational state, not to mention domains of intensional objects [4]. In
this paper we consider the simplest construction, where we have just a single
quantification domain D common to all the agents and states, which contains
all possible objects. We leave other options for further work. In what follows we
assume a set of agents A = {1, . . . , n}.

2.1 Systems of Global States

This paper is primarily concerned with the representation of knowledge in MAS,
not their temporal evolution. Given this, we adopt the “static” perspective on
the systems of global states [22], rather than the “dynamic” version [10]. So,
while we assume that the states of the system result from the evolution given by
protocols and transitions, for the time being we do not consider them explicitly.
More formally, consider a set Li of local states li, l′i, . . ., for each agent i ∈ A,
and a set Le containing the local states of the environment le, l′e, . . .. We define
a system of global states as follows:

Definition 1 (SGS). A system of global states S is a couple 〈S,D〉 such that
S ⊆ Le×L1× . . .×Ln is a non-empty set of global states, and D is a non-empty
domain of individuals. SGS is the class of the systems of global states.

This definition of SGS is based on two assumptions. First, the domain D of indi-
viduals is the same for every agent i, so that all agents effectively reason about
the same objects. This choice is justified by the external account of knowledge
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usually adopted in the framework of interpreted systems. If knowledge is as-
cribed to agents by an external observer, it seems natural to focus on a unique
set of individuals: the ones assumed to exist by the external observer. Second,
the domain D is assumed to be the same for every global state, i.e., no individual
appears nor disappears in moving from one state to another. This also is consis-
tent with the external account of knowledge: all individuals are supposed to be
existing from the observer’s viewpoint. We discuss further options in section 6.
Finally, it can be the case that A ⊆ D. This means that the agents can reason
about themselves, their properties, and relationships.

2.2 Kripke Frames

While Kripke frames are less intuitive than interpreted systems to model MAS,
they are more convenient for the purpose of formal analysis, namely completeness
investigations. We work with frames with equivalence relations, so we take the
following definition:

Definition 2. A Kripke frame F is a n+ 2-tuple 〈W,∼1, . . . ,∼n, D〉 such that
W is a non-empty set; for i ∈ A, ∼i is an equivalence relation on W ; D is a
non-empty set of individuals. K is the class of all Kripke frames.

Now we have systems of global states modelling MAS and Kripke frames. In
order to axiomatise SGS, it is useful to map SGS into Kripke frames.

2.3 Maps between SGS and K
We explore the relationship between these structures by means of two maps f
and g from SGS to K and viceversa. We show that every SGS S is isomorphic
to g(f(S)), that is, there is a one-to-one correspondence onto the sets of global
states and the domains of individuals. Further, we prove that every Kripke frame
F = 〈W,∼1, . . . ,∼n, D〉 is isomorphic to f(g(F)) = 〈W ′,∼′

1, . . . ,∼′
n, D

′〉, that
is, there are bijections between W and W ′ and between D and D′; in addition
w ∼i w

′ iff (f ◦ g)(w) ∼′
i (f ◦ g)(w′). As a result, every sound and complete

axiomatisation of Kripke frames is also an axiomatisation of SGS.
We start with the map f : SGS → K. Let S = 〈S,D〉 be an SGS, define f(S)

as the n + 2-tuple 〈S,∼1, . . . ,∼n, D〉, where S is the set of possible states and
D is the domain of individuals. Moreover, for each i ∈ A, the relation ∼i on S
such that 〈le, l1, . . . , ln〉 ∼i 〈l′e, l′1, . . . , l′n〉 iff li = l′i is an equivalence relation. So
f(S) is a Kripke frame.

For the converse map g : K → SGS , let F = 〈W,∼1, . . . ,∼n, D〉 be a Kripke
frame. For every epistemic state w ∈ W , let the equivalence class [w]∼i =
{w′|w ∼i w

′} be a local state for agent i, and W is the set of local states
for the environment. Define g(F) = 〈S,D〉, where S contains all the n+1-tuples
〈w, [w]∼1 , . . . , [w]∼n〉, for w ∈ W , while D is defined as above. The structure
g(F) is trivially an SGS.

We prove that the composition of the two maps gives isomorphic structures.

Lemma 1. Every Kripke frame F is isomorphic to f(g(F)).
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Proof. If F = 〈W,∼1, . . . ,∼n, D〉 is a Kripke frame, then f(g(F)) = 〈W ′,
∼′

1, . . . ,∼′
n, D〉 is such that W ′ is the set of n+1-tuples 〈w, [w]∼1 , . . . , [w]∼n〉,

for w ∈ W . The composition f ◦ g is a bijection between W and W ′: it is one-
to-one as if w,w′ ∈ W ′ and w = w′, then in particular the first components
of w and w′ are equal. It is onto as the first component w1 of w ∈ W ′ is such
that w1 ∈ W and f(g(w1)) = w. Also, the identity on D is a bijection. Finally,
w ∼i w

′ iff [w]∼i = [w′]∼i iff 〈w, [w]∼1 , . . . , [w]∼n〉 ∼′
i 〈w′, [w′]∼1 , . . . , [w′]∼n〉.

Thus, the two structures are isomorphic. ��
By lemma 1 we will show in section 5 that a sound and complete axiomatisation
of Kripke frames is adequate also with respect to SGS.

3 Syntax and Semantics

In this section we introduce the first-order multi-modal language LD
n containing

individual variables and constants, as well as quantifiers, n epistemic operators,
the distributed knowledge operator, and identity. The language LD

n is interpreted
on models based on Kripke frames. Finally, we present the quantified interpreted
systems, a valued version of the systems of global states.

3.1 Syntax

The first-order multi-modal language LD
n contains individual variables x1, x2, . . .,

n-ary functors fn
1 , f

n
2 , . . . and n-ary predicative letters Pn

1 , P
n
2 , . . ., for n ∈ N,

the identity predicate =, the propositional connectives ¬ and →, the universal
quantifier ∀, the epistemic operatorsKi, for i ∈ A, and the distributed knowledge
operator DG, for G ⊆ A.

Definition 3. Terms and formulas in the language LD
n are defined in the Backus-

Naur form as follows:

t ::= x | fk(t1, . . . , tk)
φ ::= P k(t1, . . . , tk) | t = t′ | ¬φ | φ→ ψ | Kiφ | DGφ | ∀xφ

Intuitively, the formula Kiφ means that agent i knows φ, while DGφ is read
as φ is distributed knowledge among the agents in G. The symbols ⊥, ∧, ∨, ↔
and ∃ are defined by means of the other logical constants; we refer to the 0-
ary functors as individual constants c1, c2, . . . A closed term v is a term where
no variable appears, the closed terms are only constants and terms obtained
by applying functors to closed terms. Finally, by t[�y] (resp. φ[�y]) we mean that
�y = y1, . . . , yn are all the free variables in t (resp. φ); while t[�y/�t] (resp. φ[�y/�t])
denotes the term (resp. formula) obtained by simultaneously substituting some,
possibly all, free occurrences of �y in t (resp. φ) with �t = t1, . . . , tn, renaming
bounded variables if necessary.
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3.2 Semantics

In order to assign a meaning to the formulas in LD
n we make use of Kripke

models. We then define validity on quantified interpreted systems in terms of
validity on Kripke models.

Definition 4 (model). A Kripke model M - or simply K-model - based on a
Kripke frame F , is a couple 〈F , I〉 where I is an interpretation such that:

– if fk is a k-ary functor, then I(fk) is a function from Dk to D;
– if P k is a k-ary predicative letter and w ∈ W , then I(P k, w) is a k-ary

relation on D, i.e. I(P k, w) ⊆ Dk;
– the interpretation I(=, w) of the identity = in w is the equality on D.

Note that function symbols are interpreted rigidly, that is, for every w,w′ ∈ W
the interpretation of a functor fk in w is the same as the interpretation of fk in
w′. Given that our approach is the one of the external observer, rigid designators
seem appropriate.

Now let σ be an assignment, i.e., any function from the set of variables in LD
n

to the domain D, the valuation Iσ(t) of a term t is defined as σ(y) for t = y,
and Iσ(t) = I(fk)(Iσ(t1), . . . , Iσ(tk)), for t = fk(t1, . . . , tk). In particular, the
valuation Iσ(d) of a constant d is an individual I(d) in D. The variant σ

(
x
a

)
of

the assignment σ differs from σ at most on x and assigns element a ∈ D to x.
Now we are able to define the truth conditions for the formulas in LD

n .

Definition 5 (Satisfaction). The satisfaction relation |= for a formula φ ∈
LD

n , a world w ∈ M and an assignment σ is inductively defined as follows:

(Mσ, w) |= P k(�t) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, w)
(Mσ, w) |= t = t′ iff Iσ(t) = Iσ(t′)
(Mσ, w) |= ¬ψ iff (Mσ, w) �|= ψ
(Mσ, w) |= ψ → ψ′ iff (Mσ, w) �|= ψ or (Mσ, w) |= ψ′

(Mσ, w) |= Kiψ iff for w′ ∈W, w ∼i w
′ implies (Mσ, w′) |= ψ

(Mσ, w) |= DGψ iff for w′ ∈W, (w,w′) ∈ ⋂
i∈G ∼i implies (Mσ, w′) |= ψ

(Mσ, w) |= ∀xψ iff for all a ∈ D, (Mσ(x
a), w) |= ψ

The truth conditions for the formulas containing the symbols ⊥ ∧, ∨, ↔ and ∃
are standardly defined from those above. Further, a formula φ in LD

n is said to
be true at a world w iff it is satisfied at w by every assignment σ; φ is valid on a
model M iff it is true at every world in M; φ is valid on a frame F iff it is valid
on every model on F ; φ is valid on a class C of frames iff it is valid on every
frame in C.

Now we have all preliminary definitions to introduce quantified interpreted
systems.

Definition 6 (QIS). A quantified interpreted systems P based on an SGS S, is
a couple 〈S, I〉 such that I is an interpretation of LD

n in the Kripke frame f(S).
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The notions of satisfaction, truth and validity are defined as above, i.e., let
Pf = 〈f(S), I〉 be the Kripke model for the quantified interpreted system P =
〈S, I〉, then (Pσ, s) |= φ iff (Pσ

f , s) |= φ. In particular, the present definition of
satisfaction agrees with the usual definition for interpreted systems:

(Pσ, s) |= P k(t1, . . . , tk) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, s)
(Pσ, s) |= Kiψ iff li(s) = li(s′) implies (Pσ, s′) |= ψ
(Pσ, s) |= DGψ iff li(s) = li(s′) for all i ∈ G implies (Pσ, s′) |= ψ

(Pσ, s) |= ∀xψ iff for all a ∈ D, (Pσ(a
x), s′) |= ψ

Moreover, a formula φ ∈ LD
n is valid on a quantified interpreted systems P iff

φ is valid on Pf , or more formally:

Definition 7 (Validity on QIS). If φ is a formula in LD
n and P is a quantified

interpreted systems, then P |= φ iff Pf |= φ.

Thus, we can reason about a multi-agent system by using the expressiveness of
QIS, but rely on Kripke models to prove formal properties of the system.

3.3 Some Validities

Clearly, the language LD
n is very expressive. We can specify the knowledge agents

have of facts about individuals, as in the following specification: agent i knows
that someone sent him a message when he receives it,

∀j, μ(Recd(i, j, μ) → KiSent(j, i, μ)) (1)

This specification can be expressed also in some propositional modal lan-
guages. However, in LD

n we can make more subtle distinctions as in if agent i
receives a message, then he knows that someone sent it to him:

∀μ(∃jRecd(i, j, μ) → Ki ∃j′Sent(j′, i, μ)) (2)

The latter specification is weaker than the former, as (2) says nothing about
the identity of the sender, while (1) requires that the receiver knows the identity
of the sender.

We briefly explore the semantics of QIS by considering the traditional Barcan
formulas [12]. There has been much discussion on these principles and their
soundness in epistemic contexts. Given that the domain of quantification is the
same for every global state, both the Barcan formula and its converse are valid
on the class QIS of all QIS, i.e., they hold in every quantified interpreted system:

QIS |= ∀xKiφ→ Ki∀xφ QIS |= ∀xDGφ→ DG∀xφ BF
QIS |= Ki∀xφ→ ∀xKiφ QIS |= DG∀xφ→ ∀xDGφ CBF

We remarked that these formulas are direct consequences of having fixed do-
mains, which were justified by the external account of knowledge usually adopted
in epistemic logic: the domain of quantification consists of the individuals con-
sidered by the designer. Also, we deem these validities in line with the bird’s
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eye approach of epistemic logic. By BF if agent i knows that a is φ for each
individual a ∈ D, then she knows that all the individuals are φ. In fact, in any
epistemic alternative considered by agent i at most the individuals she currently
considers (i.e., those in D) are present. In other words, agents are assumed to
be able to generalise their knowledge, at least when this is considered from an
external point of view. By CBF if agent i knows that all the individuals are φ,
then she knows that a is φ, for each individual a ∈ D. This happens because
in any epistemic alternative considered by agent i at least the individuals she
currently considers (again those in D) are present. In other words, agents are
assumed to be able to particularise their knowledge.

We stress the fact that in this interpretation the formula Ki∀xφ does not
mean that agent i knows that all the individuals she considers are φ, but rather
agent i knows that all the individuals (considered by the external designer) are φ.
Further, following the external account of knowledge typical in epistemic logic,
the truth of Ki∀xφ does not imply that agent i has to be aware of all the individ-
uals considered by the designer. As it is the case in propositional epistemic logic,
the formula ∀xφ expresses the knowledge attributed by the external observer to
agent i, rather than the explicit knowledge possessed by i.

We have also generalised versions of the Barcan formula and its converse, for
arbitrary strings of epistemic operators:

QIS |= ∀xEj1 . . . Ejmφ→ Ej1 . . . Ejm∀xφ BFj1,...,jm

QIS |= Ej1 . . . Ejm∀xφ→ ∀xEj1 . . . Ejmφ CBFj1,...,jm

where each Ejk
is either Ki or DG. Even if these principles seem quite strong,

by considering an external notion of knowledge they do not appear problematic.
For what concerns identity, the following principles hold:

QIS |= (t = t′) → Ki(t = t′) QIS |= (t �= t′) → Ki(t �= t′)
QIS |= (t = t′) → DG(t = t′) QIS |= (t �= t′) → DG(t �= t′)

These validities result from rigid designation and require further explanation.
Suppose message μ′ is the encryption of message μ with key k, i.e. μ′ = enc(k, μ),
then by the principles above any agent i should know this identity, that is, for
each i, we have Ki(μ′ = enc(k, μ)). But this seems to imply that we cannot
represent encryption in this formalism. However, if we assume the de re in-
terpretation of modality, we can reconcile encryption and the validities above.
In fact, if μ′ and enc(k, μ) are one and the same message, then any agent i
knows that this message is identical to itself, which is the de re interpretation
of Ki(μ′ = enc(k, μ)). Still, agent i may not have explicit, de dicto knowledge of
the fact that message μ′ is obtained by encrypting μ with key k.

4 Message-Passing QIS

In this section we show how to model message-passing systems [10] in the frame-
work of QIS. A m.p. system is a multi-agent system where agents communicate
by exchanging messages, so the most relevant events are sending and receiving
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messages. The formalism of message passing systems is useful to model a wide
range of MAS. For instance, a network of computers, such as the Internet, can
be seen as a m.p. system. In general, any multi-agent system is a m.p. system
if the message transmission delay is not negligible. In a m.p. system the local
state of each agent contains information about its initial state, the messages it
has sent or received, as well as the internal actions it has taken.

In what follows we show that m.p. systems can be defined as a particular
class of SGS satisfying a finite number of specifications in the first-order modal
language LD

n . Our main result consists in showing that Proposition 4.4.3 in
[10], concerning the knowledge of the ordering of events in m.p. systems, can
be restated as a validity on the class of QIS modeling m.p. systems. Thus, the
formalism of QIS is powerful enough to deal with the theory of m.p. systems.
Throughout the section we refer to [10], par. 4.4.5-6, for the details of m.p. sys-
tems.

More formally, we introduce a set Act of actions α1, α2, . . ., and a set MSG of
messages μ1, μ2, . . . For each agent i ∈ A, we consider a set Σi of initial events
init(i, α), and a set INTi of internal events int(i, α). We define the local state
li for agent i as a history over Σi, INTi and MSG, that is, a sequence of events
whose first element is in Σi, and whose following elements either belong to INTi

or are events of the form send(i, j, μ), rec(i, j, μ) for j ∈ A, μ ∈ MSG and
α ∈ Act. Intuitively, init(i, α) represents the event where agent i performs the
initial action α, send(i, j, μ) represents the event where agent i sends message μ
to j, while the intended meaning of rec(i, j, μ) is that agent i receives message
μ from j. Finally, int(i, α) means that agent i performs the internal action α.

A global state s is a tuple 〈le, l1, . . . , ln〉, where l1, . . . , ln are local states as
above and le contains all the events in l1, . . . , ln. We define a reflexive, transitive
and anti-symmetric relation ≤ on the local states of agent i such that li ≤ l′i
iff li is a prefix of l′i. This order extends to global states, so that s ≤ s′ iff
li ≤ l′i for every i ∈ A. We can define message passing systems as a special
class of quantified interpreted systems by considering the class of QIS P =
〈S,D, I〉 where S is a non-empty set of global states; the domainD of individuals
includes all agents in A, the messages in MSG, the actions in Act, and the events
e1, e2, . . .; I is the interpretation for LD

n . Intuitively, each m.p. QIS models the
evolution of a m.p. system: starting from an initial state, the m.p. QIS contains
the states reachable during the execution of the m.p. system. The temporal
evolution of a m.p. QIS can be represented as a sequence s0, s1, . . . of global states
such that s0 = 〈init(e, αe), init(1, α1), . . . , init(n, αn)〉, and for every n ∈ N,
either sn+1 is identical to sn or there is an i such that li(sn) ≤ li(sn+1) but
li(sn) �= li(sn+1). Note that a single m.p. QIS can contain several temporal
evolutions of the same m.p. system.

We assume that our language has terms and predicative letters for represent-
ing the objects in the domain D and the relations among them. In particular,
e1, e2, . . . are metaterms ranging over events: we write ∀eφ[e] as a shorthand for

∀i, j, μ, α φ[send(i, j, μ)] ∧ φ[rec(i, j, μ)] ∧ φ[init(i, α)] ∧ φ[int(i, α)]
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In fact, any event is either a send or a receive event, or an initial action or an
internal action. We use the same notation for the objects in the model and the
syntactic elements, as the ones mirror the others; the distinction will be made
clear by the context. We immediately give some examples of the expressiveness
of our formalism. In LD

n we can define events by formulas which are provably
valid in every m.p. QIS (the existence of a unique individual ∃! can be defined
by means of =):

∀e∃!i, j, μ, α (i �= j)∧ (e = send(i, j, μ) ∨ e = rec(i, j, μ) ∨ e = init(i, α) ∨ e= int(i, α))

∀i, j, μ, α∃!e1, e2, e3, e4(send(i, j, μ)=e1 ∧ rec(i, j, μ)=e2 ∧ init(i, α)=e3 ∧ int(i, α) = e4∧
∧e1 �= e2 ∧ e1 �= e3 ∧ e1 �= e4 ∧ e2 �= e3 ∧ e2 �= e4 ∧ e3 �= e4).

The first specification expresses the fact that every event is either a send or a
receive event, where the sender is different from the receiver, or an initial action,
or an internal action. The second specification says that every send or receive
event, initial action, and internal action are distinct events. Thus, we cannot
have send(i, j, μ) = e = rec(i′, j′, μ′). It is easy to check that our definition of
m.p. QIS validates these specifications.

In [10], p. 132 the authors list three constraints on m.p. systems, the third
one involves the notion of run on an SGS. Nonetheless, we can restate the first
two without introducing runs:

MP1 a local state li for agent i is a history over Σi, INTi and MSG;
MP2 for every event rec(i, j, μ) in li(s) there exists an event send(j, i, μ) in lj(s).

Further, the following simplifying assumption is considered.

* all events in a given agent’s local state are distinct, an agent can never
perform the same action twice.

Note that this does not restrict our analysis as identical actions can be
timestamped. We show how to formalise these specifications in the language
LD

n of m.p. QIS. First, we introduce a predicate H for happened such that
(Pσ, s) |= H(e, i) iff e is an event in li(s). The formula H(e) is a shorthand
for ∃iH(e, i). By the definition of m.p. system, we can show that (Pσ, s) |= H(e)
iff e is an event in s. Further, we define an order Prec on events as follows:

(Pσ, s) |= Prec(e, e′, i) iff (Pσ, s) |= H(e, i) ∧H(e′, i) and
for all s′ ≤ s, (Pσ, s′) |= H(e′, i) → H(e, i).

The definition of Prec(e, e′) is similar, with H(e) instead of H(e, i). We can
force the events in a global state s to be partially ordered by specifying that
Prec(e, e′) is a reflexive and transitive relation on the set of past events:

H(e) → Prec(e, e) (3)
Prec(e, e′) ∧ Prec(e′, e′′) → Prec(e, e′′) (4)

As an example, we show that (4) holds. Suppose that (Pσ, s) |= Prec(e, e′) ∧
Prec(e′, e′′). This means that (Pσ, s) |= ∃iH(e, i) ∧ ∃jH(e′′, j). Moreover, we
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have that for all s′ ≤ s, (Pσ, s′) |= ∃iH(e′, i) → ∃iH(e, i) and (Pσ, s′) |=
∃jH(e′′, j) → ∃jH(e′, j). By renaming bounded variables and the transitivity of
implication, we obtain that for all s′ ≤ s, (Pσ, s′) |= ∃iH(e′′, i) → ∃iH(e, i). As
a result, (Pσ, s) |= Prec(e, e′′). Further, Prec(e, e′, i) can be defined as a linear
order on the events in li, i.e., it is also anti-symmetric and total:

Prec(e, e′, i) ∧ Prec(e′, e, i) → (e = e′) (5)
H(e, i) ∧H(e′, i) → Prec(e, e′, i) ∨ Prec(e′, e, i) (6)

We define Linear(Prec(e, e′, i)) as the conjunction of (3)–(6) above, express-
ing the fact that the relation Prec(e, e′, i) is linear. Also, we define the first event
as the minimal one with respect to Prec(e, e′, i), that is,

Fst(e, i) ::= H(e, i) ∧ ∀e′(e′ �= e→ (H(e′, i) → ¬Prec(e′, e, i)))

Finally, the formulas Sent(i, j, μ), Recd(i, j, μ), Init(i, α), and Int(i, α) are
shorthands for H(send(i, j, μ)), H(rec(i, j, μ)), H(init(i, α)), and H(int(i, α))
respectively. Now we can formalise the specifications MP1-2 and * as follows:

MP1* Linear(Prec(e, e′, i)) ∧
∧ ∃!e(Fst(e, i) ∧ ∃α(e = init(i, α))) ∧ ∀e(H(e, i) ∧ ¬Fst(e, i) →
→ ∃j, α, μ(e = int(i, α) ∨ e = send(i, j, μ) ∨ e = rec(i, j, μ)))

MP2’ ∀i, j, μ(Recd(i, j, μ) → Sent(j, i, μ))

MP1* forces the local state of any agent i to satisfy MP1 and *; while by MP2’
specification MP2 is satisfied. MP1*-2 are the basic specifications for m.p. QIS,
but we can consider further constraints on message passing system. A property
often required in the framework of m.p. systems is channel reliability. Modified
from [10], a m.p. system is reliable if every sent message is eventually received,
or more formally:

MP4 if send(i, j, μ) is in li(s), then there exists a global state s′ such that
rec(j, i, μ) is in lj(s′).

In LD
n we can formalise this specification as follows:

MP4’ ∀j, μ(Sent(i, j, μ) → ¬Ki¬Recd(j, i, μ))

In fact, if send(i, j, μ) is in li(s), by MP4’ (Pσ, s) |= ¬Ki¬Recd(j, i, μ), this
means that there exists a global state s′ such that (Pσ, s′) |= Recd(j, i, μ), that
is, rec(j, i, μ) ∈ lj(s′). Thus, MP4 holds. Note that MP4’ is stronger than MP4 as
the former requires that the local states of agent i in s and s′ are identical. This
can be considered a limit of our epistemic language, due to the lack of temporal
operators. Further, a relevant property of m.p. systems concerns authentication:
if agent i receives a message μ from agent j, then i knows that μ was actually
sent by j. This specification can be expressed as

∀j, μ(Recd(i, j, μ) → KiSent(j, i, μ))
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Finally, we may require that agents have perfect recall, that is, they know
everything that has happened to them:

∀e(H(e, i) → KiH(e, i))

It is easy to show that by the way they are defined, m.p. QIS satisfy authen-
tication and perfect recall but not channel reliability. We remark that all the
specifications introduced are defined by means of only the predicative constants
H(e, i) and Prec(e, e′, i).

We now prove the main result of this section: Proposition 4.4.3 in [10] can
be restated as a validity on the class of m.p. QIS satisfying MP1, MP2, and *.
We do not give the full statement, but we note that this metatheoretical result
can be restated as a formula in the first-order modal language LD

n . First, we
introduce a relation �→G of potential causality between events, as discussed in
[20]. This relation is intended to capture the intuition that event e might have
caused event e′.

Fix a subset G of A, the relation �→G holds between events e, e′ at a state s
iff both e and e′ appears in s, and

1. for some i, j ∈ G, e′ is a receive event and e is the corresponding send event;
2. for some i ∈ G, events e, e′ are both in li(s) and either e = e′ or e comes

earlier than e′ in li(s);
3. for some event e′′, we have that e �→G e′′ and e′′ �→G e′ hold at s.

Note that �→G is a partial order on events. We say that (Pσ, s) |= e �→G e′

if e �→G e′ hold at s (we use the same notation for semantic and syntactic
elements).

Now we prove that the potential causality relation �→G respects the order Prec
of events by showing that the following validity holds in the class of m.p. QIS.
This means that if event e is the “cause” of event e′, then it is distributed
knowledge among the agents that e happened before e′. Note that this is the
right to left implication of Proposition 4.4.3 in [10]:

m.p. QIS |= ∀e, e′((e �→G e′) → DGPrec(e, e′))

Proof. Assume that (Pσ, s) |= e �→G e′. If e′ is a receive event and e is the
corresponding send event, then li(s) = li(s′) for all i ∈ G implies (Pσ, s′) |=
H(e) ∧H(e′), and for s′′ ≤ s′, (Pσ, s′′) |= Recd(i, j, μ) → Sent(j, i, μ) by MP2’.
Thus, (Pσ, s) |= DGPrec(e, e′).

If e, e′ are both in li(s) and either e = e′ or e comes earlier than e′ in
li(s), then li(s) = li(s′) implies that (Pσ, s′) |= H(e) ∧ H(e′), and for s′′ ≤ s′,
(Pσ, s′′) |= H(e′) → H(e). It follows that (Pσ, s) |= KiPrec(e, e′), and by D1,
D2, (Pσ, s) |= DGPrec(e, e′).

Finally, if there exists some event e′′ such that e �→G e′′ and e′′ �→G e′,
we can assume without loss of generality that this happens because we are in
either the first or second case above. In both cases we have that (Pσ, s) |=
DGPrec(e, e′′)∧DGPrec(e′′, e′). Therefore, for every s′, li(s) = li(s′) for all i ∈ G
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implies (Pσ, s′) |= H(e) ∧H(e′), and for s′′ ≤ s′, (Pσ, s′′) |= H(e′′) → H(e) ∧
H(e′) → H(e′′). By transitivity, (Pσ, s′′) |= H(e′) → H(e). Thus, (Pσ, s) |=
DGPrec(e, e′). ��

The analysis of message-passing systems carried out in this section clearly shows
the advantages of first-order modal formalisms in comparison with propositional
ones. By means of language LD

n we are able to formalise various constraints on
m.p. systems, thereby signaling the general correctness of the approach. Most
importantly, the right to left implication of Proposition 4.4.3 in [10] turned out
out be a validity on the class of QIS modelling m.p. systems.

In the second part of this paper we will show that this expressivity gain is
obtained while still retaining completeness of the logical formalism.

5 Axiomatisation

In this section we provide a sound and complete axiomatisation of systems of
global states. Note that while it is customary in modal logic to axiomatise unval-
ued structures (hence our choice of SGS), the same result applies to QIS as well.
Technically, we first prove the completeness of the first-order multi-modal sys-
tem Q.S5D

n with respect to Kripke frames. Then, by lemma 1 the completeness
of Q.S5D

n with respect to SGS follows.
In [19] Kripke proved the completeness of monomodal Q.S5 (see also [12,18]).

The novelty of this section consists in showing that the techniques in [11] for the
completeness of propositional S5D

n can be straightforwardly extended to first-
order for proving the completeness of Q.S5D

n . Also, note that an independent
completeness proof for S5D

n appeared in [24].

5.1 The System Q.S5D
n

The system Q.S5D
n on the language LD

n is a first-order multi-modal version of the
propositional system S5. Although tableaux proof systems and natural deduction
calculi are more suitable for automated theorem proving, Hilbert-style systems
are easier to handle for the completeness proof. Hereafter we list the postulates
of Q.S5D

n ; note that ⇒ is the inference relation between formulas.

Definition 8. The system Q.S5D
n on LD

n contains the following schemes of ax-
ioms and inference rules:

Taut every instance of classic propositional tautologies
MP φ→ ψ, φ⇒ ψ
Dist Ki(φ→ ψ) → (Kiφ→ Kiψ)
T Kiφ→ φ
4 Kiφ→ KiKiφ
5 ¬Kiφ→ Ki¬Kiφ
Nec φ⇒ Kiφ
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Dist DG(φ→ ψ) → (DGφ→ DGψ)
T DGφ→ φ
4 DGφ→ DGDGφ
5 ¬DGφ→ DG¬DGφ
D1 D{i}φ↔ Kiφ
D2 DGφ→ DG′ , for G ⊆ G′

Nec φ⇒ DGφ
Ex ∀xφ→ φ[x/t]
Gen φ→ ψ[x/t] ⇒ φ→ ∀xψ, where x is not free in φ
Id t = t
Func t = t′ → (t′′[x/t] = t′′[x/t′])
Subst t = t′ → (φ[x/t] → φ[x/t′])

We consider the standard definitions of proof and theorem: � φ means that
φ ∈ LD

n is a theorem in Q.S5D
n . Moreover, φ ∈ LD

n is derivable in Q.S5D
n from a

set Δ of formulas in LD
n - Δ � φ in short - iff there are φ1, . . . , φn ∈ Δ such that

� φ1 ∧ . . . ∧ φn → φ. It is easy to check that the axioms of Q.S5D
n are valid on

every Kripke frame and the inference rules preserve validity. As a consequence,
we have the following soundness result.

Lemma 2 (Soundness). The system Q.S5D
n is sound with respect to the class

K of Kripke frames.

By lemma 2 and the definition of validity on SGS, these implications hold:

Q.S5D
n � φ ⇒ K |= φ ⇒ SGS |= φ

Thus, we have soundness also for the systems of global states.

Corollary 1 (Soundness). The system Q.S5D
n is sound with respect to the

class SGS of systems of global states.

In the next paragraph we show that the axioms in Q.S5D
n are not only necessary,

but also sufficient to prove all the validities on SGS . In conclusion we show that
the converse of the Barcan formula is provable in Q.S5D

n . For a proof of BF , we
refer to [12], p.138.

1. ∀xφ→ φ Ex
2. Ki(∀xφ→ φ) from 1 by Nec
3. Ki(∀xφ→ φ) → (Ki∀xφ→ Kiφ) Dist
4. Ki∀xφ→ Kiφ from 2, 3 by MP
5. Ki∀xφ→ ∀xKiφ from 4 by Gen

5.2 Completeness

We prove the completeness of Q.S5D
n by extending to first-order the proof for the

propositional system S5D
n in [11]. The novelty of our result consists in showing

that this method can be straightforwardly applied to first-order Kripke frames.
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Specifically, we show that if Q.S5D
n does not prove a formula φ ∈ LD

n , then
the canonical model MQ.S5D

n for Q.S5D
n does not pseudo-validate φ. It is not

guaranteed that the notion of pseudo-validity (to be defined below) coincides
with plain validity, but by results in [11] we can obtain from MQ.S5D

n a Kripke
model M′ such that MQ.S5D

n pseudo-validates φ iff M′ |= φ. Thus completeness
follows.

In order to show the first part of the completeness result we rely on two
lemmas: the saturation lemma and the truth lemma, whose statements require
the following definitions: let Λ be a set of formulas in LD

n ,

Λ is consistent iff for every φ ∈ Λ, � ¬φ;
Λ is maximal iff for every φ ∈ LD

n , φ ∈ Λ or ¬φ ∈ Λ;
Λ is max-cons iff Λ is consistent and maximal;
Λ is rich iff ∃xφ ∈ Λ implies φ[x/d] ∈ Λ, for some constant d ∈ LD

n ;
Λ is saturated iff Λ is max-cons and rich.

Assume that Q.S5D
n does not prove φ, then the set {¬φ} is consistent, and

by the saturation lemma below {¬φ} can be extended to a saturated set:

Lemma 3 (Saturation [18]). If Δ is a consistent set of formulas in LD
n , then

it can be extended to a saturated set Π of formulas on some expansion LD+
n

obtained by adding an infinite set of new individual constants to LD
n .

Now we introduce the canonical model for Q.S5D
n . Note that ℘+(A) is the set

of non-empty sets of agents.

Definition 9 (Canonical model). The canonical model for Q.S5D
n on the lan-

guage LD
n , with an expansion LD+

n , is a tuple MQ.S5D
n =〈W, {Rj}j∈A∪℘+(A), D, I〉

such that

– W is the set of saturated sets of formulas in LD+
n ;

– for i ∈ A, w,w′ ∈W , wRiw
′ iff {φ|Kiφ ∈ w} ⊆ w′;

– for G ⊆ A, w,w′ ∈W , wRGw
′ iff {φ|DGφ ∈ w} ⊆ w′;

– D is the set of equivalence classes [v] = {v′|v = v′ ∈ w}, for every closed
term v ∈ LD+

n ;
– I(fk)([v1], . . . , [vk]) = [fk(v1, . . . , vk)];
– 〈[v1], . . . , [vk]〉 ∈ I(P k, w) iff P k(v1, . . . , vk) ∈ w.

If we assume that Q.S5D
n �� φ, by the saturation lemma there exists a saturated

set w ⊇ {¬φ}, so the set W of possible worlds is non-empty. Further, by defini-
tion of Ri and RG, and axioms Func and Subst, we can show that the definition
of [v] is independent from w, so D is well defined. Since T , 4 and 5 are all axioms
of Q.S5D

n , the various Ri and RG are equivalence relations. Moreover, from D1
and D2 it follows that R{i} is equal to Ri, and RG ⊆ ⋂

i∈GRi. However, in
general it is not the case that RG =

⋂
i∈GRi. This remark gives the rationale
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for introducing the pseudo-satisfaction relation |=p, defined as |= but for the
distributed knowledge operator DG (in what follows we simply write M for
MQ.S5D

n ):

(Mσ, w) |=p DGψ iff for every w′ ∈ W, wRGw
′ implies (Mσ, w′) |=p ψ

Now we can prove the truth lemma for the pseudo-satisfaction relation |=p.
In order to obtain this result we observe that for an assignment σ such that
σ(yi) = [vi], for 1 ≤ i ≤ n, we have that Iσ(t[�y]) = [t[�y/�v]].

Lemma 4 (Truth lemma). For every w ∈ M, φ ∈ LD+
n , for σ(yi) = [vi],

(Mσ, w) |=p φ[�y] iff φ[�y/�v] ∈ w

Proof. The proof is by induction on the structure of φ ∈ LD+
n .

φ = P k(t1, . . . , tk). By the definitions of pseudo-satisfaction and canonical
interpretation (Mσ, w) |=p P k(t1[�y], . . . , tk[�y]) iff 〈Iσ(t1[�y]), . . . , Iσ(tk[�y])〉 ∈
I(P k, w) iff 〈[t1[�y/�v]], . . . , [tk[�y/�v]]〉 ∈ I(P k, w) iff P k(t1[�y/�v], . . . , tk[�y/�v]) ∈ w.
φ = ¬ψ, ψ → ψ′, ∀xψ. The cases for the propositional connectives follows by

the maximality and consistency of the worlds in the canonical model; whereas
for the universal quantifier, the induction step is proved by the richness of w.
φ = Kiψ. ⇐ Assume that Kiψ[�y/�v] ∈ w and wRiw

′. By definition of Ri,
ψ[�y/�v] ∈ w′ and by the induction hypothesis (Mσ, w′) |=p ψ[�y]. Therefore
(Mσ, w) |=p Kiψ[�y].

⇒ Assume that Kiψ[�y/�v] /∈ w. Note that the set {φ|Kiφ ∈ w} ∪ {¬ψ[�y/�v]}
is consistent. By standard techniques [12,18] we can extend it to a saturated
set w′ such that {φ|Kiφ ∈ w} ∪ {¬ψ[�y/�v]} ⊆ w′. This means that wRiw

′ and
(Mσ, w′) |=p ¬ψ[�y] by the induction hypothesis. Hence (Mσ, w) �|=p Kiψ[�y].
φ = DGψ. Similar to the previous case. ��

We remarked that the canonical model might not satisfy
⋂

i∈GRi = RG. How-
ever, it can be unwound to get a structure M′ in such a way that the same for-
mulas are valid [11]. More formally, given the canonical model M = 〈W,R,D, I〉,
there is another structure M∗ = 〈W ∗, R∗, D, I∗〉 and a surjective function
h : W ∗ → W such that (i) M∗ is a tree, that is, for all w,w′ ∈ W ∗, there
is at most one reduced path from w to w′, (ii) wR∗

iw
′ implies h(w)Rih(w′) and

wR∗
Gw

′ implies h(w)RGh(w′), and (iii) 〈a1, . . . , ak〉 ∈ I∗(P k, w) iff 〈a1, . . . , ak〉 ∈
I(P k, h(w)).

In order to define M∗ and h we need more definitions. Let w,w′ be worlds in
W , a path from w to w′ is a sequence 〈w1, i1, w2, i2, . . . , ik−1, wk〉 such that:

1. w = w1 and w′ = wk;
2. w1, . . . , wk ∈W ;
3. each ij is either an agent or a set of agents;
4. 〈wj , wj+1〉 ∈ R∗

ij
.

The reduction of a path 〈w1, i1, w2, i2, . . . , ik−1, wk〉 is obtained by replacing
each maximal consecutive subsequence 〈wq, iq, wq+1, iq+1, . . . , ir−1, wr〉 where
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iq = iq+1 = . . . = ir−1 by 〈wq , iq, wr〉. A path is said to be reduced is it is
equal to its reduction.

We define W ∗ by induction. Let W ∗
1 be W , and define W ∗

k+1 as the set of
worlds vw,i,w′ such that w ∈ W ∗

k , w′ ∈ W and i is an agent or group of agents.
Let W ∗ =

⋃
k∈N

W ∗
k , then define h : W ∗ →W by letting h(w) = w, for w ∈ W ∗

1

and h(vw,i,w′) = w′, for w ∈ W ∗
k . Further, R∗

i is the reflexive, transitive and
symmetric closure of the relation defined for w,w′ ∈ W ∗ iff w′ = vw,i,w′′ for
some w′′ ∈ W , and h(w)Rih(w′). Finally, I∗(P k, w) = I(P k, h(w)). It can be
checked that M∗ and h satisfy (i)-(iii) above, we omit the proof for reasons of
space and refer to [11] for the details. In particular, we can show what follows:

Lemma 5. For w ∈W ∗, φ ∈ LD
n ,

(M∗σ, w) |=p φ iff (Mσ, h(w)) |=p φ

Proof. The proof is by induction on the length of φ. If φ is an atomic formula,
then the coimplication follows by the definition of I∗. The cases for the propo-
sitional connectives and the universal quantifier are straightforward.
φ = Kiψ. ⇐ Suppose that (M∗σ, w) �|=p Kiψ, then there is a world w′ ∈

W ∗ such that wR∗
iw

′ and (M∗σ, w′) �|=p ψ. This means that h(w)Rih(w′) and
(Mσ, h(w′)) �|=p ψ by induction hypothesis. Thus (Mσ, h(w)) �|=p Kiψ.

⇒ If (Mσ, h(w)) �|=p Kiψ, then there is a world w′ ∈ W such that h(w)Riw
′

and (Mσ, w′) �|=p ψ. By construction vw,i,w′ ∈ W ∗, h(vw,i,w′) = w′ andwR∗
i vw,i,w′ .

By induction hypothesis (M∗σ, vw,i,w′) �|=p ψ, hence (M∗σ, w) �|=p Kiψ.
φ = DGψ. Similar to the previous case. ��

Now we make use of the structure M∗ to define a Kripke model M′ that does
not validate the unprovable formula φ ∈ LD

n . Define M′ = 〈W ′, R′, D′, I ′〉 as
follows:

– W ′ = W ∗, D′ = D and I ′ = I∗;
– R′

i is the transitive closure of R∗
i ∪ ⋃

i∈GR
∗
G.

Since the various R∗
i and R∗

G are reflexive and symmetric, it follows that R′
i is

an equivalence relation, and therefore M′ is based on a Kripke frame. Further,
we can prove the following result:

Lemma 6. For φ ∈ LD
n ,

(M′σ, w) |= φ iff (M∗σ, w) |=p φ

Proof. Also this proof is by induction on the length of φ. If φ is an atomic for-
mula, then the coimplication follows because I ′ = I∗. The cases for the propo-
sitional connectives are straightforward.

For φ = Kiψ or φ = DGψ, the inductive step goes as in the propositional
case; we refer to [11] for a detailed proof.
φ = ∀xψ. If (M′σ, w) |= φ, then for all a ∈ D′, (M′σ(a

x), w) |= ψ. By induction
hypothesis (M∗σ(a

x), w) |=p ψ, and since D′ = D, (M∗σ, w) |=p φ. ��
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In conclusion, if φ ∈ LD
n is not provable in Q.S5D

n , then the canonical model M
pseudo-satisfies ¬φ by lemma 4. By lemma 5 also M∗ pseudo-satisfies ¬φ, and
by the last result above M′ does not validate φ. Thus, we state the following
completeness result.

Theorem 1 (Completeness). The system Q.S5D
n is complete with respect to

the class K of Kripke frames.

As a consequence, we have completeness also with respect to the systems of global
states. In fact, if � φ then by Theorem 1 there exists a K-model M = 〈F , I〉,
based on a Kripke frame F , which falsifies φ. In order to prove that SGS �|= φ we
have to find a quantified interpreted system P falsifying φ. Define P as 〈g(F), I〉:
by the definition of validity in QIS, P |= φ iff Pf = 〈f(g(F)), I〉 models φ, but
by lemma 1 f(g(F)) is isomorphic to F . Hence P �|= φ.

As a result, we have the following implications and a further completeness
result:

SGS |= φ ⇒ K |= φ ⇒ Q.S5D
n � φ

Corollary 2 (Completeness). The system Q.S5D
n is complete with respect to

the class SGS of systems of global states.

By combining together the soundness and completeness theorems we compare
directly the axiomatisation Q.S5D

n and the systems of global states, so we state
our main result:

Corollary 3 (Soundness and Completeness). A formula φ ∈ LD
n is valid

on the class SGS of systems of global states iff φ is provable in Q.S5D
n .

6 Conclusions

As we argued in the Introduction, first-order modal formalisms offer expressivity
advantages over propositional ones. But the cited explorations already carried
out on this subject in MAS and, more in general, in knowledge representation
and Artificial Intelligence, have so far fallen short of a deep and systematic
analysis of the machinery even in the case of static epistemic logic.

In this paper we believe we have made a first attempt in this direction: the
axiomatisation presented, even if limited to the static case, shows that the pop-
ular system S5D

n extends naturally to first-order. In carrying out this exercise
we tried to remain as close as possible to the original semantics of interpreted
systems, so that fine grained specifications of MAS may be expressed, as recent
work on model checking interpreted systems demonstrates [13,28].

Different extensions of the present framework seem worth pursuing. First of
all, it seems interesting to relax the assumption on the domain of quantification
and admit a different domain d(w) for every state w. Further, we could assume
a different domain of quantification da(w) for each agent a in a state w. In this
case quantification would be agent-indexed, i.e. we would be using a different
quantifier ∀a for every agent a ∈ A. In such an extended framework we should
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check whether the validities on m.p. QIS in section 4 still hold, and how to modify
the completeness proof for Q.S5D

n . Also, it would be of interest to explore the
completeness issues resulting from term-indexing epistemic operators as in [21].

In an orthogonal dimension to the above, another significant extension would
be to add temporal operators to the formalism. This would open the way for
an exploration of axiomatisations for temporal/epistemic logic for MAS. While
as reported in the Introduction we are not so concerned with the satisfiability
problem, in doing so attention will have to be paid to the results in [16].
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34. Viganó, F.: A Framework for Model Checking Institutions. In: Edelkamp, S., Lo-
muscio, A. (eds.) MoChArt IV. LNCS (LNAI), vol. 4428, pp. 129–145. Springer,
Heidelberg (2007)

35. Wolter, F., Zakharyaschev, P.: Decidable fragments of first-order modal logics. J.
Symb. Log. 66(3), 1415–1438 (2001)


	A Complete Quantified Epistemic Logic for Reasoning about Message Passing Systems
	Introduction
	Systems of Global States and Kripke Frames
	Systems of Global States
	Kripke Frames
	Maps between $\SGS$ and $\K$

	Syntax and Semantics
	Syntax
	Semantics
	Some Validities

	Message-Passing QIS
	Axiomatisation
	The System $\Q.S5^D_n$
	Completeness

	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




